Skip to main content
Log in

New shape functions for non-uniform curved Timoshenko beams with arbitrarily varying curvature using basic displacement functions

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

Basic Displacement Functions (BDFs) are introduced and derived using the basic principles of structural mechanics. BDFs are then utilized to obtain new shape functions for arbitrarily curved non-uniform beams, including the effects of shear deformation and extensibility of neutral axis. The main virtue of the proposed shape functions is their susceptibility to the variations in cross-sectional area, moment of inertia, and curvature along the axis of the beam element. Competence of the present method in static and free vibration analyses, as well as its applicability to the special case of straight Timoshenko beam has been verified through several numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Wolf JA (1971) Natural frequencies of circular arches. J Struct Div ASCE 97:2337–2350

    Google Scholar 

  2. Kikuchi F (1975) On the validity of the finite element analysis of circular arches represented by an assemblage of beam elements. Comput Methods Appl Mech Eng 5:253–276

    Article  MathSciNet  MATH  Google Scholar 

  3. Kikuchi F, Tanizawa K (1984) Accuracy and locking-free property of the beam element approximation for arch problems. Comput Struct 19:103–110

    Article  MATH  Google Scholar 

  4. Veletsos A, Austin W (1972) Free in-plane vibrations of circular arches. J Eng Mech ASCE 98:311–329

    Google Scholar 

  5. Dawe DJ (1974) Numerical studies using circular arch finite elements. Comput Struct 4:729–740

    Article  Google Scholar 

  6. Auciello NM, De Rosa MA (1994) Free vibrations of circular arches: a review. J Sound Vib 176:433–458

    Article  ADS  MATH  Google Scholar 

  7. De Rosa MA, Franciosi C (2000) Exact and approximate dynamic analysis of circular arches using DQM. Int J Solids Struct 37:1103–1117

    Article  MATH  Google Scholar 

  8. Chen CN (2005) DQEM analysis of in-plane vibration of curved beam structures. Adv Eng Softw 36:412–424

    Article  ADS  MATH  Google Scholar 

  9. Tufekci E, Arpaci A (1998) Exact solution of in-plane vibrations of circular arches with account taken of axial extension transverse shear and rotatory inertia effects. J Sound Vib 209:845–856

    Article  ADS  Google Scholar 

  10. Tufekcia E, Dogruer OY (2006) Out-of-plane free vibration of a circular arch with uniform cross-section: exact solution. J Sound Vib 291:525–538

    Article  ADS  Google Scholar 

  11. Chen CN (2008) DQEM analysis of out-of-plane deflection of non-prismatic curved beam structures considering the effect of shear deformation. Commun Numer Methods Eng 24:555–571

    Article  MATH  Google Scholar 

  12. Chen CN (2008) DQEM analysis of out-of-plane vibration of non-prismatic curved beam structures considering the effect of shear deformation. Adv Eng Softw 39:466–472

    Article  Google Scholar 

  13. Wang TM, Guilbert MP (1981) Effects of rotary inertia and shear on natural frequencies of continuous circular curved beams. Int J Solids Struct 17:281–289

    Article  MATH  Google Scholar 

  14. Wang TM, Laskey AJ, Ahmad MF (1984) Natural frequencies for out-of plane vibrations of continuous curved beams considering shear and rotary inertia. Int J Solids Struct 20(3):257–265

    Article  MATH  Google Scholar 

  15. Howson WP, Jemah AK (1991) Exact out-of plane natural frequencies of curved Timoshenko beams. J Eng Mech 125(1):19–25

    Article  Google Scholar 

  16. Eisenberger M, Efraim E (2001) In-plane vibrations of shear deformable curved beams. Int J Numer Methods Eng 52:1221–1234

    Article  MATH  Google Scholar 

  17. Kang K, Bert CW, Striz AG (1995) Vibration analysis of shear deformable circular arches by the differential quadrature method. J Sound Vib 181(2):353–360

    Article  Google Scholar 

  18. Dawe DJ (1974) Curved finite elements for the analysis of shallow and deep arches. Comput Struct 4:559–580

    Article  Google Scholar 

  19. Balasubramanian TS, Parthap G (1989) A field consistent higher-order curved beam element for static and dynamic analysis of stepped arches. Comput Struct 33(1):281–288

    Article  MATH  Google Scholar 

  20. Reddy BD, Volpi MB (1992) Mixed finite element methods for the circular arch problem. Comput Methods Appl Mech Eng 97:125–145

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. Krenk S (1994) A general formulation for curved and non-homogenous beam elements. Comput Struct 50(4):449–454

    Article  ADS  MATH  Google Scholar 

  22. Sabir AB, Djoudi MS, Sfendji A (1994) The effect of shear deformation on the vibration of circular arches by finite element method. Thin-Walled Struct 18:47–66

    Article  Google Scholar 

  23. Choi JK, Lim JK (1995) General curved beam elements based on the assumed strain field. Comput Struct 55(3):379–386

    Article  ADS  MATH  Google Scholar 

  24. Krishnan A, Dharmaraj S, Suresh YJ (1995) Free vibration studies of arches. J Sound Vib 5:856–863

    Article  Google Scholar 

  25. Yang SY, Sin HC (1995) Curvature-based beam elements for the analysis of Timoshenko and shear-deformable curved beams. J Sound Vib 187(4):569–584

    Article  ADS  MATH  Google Scholar 

  26. Krishnan A, Suresh YJ (1998) A simple cubic linear element for static and free vibration analyses of curved beams. Comput Struct 68:473–489

    Article  MATH  Google Scholar 

  27. Litewka P, Rakowski J (1998) The exact thick arch finite element. Comput Struct 68:369–379

    Article  MATH  Google Scholar 

  28. Litewka P, Rakowski J (1997) An efficient curved beam element. Int J Numer Methods Eng 40:2629–2652

    Article  MATH  Google Scholar 

  29. Friedman Z, Kosmatka JB (1998) An accurate two-node finite element for shear deformable curved beams. Int J Numer Methods Eng 41:473–498

    Article  MATH  Google Scholar 

  30. Raveendranath P, Singh G, Pradhan B (1999) A two-noded locking free shear deformable curved beam element. Int J Numer Methods Eng 44:265–280

    Article  MATH  Google Scholar 

  31. Raveendranath P, Singh G, Rao GV (2001) A three-noded shear-flexible curved beam element based on coupled displacement field interpolations. Int J Numer Methods Eng 51:85–101

    Article  MATH  Google Scholar 

  32. Suzuki K, Takahashi S (1979) In plane vibrations of curved bars considering shear deformation and rotary inertia. Bull JSME 22(171):1284–1292

    Article  Google Scholar 

  33. Gutierrez RH, Laura PAA, Rossi RE, Bertero R, Villag A (1989) In-plane vibrations of non-circular arcs of non-uniform cross-section. J Sound Vib 129:181–200

    Article  ADS  Google Scholar 

  34. Lee BK, Wilson JF (1989) Free vibrations of arches with variable curvature. J Sound Vib 136:75–89

    Article  ADS  Google Scholar 

  35. Kawakami M, Sakiyama T, Matsuda H, Morita C (1995) In-plane and out-of-plane free vibrations of curved beams variable sections. J Sound Vib 187(3):381–401

    Article  ADS  Google Scholar 

  36. Tseng YP, Huang CS, Lin CJ (1997) Dynamic stiffness analysis for in-plane vibrations of arches with variable curvature. J Sound Vib 207(1):15–31

    Article  ADS  Google Scholar 

  37. Huang CS, Tseng YP, Leissa AW, Nieh KY (1998) An exact solution for in-plane vibrations of an arch having variable curvature and cross section. Int J Mech Sci 40(11):1159–1173

    Article  MATH  Google Scholar 

  38. Oh SJ, Lee BK, Lee IW (1999) Natural frequencies of non-circular arches with rotary inertia and shear deformation. J Sound Vib 219(1):23–33

    Article  ADS  Google Scholar 

  39. Huang CS, Tseng YP, Chang SH, Hung CL (2000) Out-of-plane dynamic analysis of beams with arbitrarily varying curvature and cross section by dynamic stiffness matrix method. Int J Solids Struct 37:495–513

    Article  MATH  Google Scholar 

  40. Nieh KY, Huang CS, Tseng YP (2003) An analytical solution for in-plane free vibration and stability of loaded elliptic arches. Comput Struct 81:1311–1327

    Article  Google Scholar 

  41. Lee BK, Oh SJ, Mo JM, Lee TE (2008) Out-of-plane free vibrations of curved beams with variable curvature. J Sound Vib 318:227–246

    Article  ADS  Google Scholar 

  42. Gimena FN, Gonzaga P, Gimena L (2009) Numerical transfer-method with boundary conditions for arbitrary curved beam elements. Eng Anal Bound Elem 33:249–257

    Article  MathSciNet  MATH  Google Scholar 

  43. Marquis JP, Wang TM (1989) Stiffness matrix of parabolic beam element. Comput Struct 31(6):863–870

    Article  MATH  Google Scholar 

  44. Molari L, Ubertini F (2006) A flexibility- based finite element for linear analysis of arbitrarily curved arches. Int J Numer Methods Eng 65:1333–1353

    Article  MATH  Google Scholar 

  45. Yang F, Sedaghati R, Esmailzadeh E (2008) Free in-plane vibration of general curved beams using finite element method. J Sound Vib 318:850–867

    Article  ADS  Google Scholar 

  46. Heppler GR (1992) An element for studying the vibration of unrestrained curved Timoshenko beams. J Sound Vib 158:387–404

    Article  ADS  MATH  Google Scholar 

  47. Saje M (1991) Finite element formulation of finite planar deformation of curved elastic beams. Comput Struct 39(3):327–337

    Article  MATH  Google Scholar 

  48. Sengupta D, Dasgupta S (1997) Static and dynamic applications of a five noded horizontally curved beam element with shear deformation. Int J Numer Methods Eng 40:1801–1819

    Article  Google Scholar 

  49. Koziey BL, Mirza FA (1994) Consistent curved beam element. Comput Struct 51(6):643–654

    Article  MATH  Google Scholar 

  50. Kim JG, Kim YY (1998) A new higher-order hybrid-mixed curved beam element. Int J Numer Methods Eng 43:925–940

    Article  MATH  Google Scholar 

  51. Kim JG, Lee JK (2008) Free-vibration analysis of arches based on the hybrid-mixed formulation with consistent quadratic stress functions. Comput Struct 86:1672–1681

    Article  Google Scholar 

  52. Attarnejad R (2010) Basic displacement functions in analysis of non-prismatic beams. Eng Comput 27:733–745

    Article  Google Scholar 

  53. Attarnejad R, Shahba A, Eslaminia M (2011) Dynamic basic displacement functions for free vibration analysis of tapered beams. J Vib Control 17:2222–2238

    Article  MathSciNet  Google Scholar 

  54. Attarnejad R, Shahba A (2011) Basic displacement functions for centrifugally stiffened tapered beams. Int J Numer Methods Biomed Eng 27:1385–1397

    MATH  Google Scholar 

  55. Attarnejad R, Shahba A (2011) Dynamic basic displacement functions in free vibration analysis of centrifugally stiffened tapered beams: a mechanical solution. Meccanica 46:1267–1281

    Article  MathSciNet  Google Scholar 

  56. Attarnejad R, Shahba A (2011) Basic displacement functions in analysis of centrifugally stiffened tapered beams. Arab J Sci Eng 36:841–853

    Article  Google Scholar 

  57. Shahba A, Attarnejad R, Hajilar S (2011) Free vibration and stability of axially functionally graded tapered Euler-Bernoulli beams. Shock Vib 18:683–696

    Google Scholar 

  58. Shahba A, Attarnejad R, Hajilar S (2012, in press) A mechanical-based solution for axially functionally graded tapered Euler-Bernoulli beams. Mech Adv Mat Struct. doi:10.1080/15376494.2011.640971

  59. Zarrinzadeh H, Attarnejad R, Shahba A (2012) Free vibration of rotating axially functionally graded tapered beams. Proc Inst Mech Eng, G J Aerosp Eng 226:363–379

    Article  Google Scholar 

  60. Attarnejad R, Jandaghi Semnani S, Shahba A (2010) Basic displacement functions for free vibration analysis of non-prismatic Timoshenko beams. Finite Elem Anal Des 46:916–929

    Article  MathSciNet  Google Scholar 

  61. Attarnejad R, Shahba A, Jandaghi Semnani S (2011) Analysis of non-prismatic Timoshenko beams using basic displacement functions. Adv Struct Eng 14:319–332

    Article  Google Scholar 

  62. Shahba A, Attarnejad R, Jandaghi Semnani S, Shahriari V, Dormohammadi AA (2011) Derivation of an efficient element for free vibration analysis of rotating tapered Timoshenko beams using basic displacement functions. Proc Inst Mech Eng, G J Aerosp Eng, doi:10.1177/0954410011422479

    MATH  Google Scholar 

  63. Shahba A, Attarnejad R, Eslaminia M (2012) Derivation of an efficient non-prismatic thin curved beam element using basic displacement functions. Shock Vib 19(2):187–204. doi:10.3233/SAV-2010-0623

    Google Scholar 

  64. Henrych J (1989) The dynamics of arches and frames. Elsevier, New York

    Google Scholar 

  65. West HH (1989) Analysis of structures, an integration of classical and modern methods. Wiley, New York

    Google Scholar 

  66. Riley KF, Hobson MP, Bence SJ (1998) Mathematical methods for physics and engineering. Cambridge University Press, Cambridge

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Shahba.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shahba, A., Attarnejad, R., Jandaghi Semnani, S. et al. New shape functions for non-uniform curved Timoshenko beams with arbitrarily varying curvature using basic displacement functions. Meccanica 48, 159–174 (2013). https://doi.org/10.1007/s11012-012-9591-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-012-9591-9

Keywords

Navigation