Advertisement

Meccanica

, Volume 47, Issue 4, pp 969–984 | Cite as

Chaotic vibration and resonance phenomena in a parametrically excited string-beam coupled system

  • Y. A. Amer
  • Usama H. Hegazy
Article

Abstract

The nonlinear behavior of a string-beam coupled system subjected to parametric excitation is investigated in this paper. Using the method of multiple scales, a set of first order nonlinear differential equations are obtained. A numerical simulation is carried out to verify analytic predictions and to study the steady-state response, stable solutions and chaotic motions. The numerical results show that the system behavior includes multiple solutions, and jump phenomenon in the resonant frequency response curves. It is also shown that chaotic motions occur and the system parameters have different effects on the nonlinear response of the string-beam coupled system. Results are compared to previously published work.

Keywords

Parametric excitation Hardening and softening nonlinearities Chaotic motion 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ellakany AM, Tablia HA (2010) A numerical model for static and free vibration analysis of elastic composite beams with end restraint. Meccanica 45(4):463–474 MathSciNetCrossRefGoogle Scholar
  2. 2.
    Jun L, Hongxing H (2010) Free vibration analysis of axially loaded laminated composite beams based on higher-order shear deformation theory. Meccanica. doi: 10.1007/s11012-010-9388-7
  3. 3.
    Ellakany A (2008) Calculation of higher natural frequencies of simply supported elastic composite beams using Riccati matrix method. Meccanica 43(5):523–532 zbMATHCrossRefGoogle Scholar
  4. 4.
    Faravelli L, Fuggini C, Ubertini F (2010) Experimental study on hybrid control of multimodal cable vibrations. Meccanica. doi: 10.1007/s11012-010-9364-2
  5. 5.
    Attarnejad R, Shahba A (2010) Dynamic basic displacement functions in free vibration analysis of centrifugally stiffened tapered beams; a mechanical solution. Meccanica. doi: 10.1007/s11012-010-9383-z
  6. 6.
    Jasic N (2009) Numerical algorithm for natural frequencies computation of an axially moving beam model. Meccanica 44(6):687–695 MathSciNetCrossRefGoogle Scholar
  7. 7.
    Ahmed NU, Harbi H (1998) Mathematical analysis of dynamic models of suspension bridges. SIAM J Appl Math 58(3):853–874 MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Liu MF, Change TP, Zeng DY (2010) The interactive vibration in a suspension bridge system under moving vehicle loads and vertical seismic excitations. Appl Math Model. doi: 10.1016/j.apm.2010.07.005 Google Scholar
  9. 9.
    Ding Z (2002) Nonlinear periodic oscillations in a suspension bridge system under periodic external aerodynamic forces. Nonlinear Anal 49:1079–1097 MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Ding Z (2002) Multiple periodic oscillations in a nonlinear suspension bridge system. J Math Anal Appl 269:726–746 MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Darbek P, Necesal P (2003) Nonlinear scalar model of a suspension bridge: Existence of multiple periodic solutions. Nonlinearity 16:1165–1183 MathSciNetADSCrossRefGoogle Scholar
  12. 12.
    Caetano E, Cunha A, Gattulli V, Lepidi M (2008) Cable-deck dynamic interactions at the International Guadiana Bridge: on-site measurements and finite element modeling. Struct Control Health Monit 15(3), 237–264 CrossRefGoogle Scholar
  13. 13.
    Vairo G (2008) A quasi-secant continuous model for the analysis of long-span cable-stayed bridges. Meccanica 43(2), 237–250 zbMATHCrossRefGoogle Scholar
  14. 14.
    Sun DK, Xu YL, Ko JM, Lin JH (1999) Fully coupled buffeting analysis of long-span cable-supported bridges: Formulation. J Sound Vib 228:569–588 ADSCrossRefGoogle Scholar
  15. 15.
    Domenico B, Grimaldi A (1985) Nonlinear behaviour of long-span cable-stayed bridges. Meccanica 20(4):303–313 CrossRefGoogle Scholar
  16. 16.
    Fung RF, Lu LY, Huang SC (2002) Dynamic modeling and vibration analysis of a flexible cable-stayed beam structure. J Sound Vib 254(4):717–726 ADSCrossRefGoogle Scholar
  17. 17.
    Gattulli V, Lepidi M (2003) Nonlinear interactions in the planar dynamics of cable-stayed beam. Int J Solids Struct 40:4729–4748 zbMATHCrossRefGoogle Scholar
  18. 18.
    Gattulli V, Lepidi M, Macdonald JHG (2005) One-to-two global-local interaction in a cable-stayed beam observed through analytical, finite element and experimental models. Int J Non-Linear Mech 40:571–588 zbMATHCrossRefGoogle Scholar
  19. 19.
    Cao DX, Zhang W (2008) Global bifurcations and chaotic dynamics for a string-beam coupled system. Chaos Solitons Fractals 37(3), 858–875 MathSciNetADSzbMATHCrossRefGoogle Scholar
  20. 20.
    Hegazy UH (2010) 3:1 Internal resonance of a string-beam coupled system with cubic nonlinearities. Commun Nonlinear Sci Numer Simul 15(12), 4219–4229 MathSciNetADSzbMATHCrossRefGoogle Scholar
  21. 21.
    Nayfeh AH (2001) Nonlinear interactions: analytical, computational, and experimental methods. Wiley, New York Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Department of Mathematics, Faculty of ScienceZagazig UniversityZagazigEgypt
  2. 2.Department of Mathematics, Faculty of ScienceAlAzhar University-GazaGazaPalestine

Personalised recommendations