Skip to main content
Log in

Pulsatile pipe flow of pseudoplastic fluids

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

This note is concerned with a laminar pipe flow of a non-Newtonian fluid under the action of a small pulsating pressure gradient superposed to a steady one. The constitutive law describing the rheological behaviour of the fluid is the so-called power law (Ostwald–de Waele). An approximated analytical solution is found for the velocity, as power series of the amplitude of the periodic disturbance. The analytic solution is compared with a direct numerical solution and the perfect accord of the values obtained is underscored.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Balmer T and Fiorina MA (1980). Unsteady flow of an inelastic Power-law fluid in a circular tube. J Non-Newtonian Fluid Mech 7: 189–198

    Article  MATH  Google Scholar 

  2. Warsi ZUA (1994). Unsteady flow of power-law fluids through circular pipes. J Non-Newtonian Fluid Mech 55: 197–202

    Article  Google Scholar 

  3. Adusumilli RS and Hill GA (1984). Transient laminar flows of truncated power law fluids in pipes. Canadian J Chem Eng 62: 594–601

    Article  Google Scholar 

  4. Pontrelli G (1998). Pulsatile blood flow in a pipe. Comput Fluids 27: 367–380

    Article  MATH  Google Scholar 

  5. Edwards MF, Nellist DA and Wilkinson WL (1972). Unsteady, laminar flows of non-Newtonian fluids in pipes. Chem Eng Sci 27: 295–306

    Article  Google Scholar 

  6. Mai TZ and Davis MJ (1996). Laminar pulsatile two-phase non-newtonian flow though a pipe. Comput Fluids 25: 77–93

    Article  MATH  Google Scholar 

  7. Ramkissoon H (1995). Some non-Newtonian axial pipe flow. ASME FED 231: 189–196

    Google Scholar 

  8. Rajagopal KR (1982). A note on unsteady unidirectional flows of a non-Newtonian fluid. Int J Non-Linear Mech 17: 369–373

    Article  MATH  MathSciNet  Google Scholar 

  9. Pascal H (1992). Similarity solutions to some unsteady flows of non- Newtonian fluids of power law behavior. Int J Non-Linear Mech 27: 759–771

    Article  MATH  MathSciNet  Google Scholar 

  10. Fetecau C (2004). Analytical solutions for non-Newtonian fluid flows in pipe-like domains. Int J Non-Linear Mech 39: 225–231

    Article  MathSciNet  MATH  Google Scholar 

  11. Fetecau C and Fetecau C (2005). Starting solution for some unsteady unidirectional flows of a second order fluid. Int J Non-Linear Mech 43: 781–789

    MathSciNet  Google Scholar 

  12. Erdogan ME (2000). A note on an unsteady flow of a viscous fluid due to an oscillating plane wall. Int J Non-Linear Mech 35: 1–6

    Article  MATH  MathSciNet  Google Scholar 

  13. Kamke E (1956). Differentialgleichungen Lösungsmethoden und Lösungen. Akademische Verlagsgesellschaft, Leipzig

    MATH  Google Scholar 

  14. Abramowitz RM and Stegun IA (1965). Handbook of mathematical functions. Dover, New York

    Google Scholar 

  15. Peebles FN, Prados JW and Honeycutt EH (1963). Birefringent and rheologic properties of milling yellow suspensions. J Polymer Sci part C 5: 37–53

    Article  Google Scholar 

  16. Magnus W, Oberhettinger F and Soni RP (1966). Formulas and theorems for the special functions of mathematical physics. Springer, Berlin

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irene Daprà.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Daprà, I., Scarpi, G. Pulsatile pipe flow of pseudoplastic fluids. Meccanica 41, 501–508 (2006). https://doi.org/10.1007/s11012-006-0007-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-006-0007-6

Keywords

Navigation