Skip to main content
Log in

Decoupled three-dimensional finite element computation of thermoelastic damping using Zener’s approximation

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

We consider three dimensional finite element computations of thermoelastic damping ratios of arbitrary bodies using Zener’s approach. In our small-damping formulation, unlike existing fully coupled formulations, the calculation is split into three smaller parts. Of these, the first sub-calculation involves routine undamped modal analysis using ANSYS. The second sub-calculation takes the mode shape, and solves on the same mesh a periodic heat conduction problem. Finally, the damping coefficient is a volume integral, evaluated elementwise. In the only other decoupled three dimensional computation of thermoelastic damping reported in the literature, the heat conduction problem is solved much less efficiently, using a modal expansion. We provide numerical examples using some beam-like geometries, for which Zener’s and similar formulas are valid. Among these we examine tapered beams, including the limiting case of a sharp tip. The latter’s higher-mode damping ratios dramatically exceed those of a comparable uniform beam.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zener C (1937) Internal friction in solids: I. Theory of internal friction in reeds. Phys Rev 52:230–235

    Article  ADS  Google Scholar 

  2. Ardito R, Comi C, Corigliano A, Frangi A (2008) Solid damping in micro electro mechanical systems. Meccanica 43:419–428

    Article  MATH  Google Scholar 

  3. Nayfeh AH, Younis MI (2004) Modeling and simulations of thermoelastic damping in microplates. J Micromech Microeng 14:1711–1717

    Article  Google Scholar 

  4. Sun Y, Tohmyoh H (2009) Thermoelastic damping of the axisymmetric vibration of circular plate resonators. J Sound Vib 319:392–405

    Article  ADS  Google Scholar 

  5. Lu P, Lee HP, Lu C, Chen HB (2008) Thermoelastic damping in cylindrical shells with application to tubular oscillator structures. Int J Mech Sci 50:501–512

    Article  Google Scholar 

  6. Yi YB, Matin MA (2007) Eigenvalue solution of thermoelastic damping in beam resonators using a finite element analysis. J Vib Acoust 129:478–483

    Article  Google Scholar 

  7. Yi YB (2008) Geometric effects on thermoelastic damping in MEMS resonators. J Sound Vib 309:588–599

    Article  ADS  Google Scholar 

  8. Lepage S, Golinval J (2007) Finite element modeling of thermoelastic damping of filleted micro-beams. In: International conference on thermal, mechanical and multi-physics simulation experiments in microelectronics and micro-systems, 2007. EuroSime 2007

  9. Candler RN, Duwel A, Varghese M, Chandorkar SA, Hopcroft MA, Park W, Kim B, Yama G, Partridge A, Lutz M, Kenny TW (2006) Impact of geometry on thermoelastic dissipation in micromechanical resonant beams. J Microelectromech Syst 15:927–934

    Article  Google Scholar 

  10. Duwel A, Candler RN, Kenny TW, Varghese M (2006) Engineering MEMS resonators with low thermoelastic damping. J Microelectromech Syst 15:1437–1445

    Article  Google Scholar 

  11. Kinra VK, Milligan KB (1994) A second-law analysis of thermoelastic damping. J Appl Mech 61:71–76

    Article  Google Scholar 

  12. Lifshitz R, Roukes ML (2000) Thermoelastic damping in micro- and nanomechanical systems. Phys Rev B 61:5600–5609

    Article  ADS  Google Scholar 

  13. Rajagopalan J, Saif MTA (2007) Single degree of freedom model for thermoelastic damping. J Appl Mech 74:461–468

    Article  MATH  Google Scholar 

  14. Zhang W, Turner KL (2004) Thermoelastic damping in the longitudinal vibration: analysis and simulation. In: Proceeding of IMECE04, 2004. ASME, international mechanical engineering congress and exposition, Anaheim, California, USA

  15. Srikar VT, Senturia SD (2002) Thermoelastic damping in fine-grained polysilicon flexural beam resonators. J Microelectromech Syst 11(5):499–504

    Article  Google Scholar 

  16. Prabhakar S, Vengallatore S (2008) Theory of thermoelastic damping in micromechanical resonators with two-dimensional heat conduction. J Microelectromech Syst 17(2):494–502

    Article  Google Scholar 

  17. Prabhakar S, Vengallatore S (2007) Thermoelastic damping in bilayered micromechanical beam resonators. J Micromech Microeng 17:532–538

    Article  Google Scholar 

  18. Vengallatore S (2005) Analysis of thermoelastic damping in laminated composite micromechanical beam resonators. J Micromech Microeng 15:2398–2404

    Article  Google Scholar 

  19. Bishop JE, Kinra VK (1997) Elastothermodynamic damping in laminated composites. Int J Solids Struct 34(9):1075–1092

    Article  MATH  Google Scholar 

  20. De SK, Aluru NR (2006) Theory of thermoelastic damping in electrostatically actuated microstructures. Phys Rev B 74:144305(1)–144305(12)

    Article  ADS  Google Scholar 

  21. Méndez C, Paquay S, Klapka I, Raskin JP (2009) Effect of geometrical nonlinearity on MEMS thermoelastic damping. Nonlinear Anal Real World Appl 10:1579–1588

    Article  MathSciNet  MATH  Google Scholar 

  22. Speziale CG (2001) On the coupled heat equation of linear thermoelasticity. Acta Mech 150:121–126

    Article  MATH  Google Scholar 

  23. Cook RD, Malkus DS, Plesha ME, Witt RJ (2002) Concepts and applications of finite element analysis. Wiley, Singapore

    Google Scholar 

  24. Serrin J (1996) The equations of continuum mechanics and the laws of thermodynamics. Meccanica 31:547–563

    Article  MathSciNet  MATH  Google Scholar 

  25. Pradeep M, Jog CS, Chatterjee A (2008) Modal projections for synchronous rotor whirl. Proc R Soc A 464:1739–1760

    Article  ADS  MATH  Google Scholar 

  26. Jog CS (2007) Foundations and applications of mechanics. Continuum mechanics, vol. I. Narosa Publishing House, New Delhi

    Google Scholar 

  27. ANSYS release 8.0 documentation, ANSYS, Inc. Theory reference, Chaps 13 and 14

  28. Tret’yachenko GN, Karpinos BS (1986) Relationship between the mechanical and thermophysical characteristics of solid materials exposed to thermal loads. Translated from Problemy Prochnosti 10:1297–1302

    Google Scholar 

  29. Timoshenko S (1963) Vibration problems in engineering. Pergamon, London

    Google Scholar 

  30. Gupta AK, Kumar L (2009) Effect of thermal gradient on vibration of non-homogeneous viscoelastic elliptic plate of variable thickness. Meccanica 44:507–518

    Article  MathSciNet  Google Scholar 

  31. Morales CA (2009) Dynamic analysis of an L-shaped structure by Rayleigh-Ritz substructure synthesis method. Meccanica 44:339–343

    Article  Google Scholar 

  32. Sokolnikoff IS (1977) Mathematical theory of elasticity. Tata McGraw-Hill, New Delhi

    Google Scholar 

  33. Thomson WT, Dahleh MD (2005) Theory of vibration with applications. Pearson Education, Singapore

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anup Basak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Basak, A., Nandakumar, K. & Chatterjee, A. Decoupled three-dimensional finite element computation of thermoelastic damping using Zener’s approximation. Meccanica 46, 371–381 (2011). https://doi.org/10.1007/s11012-010-9318-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-010-9318-8

Keywords

Navigation