Meccanica

, Volume 47, Issue 4, pp 835–844 | Cite as

Dynamics of the shift in resonance frequency in a triple pendulum

Article

Abstract

We propose a general model for pendular systems with an arbitrary number of links arranged sequentially. The form of this model is easily adaptable to different settings and operating conditions. The main subject of analysis is a system obtained as a specific case taken from the general analysis, a three-links pendulum with damping subject to periodic perturbation. We performed a theoretical analysis of the frequency response and compared it with results from temporal integration. Moreover, a law was obtained explaining the behavior of the shift of the resonant frequencies due to a change in a parameter.

Keywords

Triple pendulum Resonance frequency Frequency shift Friction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sado D, Gajos K (2003) Note on chaos in three degree of freedom dynamical system with double pendulum. Meccanica 38:719–729 MATHCrossRefGoogle Scholar
  2. 2.
    Lobas L (2007) The equations of an inverted pendulum with an arbitrary number of links and an asymmetric follower force. Int Appl Mech 43(5):106–114 CrossRefGoogle Scholar
  3. 3.
    Campbell S, Chancelier J, Nikoukhah R (2006) Modeling and simulation in scilab/scicos. Springer, New York, Chap 5 MATHGoogle Scholar
  4. 4.
    Caertmell M (2003) On the need for control of nonlinear oscillations in machine systems. Meccanica 38:185–212 CrossRefGoogle Scholar
  5. 5.
    Awrejcewicz J, Kudra G (2008) Dynamics of a real triple pendulum-modeling and experimental observation. In: ENOC, Saint Petersburg, Russia Google Scholar
  6. 6.
    Awrejcewicz J, Kudra G, Wasilewsky G (2007) Experimental and numerical investigation of chaotic regions in the physical pendulum. Nonlinear Dyn 50:755–766 MATHCrossRefGoogle Scholar
  7. 7.
    Kim D, Singhose W (2006) Reduction of double-pendulum bridge crane oscillations. In: 8th Int conf on motion and vib ctl Google Scholar
  8. 8.
    Husman M, Torrie C, Plissi M, Robertson N, Strain K, Hough J (2000) Modeling of multi-stage pendulums: Triple pendulum suspension for GEO 600, Rev. Sci. Instr 71(6) Google Scholar
  9. 9.
    Gmiterko A, Grossman M (2010) Nlink inverted pendulum modeling. In: Recent advances in mechatronics 2008–2009, part 3. Springer, Berlin, pp 151–156 CrossRefGoogle Scholar
  10. 10.
    Schmitt A, Bender J (2005) Impulse based dynamic simulation of multibody systems: numerical comparison with standard methods. In: Proc. automation of discrete production engineering, pp 324–329 Google Scholar
  11. 11.
    Berdahl J, Vander L (2001) Magnetically driven chaotic pendulum. Am J Phys 69(9):1016–1019 ADSCrossRefGoogle Scholar
  12. 12.
    Sousa de Paula A, Amorin M, Lunes F (2006) Chaos and transient in an experimental nonlinear pendulum. J Sound Vib 294(3):585–595 ADSCrossRefGoogle Scholar
  13. 13.
    Beckert S, Schock U, Schulz C, Weidlich T, Kaiser F (1987) Experiments on the bifurcation behavior of a forced nonlinear pendulum. Phys Lett A 107:347–350 MathSciNetADSCrossRefGoogle Scholar
  14. 14.
    Blackburn J, Yang Z, Vik S (1987) Experimental study of chaos in a driven pendulum. Physica D 26:385–395 ADSMATHCrossRefGoogle Scholar
  15. 15.
    Awrejcewicz J, Kudra G, Lamarque C (2003) Dynamics investigation of three couple rods with a horizontal barrier. Meccanica 38:687–698 MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Aicardi M (2007) A triple pendulum robotic model and a set of simple parametric functions for the analysis of the golf swing. Int J Sport Sci Eng 1(2):75–86 MathSciNetGoogle Scholar
  17. 17.
    Wu W (2007) Instrumentation of the next generation gravitational wave detector: Triple pendulum suspension and electro-optic modulator. PhD Dissertation, University of Florida, USA Google Scholar
  18. 18.
    Morgan T (2007) The use of innovative base isolation systems to achieve complex seismic performance objective. PhD Dissertation, University of California, Berkeley, USA Google Scholar
  19. 19.
    Ruet L (2007) Active control and sensor noise filtering duality application to advanced LIGO suspension. PhD Dissertation. Ins. Nat. Sci. App. de Lyon Google Scholar
  20. 20.
    Plissi M, Torrie C, Barton M, Robertson N (2004) An investigation of eddy-current damping of multistage pendulum suspensions for use in interferometric gravitational wave detector. Rev Sci Instrum 75(11):4516–4522 ADSCrossRefGoogle Scholar
  21. 21.
    Golstein H, Poole C, Safko J (2003) Classical mechanics, 3rd edn. Addison Wesley, New York Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.División de IngenieríasUniversidad Politécnica de TulancingoTulancingo HidalgoMexico
  2. 2.Centro de Investigación Avanzada en Ingeniería IndustrialUniversidad Autónoma del Estado de HidalgoPachuca HidalgoMexico

Personalised recommendations