Skip to main content
Log in

Periodic solutions for certain non-smooth oscillators by iterated homotopy perturbation method combined with modified Lindstedt-Poincaré technique

  • Original Article
  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

In this paper, a new technique is introduced by combining Homotopy perturbation method and modified Lindstedt-Poincaré technique to obtain the periodic solutions of certain non-smooth oscillators. In this technique, homotopy perturbation method is re-written in iterative form to linearize perturbation process by homotopy, and then, the modified Lindstedt-Poincaré method is utilized to obtain next approximation for each iteration step. We realize that this new technique works very well for the whole range of initial amplitudes, and the excellent agreement of the approximate frequencies and periodic solutions with the exact ones has been confirmed and discussed. Only one or two iterations lead to high accuracy of the solutions. The result obtained and comparison with analytical solution and different methods provide confirmation for the validity of the technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nayfeh AH (1973) Perturbation methods. Wiley, New York

    MATH  Google Scholar 

  2. Mickens RE (1996) Oscillations in planar dynamics systems. World Scientific, Singapore

    Google Scholar 

  3. Jordan DW, Smith P (1987) Nonlinear ordinary differential equations. Clarendon Press, Oxford

    MATH  Google Scholar 

  4. Hagedorn P (1981) Nonlinear oscillations. Clarendon Press, Oxford (Translated by Wolfram Stadler)

    Google Scholar 

  5. Wu BS, Sun WP, Lim CW (2006) An analytical approximate technique for a class of strongly non-linear oscillators. Int J Non-linear Mech 41:766–774

    Article  MathSciNet  MATH  Google Scholar 

  6. Wu BS, Lim CW, Ma YF (2003) Analytical approximation to large-amplitude oscillation of a non-linear conservative system. Int J Non-linear Mech 38:1037–1043

    Article  MATH  Google Scholar 

  7. Wu BS, Lim CW (2004) Large amplitude non-linear oscillations of a general conservative system. Int J Non-linear Mech 39:859–870

    Article  MathSciNet  MATH  Google Scholar 

  8. Wu B, Li P (2001) A method for obtaining approximate analytic periods for a class of nonlinear oscillators. Meccanica 36:167–176

    Article  MATH  Google Scholar 

  9. Belendez A, Gimeno E, Alvarez ML, Yebra MS, Mendez DI (2010) Analytical approximate solutions for conservative nonlinear oscillators by modified rational harmonic balance method. Int J Comput Math DOI:10.1080/00207160802380942 1–15 (iFirst)

    MathSciNet  Google Scholar 

  10. He J-H (1997) A new approach to nonlinear partial differential equations. Commun Nonlinear Sci Numer Simul 2:230–235

    Article  ADS  Google Scholar 

  11. He J-H (1999) Variational iteration method—a kind of non-linear analytical technique: some examples. Int J Non-linear Mech 34:699–708

    Article  MATH  Google Scholar 

  12. He J-H (2006) Some asymptotic methods for strongly nonlinear equations. Int J Mod Phys 20:1141–1199

    Article  ADS  MATH  Google Scholar 

  13. Rafei M, Ganji DD, Daniali H, Pashaei H (2007) The variational iteration method for nonlinear oscillators with discontinuities. J Sound Vib 305:614–620

    Article  MathSciNet  ADS  Google Scholar 

  14. Ramos JI (2008) On the variational iteration method and other iterative techniques for nonlinear differential equations. Appl Math Comput 199:39–69

    Article  MathSciNet  MATH  Google Scholar 

  15. Özis T, Yıldırım A (2007) A study of nonlinear oscillators with u1/3 force by He’s variational iteration method. J Sound Vib 306:372–376

    Article  ADS  Google Scholar 

  16. Herisanu N, Marinca V (2010) A modified variational iteration method for strongly nonlinear problems. Nonlinear Sci Lett A 1:183–192

    Google Scholar 

  17. He JH (2004) The homotopy perturbation method for nonlinear oscillators with discontinuities. Appl Math Comput 151(1):287–292

    Article  MathSciNet  MATH  Google Scholar 

  18. Belendez A, Pascual C, Gallego S, Ortuno M, Neipp C (2007) Application of a modified He’s homotopy perturbation method to obtain higher order approximations of a x1/3 force nonlinear oscillator. Phys Lett A 371:421–426

    Article  ADS  MATH  Google Scholar 

  19. Belendez A, Alvarez ML, Mendez DI, Fernndez E, Yebra MS, Belendez T (2008) Approximate solutions for conservative nonlinear oscillators by He’s homotopy method. Z Naturforsch 63a:529–537

    Google Scholar 

  20. Belendez A, Pascual C, Belendez T, Hernandez A (2009) Solution for an anti-symmetric quadratic nonlinear oscillator by a modified He’s homotopy perturbation method. Nonlinear Anal Real World Appl 10:416–427

    Article  MathSciNet  MATH  Google Scholar 

  21. He JH (2000) A coupling method of a homotopy technique and a perturbation technique for non-linear problems. Int J Non-Linear Mech 35(1):37–43

    Article  MATH  Google Scholar 

  22. Öziş T, Yildirim A (2007) A comparative study of He’ homotopy perturbation method for determining frequency–amplitude relation of a nonlinear oscillator with discontinuities. Int J Nonlinear Sci Numer Simul 8(2):243–248

    Article  Google Scholar 

  23. Özis T, Yıldırım A (2007) A note on He’s homotopy perturbation method for van der Pol oscillator with very strong nonlinearity. Chaos Solitons Fractals 34:989–991

    Article  ADS  Google Scholar 

  24. He J-H (2002) Modified Linstedt–Poincaré methods for some non-linear oscillations. Part I: expansion of constant. J Non-linear Mech 37:309–314

    Article  MATH  Google Scholar 

  25. Öziş T, Yıldırım A (2007) Determination of periodic solution of a u1/3 force by He’s modified Linstedt–Poincaré method. J Sound Vib 301:415–419

    Article  ADS  Google Scholar 

  26. Liu H-M (2005) Approximate period of nonlinear oscillators with discontinuities by modified Lindstedt–Poincaré method. Chaos Solitons Fractals 23:577–579

    Article  ADS  MATH  Google Scholar 

  27. Yıldırım A (2010) Determination of periodic solutions for nonlinear oscillators with fractional powers by He’s modified Lindstedt-Poincaré method. Meccanica DOI:10.1007/s11012-009-9212-4

    Google Scholar 

  28. Bender CM, Milton KA, Pinsky SS, Simmons LM (1989) A new perturbative approach to nonlinear problems. J Math Phys 30:1447–1455

    Article  MathSciNet  ADS  MATH  Google Scholar 

  29. Ramos JI (2007) On Linstedt–Poincaré techniques for the quintic Duffing equation. Appl Math Comput 193:303–310

    Article  MathSciNet  MATH  Google Scholar 

  30. Shou DH, He JH (2007) Application of parameter-expanding method to strongly nonlinear oscillators. Int J Nonlinear Sci Numer Simul 8(1):121–124

    Article  Google Scholar 

  31. Mohyud-Din ST, Noor MA, Noor KI (2009) Parameter-expansion techniques for strongly nonlinear oscillators. Int J Nonlinear Sci Numer Simul 10(5):581–583

    Article  Google Scholar 

  32. Shin BC, Darvishi MT, Karami A (2009) Application of He’s parameter-expansion method to a nonlinear self-excited oscillator system. Int J Nonlinear Sci Numer Simul 10(1):137–143

    Article  Google Scholar 

  33. Sweilam NH, Al-Bar RF (2009) Implementation of the parameter-expansion method for the coupled Van der Pol oscillators. Int J Nonlinear Sci Numer Simul 10(2):259–264

    Article  Google Scholar 

  34. Zengin FO, Kaya MO, Demirbag SA (2008) Application of parameter-expansion method to nonlinear oscillators with discontinuities. Int J Nonlinear Sci Numer Simul 9(3):267–270

    Article  Google Scholar 

  35. Zhang LN, Xu L (2007) Determination of the limit cycle by He’s parameter-expansion for oscillators in a u(3)/(1+u(2)) potential. Z Naturforsch 62a(7–8): 396–398

    Google Scholar 

  36. Ramos JI (2008) Limit cycles of non-smooth oscillators. Appl Math Comput 199:738–747

    Article  MathSciNet  MATH  Google Scholar 

  37. Mickens RE (1987) Iteration procedure for determining approximate solutions to non-linear oscillator equations. J Sound Vib 116:185–187

    Article  MathSciNet  ADS  Google Scholar 

  38. Hu H, Tang JH (2007) A classical iteration procedure valid for certain strongly nonlinear oscillators. J Sound Vib 299:397–402

    Article  MathSciNet  ADS  Google Scholar 

  39. Hu H, Tang JH (2005) A convolution integral method for certain strongly nonlinear oscillators. J Sound Vib 285:1235–1241

    Article  MathSciNet  ADS  Google Scholar 

  40. Mickens RE (2005) A generalized iteration procedure for calculating approximations to periodic solutions of “truly nonlinear oscillators”. J Sound Vib 287:1045–1051

    Article  MathSciNet  ADS  Google Scholar 

  41. Lim CW, Wu BS (2002) A modified Mickens procedure for certain non-linear oscillators. J Sound Vib 257:202–206

    Article  MathSciNet  ADS  Google Scholar 

  42. Mickens RE (2006) Iteration method solutions for conservative and limit-cycle x 1/3 force oscillators. J Sound Vib 292:964–968

    Article  MathSciNet  ADS  Google Scholar 

  43. Hu H (2006) Solutions of nonlinear oscillators with fractional powers by an iterative procedure. J Sound Vib 294:608–614

    Article  ADS  Google Scholar 

  44. Marinca V, Herisanu N (2006) A modified iteration perturbation method for some nonlinear oscillation problems. Acta Mech 184:142–231

    Article  Google Scholar 

  45. Öziş T, Yıldırım A (2009) Generating the periodic solutions for forcing van der Pol oscillators by the Iteration Perturbation method. Nonlinear Anal: Real World Appl 10:1984–1989

    Article  MathSciNet  MATH  Google Scholar 

  46. He JH (2007) Variational approach for nonlinear oscillators. Chaos Solitons Fractals 34(5):1430–1439

    Article  MathSciNet  ADS  MATH  Google Scholar 

  47. He JH (2008) Max-min approach to nonlinear oscillators. Int J Nonlinear Sci Numer Simul 9(2):207–210

    Article  Google Scholar 

  48. He JH (2008) An improved amplitude-frequency formulation for nonlinear oscillators. Int J Nonlinear Sci Numer Simul 9(2):211–212

    Article  Google Scholar 

  49. Gimeno E, Alvarez ML, Yebra MS et al. (2009) Higher accuracy approximate solution for oscillations of a mass attached to a stretched elastic wire by rational harmonic balance method. Int J Nonlinear Sci Numerical Simul 10(4):493–504

    Article  Google Scholar 

  50. Belendez A, Rodes JJ, Fuentes R et al. (2009) Linearized harmonic balancing approach for accurate solutions to the dynamically shifted oscillator. Int J Nonlinear Sci Numer Simul 10(4):509–522

    Article  Google Scholar 

  51. Zhang HL (2008) Application of He’s frequency-amplitude formulation to an x(1/3) force Nonlinear oscillator. Int J Nonlinear Sci Numer Simul 9(3):297–300

    Article  Google Scholar 

  52. He JH (1999) Modified straightforward expansion. Meccanica 34:287–289

    Article  MATH  Google Scholar 

  53. He JH (2000) A modified perturbation technique depending upon an artificial parameter. Meccanica 35:299–311

    Article  MathSciNet  MATH  Google Scholar 

  54. Marinca V, Herisanu N, Bota C (2008) Application of the variational iteration method to some nonlinear one dimensional oscillations. Meccanica 43:75–79

    Article  MATH  Google Scholar 

  55. Spanos PD, Di Paola M, Failla G (2002) A Galerkin approach for power spectrum determination of nonlinear oscillators. Meccanica 37:51–65

    Article  MathSciNet  MATH  Google Scholar 

  56. He JH (2008) An elementary introduction to recently developed asymptotic methods and nanomechanics in textile engineering. Int J Mod Phys B 22(21):3487–3578

    Article  ADS  MATH  Google Scholar 

  57. Brogliato R (1998) Non-smooth mechanics. Springer, Berlin

    Google Scholar 

  58. Mickens RE (2001) Oscillations in an x 4/3 potential. J Sound Vib 246(2):375–378

    Article  MathSciNet  ADS  Google Scholar 

  59. Hu H, Xiong ZG (2003) Oscillations in an x (2m+1)/(2n+1) potential. J Sound Vib 259(8):977–980

    Article  MathSciNet  ADS  Google Scholar 

  60. Mickens RE (2002) Analysis of non-linear oscillators having non-polynomial elastic terms. J Sound Vib 255(4):789–792

    Article  MathSciNet  ADS  Google Scholar 

  61. Hu H (2004) A modified method of equivalent linearization that works even when the non-linearity is not small. J Sound Vib 276:1145–1149

    Article  ADS  Google Scholar 

  62. Awrejcewicz J, Andrianov IV (2002) Oscillations of non-linear system with restoring force close to sign(x). J Sound Vib 252:962–966

    Article  MathSciNet  ADS  Google Scholar 

  63. Hu H (2006) Solution of a quadratic nonlinear oscillator by the method of harmonic balance. J Sound Vib 293:462–468

    Article  ADS  Google Scholar 

  64. Wang SQ, He JH (2008) Nonlinear oscillator with discontinuity by parameter-expansion method. Chaos Solitons Fractals 35:688–691

    Article  MathSciNet  ADS  MATH  Google Scholar 

  65. He JH (2003) Linearized perturbation technique and its applications to strongly nonlinear oscillators. Comput Math Appl 45:1–8

    Article  MathSciNet  MATH  Google Scholar 

  66. He JH (2001) Iteration perturbation method for strongly nonlinear oscillators. J Vib Control 7:631–642

    Article  MathSciNet  MATH  Google Scholar 

  67. Xu L (2007) He’s parameter-expanding methods for strongly nonlinear oscillators. J Comput Appl Math 207:148–154

    Article  MathSciNet  ADS  MATH  Google Scholar 

  68. Mickens RE (2002) Generalized harmonic balance/numerical method for determininig analytical approximation to the periodic solutions of the x 4/3 potential. J Sound Vib 250:951–954

    Article  MathSciNet  ADS  Google Scholar 

  69. Öziş T, Yıldırım A (2008) Determination of limit cycles by iterated homotopy perturbation method for nonlinear oscillators with strong nonlinearity. Topol Methods Nonlinear Anal 31:349–357

    MathSciNet  ADS  MATH  Google Scholar 

  70. He JH (2006) Non-perturbative methods for strongly nonlinear problems. Dissertation. de-verlag im Internet GmbH, Berlin

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Turgut Öziş.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Öziş, T., Akçı, C. Periodic solutions for certain non-smooth oscillators by iterated homotopy perturbation method combined with modified Lindstedt-Poincaré technique. Meccanica 46, 341–347 (2011). https://doi.org/10.1007/s11012-010-9312-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-010-9312-1

Keywords

Navigation