Skip to main content
Log in

Analysis of thick plates by local radial basis functions-finite differences method

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

Although global collocation with radial basis functions proved to be a very accurate means of solving interpolation and partial differential equations problems, ill-conditioned matrices are produced, making the choice of the shape parameter a crucial issue. The use of local numerical schemes, such as finite differences produces better conditioned matrices. For scattered points, a combination of finite differences and radial basis functions avoids the limitation of finite differences to be used on special grids. In this paper, we use a higher-order shear and normal deformation plate theory and a radial basis function—finite difference technique for predicting the static behavior of thick plates. Through numerical experiments on square and L-shaped plates, the accuracy and efficiency of this collocation technique is demonstrated, and the numerical accuracy and convergence are thoughtfully examined. This technique shows great potential to solve large engineering problems without the issue of ill-conditioning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lo KH, Christensen RM, Wu EM (1977) A high-order theory of plate deformation, part 1: homogeneous plates. J Appl Mech 44(7):663–668

    Article  MATH  Google Scholar 

  2. Lo KH, Christensen RM, Wu EM (1977) A high-order theory of plate deformation, part 2: laminated plates. J Appl Mech 44(4):669–676

    Article  MATH  Google Scholar 

  3. Kant T (1982) Numerical analysis of thick plates. Comput Methods Appl Mech Eng 31:1–18

    Article  ADS  MATH  Google Scholar 

  4. Kant T, Owen DRJ, Zienkiewicz OC (1982) A refined higher-order co plate element. Comput Struct 15(2):177–183

    Article  MathSciNet  MATH  Google Scholar 

  5. Pandya BN, Kant T (1988) Higher-order shear deformable theories for flexure of sandwich plates-finite element evaluations. Int J Solids Struct 24:419–451

    Article  Google Scholar 

  6. Batra RC, Vidoli S (2002) Higher order piezoelectric plate theory derived from a three-dimensional variational principle. AIAA J 40:91–104

    Article  ADS  Google Scholar 

  7. Carrera E (1996) C0 Reissner-Mindlin multilayered plate elements including zig-zag and interlaminar stress continuity. Int J Numer Methods Eng 39:1797–1820

    Article  MATH  Google Scholar 

  8. Carrera E, Kroplin B (1997) Zig-zag and interlaminar equilibria effects in large deflection and post-buckling analysis of multilayered plates. Mech Compos Mater Struct 4:69–94

    Google Scholar 

  9. Carrera E (1998) Evaluation of layer-wise mixed theories for laminated plate analysis. AIAA J 36:830–839

    Article  ADS  Google Scholar 

  10. Librescu L, Khdeir AA, Reddy JN (1987) A comprehensive analysis of the state of stress of elastic anisotropic flat plates using refined theories. Acta Mech 70:57–81

    Article  MATH  Google Scholar 

  11. Reddy JN (1997) Mechanics of laminated composite plates. CRC Press, New York

    MATH  Google Scholar 

  12. Fiedler L, Vestroni F, Lacarbonara W (2010) A generalized higher-order theory for multi-layered, shear-deformable composite plates. Acta Mech 209:85–98

    Article  MATH  Google Scholar 

  13. Hardy RL (1971) Multiquadric equations of topography and other irregular surfaces. J Geophys Res 176:1905–1915

    Article  ADS  Google Scholar 

  14. Hardy RL (1975) Research results in the application of multiquadric equations to surveying and mapping problems. Surv Mapp 35(4):321–332

    MathSciNet  Google Scholar 

  15. Kansa EJ (1990) Multiquadrics a scattered data approximation scheme with applications to computational fluid-dynamics. i. surface approximations and partial derivative estimates. Comput Math Appl 19(8–9):127–145

    Article  MathSciNet  MATH  Google Scholar 

  16. Kansa EJ (1990) Multiquadrics a scattered data approximation scheme with applications to computational fluid-dynamics. ii. solutions to parabolic, hyperbolic and elliptic partial differential equations. Comput Math Appl 19(8–9):147–161

    Article  MathSciNet  MATH  Google Scholar 

  17. Roque CMC, Ferreira AJM, Jorge RMN (2007) A radial basis function approach for the free vibration analysis of functionally graded plates using a refined theory. J Sound Vib 300(3–5):1048–1070

    Article  ADS  Google Scholar 

  18. Ferreira AJM, Roque CMC, Jorge RMN (2007) Natural frequencies of fsdt cross-ply composite shells by multiquadrics. Compos Struct 77(3):296–305

    Article  Google Scholar 

  19. Flyer N, Fornberg B (2011) Radial basis functions: Developments and applications to planetary scale flows. Comput Fluids 46(1):23–32

    Article  MATH  Google Scholar 

  20. Tolstykh AI, Lipavskii MV, Shirobokov DA (2003) High-accuracy discretization methods for solid mechanics. Arch Mech 55(5–6):531–553

    MATH  Google Scholar 

  21. Shu C, Ding H, Yeo KS (2003) Local radial basis function-based differential quadrature method and its application to solve two-dimensional incompressible Navier-Stokes equations. Comput Methods Appl Mech Eng 192(7–8):941–954

    Article  ADS  MATH  Google Scholar 

  22. Cecil T, Qian J, Osher S (2004) Numerical methods for high dimensional Hamilton-Jacobi equations using radial basis functions. J Comput Phys 196(1):327–347

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. Wright GB, Fornberg B (2006) Scattered node compact finite difference-type formulas generated from radial basis functions. J Comput Phys 212(1):99–123

    Article  MathSciNet  ADS  MATH  Google Scholar 

  24. Shan YY, Shu C, Qin N (2009) Multiquadric finite difference (mq-fd) methods and its application. Adv Appl Math Mech 1(5):615–638

    MathSciNet  Google Scholar 

  25. Bayona V, Moscoso M, Carretero M, Kindelan M (2010) Rbf-fd formulas and convergence properties. J Comput Phys 229(22):8281–8295

    Article  ADS  MATH  Google Scholar 

  26. Fornberg B, Lehto E (2011) Stabilization of rbf-generated finite difference methods for convective pdes. J Comput Phys 230(6):2270–2285

    Article  MathSciNet  ADS  MATH  Google Scholar 

  27. Micchelli CA (1986) Interpolation of scattered data distance matrices and conditionally positive definite functions. Constr Approx 2(1):11–22

    Article  MathSciNet  MATH  Google Scholar 

  28. Wendland H (2005) Computational aspects of radial basis function approximation. In: Jetter K, Buhmann M, Haussmann W, Schaback R, Stoeckler J (eds) Topics in multivariate approximation and interpolation. Elsevier, Amsterdam

    Google Scholar 

  29. Fornberg B, Wright G, Larsson E (2004) Some observations regarding interpolants in the limit of flat radial basis functions. Comput Math Appl 47:37–55

    Article  MathSciNet  MATH  Google Scholar 

  30. Mindlin RD (1951) Influence of rotary inertia and shear in flexural motions of isotropic elastic plates. J Appl Mech 18:31–38

    MATH  Google Scholar 

  31. Ferreira AJM, Fasshauer GE (2006) Computation of natural frequencies of shear deformable beams and plates by a rbf-pseudospectral method. Comput Methods Appl Mech Eng 196:134–146

    Article  ADS  MATH  Google Scholar 

  32. Ferreira AJM (2008) MATLAB codes for finite element analysis: solids and structures. Springer, Berlin

    Google Scholar 

  33. Dawe DJ, Roufaeil OL (1980) Rayleigh-Ritz vibration analysis of Mindlin plates. J Sound Vib 69(3):345–359

    Article  ADS  MATH  Google Scholar 

  34. Liew KM, Wang J, Ng TY, Tan MJ (2004) Free vibration and buckling analyses of shear-deformable plates based on fsdt meshfree method. J Sound Vib 276:997–1017

    Article  ADS  Google Scholar 

  35. Hinton E (1988) Numerical methods and software for dynamic analysis of plates and shells. Pineridge, Swansea

    Google Scholar 

  36. Kant T, Swaminathan K (2001) Free vibration of isotropic, orthotropic, and multilayer plates based on higher order refined theories. J Sound Vib 241(2):319–327

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. J. M. Ferreira.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roque, C.M.C., Rodrigues, J.D. & Ferreira, A.J.M. Analysis of thick plates by local radial basis functions-finite differences method. Meccanica 47, 1157–1171 (2012). https://doi.org/10.1007/s11012-011-9501-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-011-9501-6

Keywords

Navigation