Skip to main content
Log in

Continuum Mechanics Modeling and Simulation of Carbon Nanotubes

  • Published:
Meccanica Aims and scope Submit manuscript


The understanding of the mechanics of atomistic systems greatly benefits from continuum mechanics. One appealing approach aims at deductively constructing continuum theories starting from models of the interatomic interactions. This viewpoint has become extremely popular with the quasicontinuum method. The application of these ideas to carbon nanotubes presents a peculiarity with respect to usual crystalline materials: their structure relies on a two-dimensional curved lattice. This renders the cornerstone of crystal elasticity, the Cauchy–Born rule, insufficient to describe the effect of curvature. We discuss the application of a theory which corrects this deficiency to the mechanics of carbon nanotubes (CNTs). We review recent developments of this theory, which include the study of the convergence characteristics of the proposed continuum models to the parent atomistic models, as well as large scale simulations based on this theory. The latter have unveiled the complex nonlinear elastic response of thick multiwalled carbon nanotubes (MWCNTs), with an anomalous elastic regime following an almost absent harmonic range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others


  1. Arroyo, M., ‘Finite crystal elasticity of curved monolayer lattices: applications to carbon nanotubes’. Ph.D. thesis, Northwestern University, 2003.

  2. M. Arroyo T. Belytschko (2002) ArticleTitle‘An atomistic-based finite deformation membrane for single layer crystalline films’ J. Mech. Phys. Solids. 50 IssueID9 1941–1977 Occurrence Handle1915336 Occurrence Handle1006.74061 Occurrence Handle2002JMPSo..50.1941A

    MathSciNet  MATH  ADS  Google Scholar 

  3. M. Arroyo T. Belytschko (2003) ArticleTitle‘Nonlinear mechanical response and rippling of thick multi-walled carbon nanotubes’ Phys. Rev. Lett. 91 IssueID21 215505 Occurrence Handle10.1103/PhysRevLett.91.215505 Occurrence Handle2003PhRvL..91u5505A

    Article  ADS  Google Scholar 

  4. M. Arroyo T. Belytschko (2004) ArticleTitle‘Finite crystal elasticity of carbon nanotubes based on the exponential Cauchy-Born rule’ Phys. Rev. B. 69 IssueID11 115415 Occurrence Handle10.1103/PhysRevB.69.115415 Occurrence Handle2004PhRvB..69k5415A

    Article  ADS  Google Scholar 

  5. M. Arroyo T. Belytschko (2004) ArticleTitle‘Finite element methods for the non-linear mechanics of crystalline sheets and nanotubes’ Int. J. Numer. Methods Eng. 59 IssueID3 419–456 Occurrence Handle10.1002/nme.944 Occurrence Handle2029284 Occurrence Handle1047.74049

    Article  MathSciNet  MATH  Google Scholar 

  6. X. Blanc C. Bris ParticleLe P. L. Lions (2002) ArticleTitle‘From molecular models to continuum mechanics’ Arch. Rational Mech.Analysis. 164 IssueID4 341–381 Occurrence Handle2002ArRMA.164..341B Occurrence Handle1028.74005 Occurrence Handle10.1007/s00205-002-0218-5

    Article  ADS  MATH  Google Scholar 

  7. A. Braides M.S. Gelli (2002) ArticleTitle‘Limits of discrete systems with long-range interactions’ J. Convex Analysis. 9 IssueID2 363–399 Occurrence Handle1970562 Occurrence Handle1031.49022

    MathSciNet  MATH  Google Scholar 

  8. D.W. Brenner (1990) ArticleTitle‘Empirical potential for hydrocarbons for use in simulating chemical vapor deposition of diamond films’ Phys. Rev. B. 42 IssueID15 9458–9471 Occurrence Handle10.1103/PhysRevB.42.9458 Occurrence Handle1990PhRvB..42.9458B

    Article  ADS  Google Scholar 

  9. M.J. Buehler Y. Kong H.J. Gao (2004) ArticleTitle‘Deformation mechanisms of very long single-wall carbon nanotubes subject to compressive loading’ J. Eng. Materials Technol. 126 IssueID3 245–249

    Google Scholar 

  10. C.S.G. Cousins (1978) ArticleTitle‘Inner elasticity’ J. Phys. C. 11 IssueID24 4867–4879 Occurrence Handle1978JPhC...11.4867C

    ADS  Google Scholar 

  11. M.S. Dresselhaus G. Dresselhaus R. Saito (1995) ArticleTitle‘Physics of carbon nanotubes’ Carbon. 33 IssueID7 883–891 Occurrence HandleA1995RK99000004

    ISI  Google Scholar 

  12. Ericksen, J.L., in: Gurtin, M.E. (ed.), The cauchy and born hypotheses for crystals, Phase Transformations and Material Instabilities in Solids, Chapt. Academic Press, New York, 1984, pp. 61–77.

  13. M.R. Falvo G.J. Clary R.M. Taylor V. Chi F.P. Brooks S. Washburn R. Superfine (1997) ArticleTitle‘Bending and buckling of carbon nanotubes under large strain’ Nature 389 IssueID6651 582–584 Occurrence HandleA1997YA00800053 Occurrence Handle1997Natur.389..582F

    ISI  ADS  Google Scholar 

  14. A.M. Fennimore T.D. Yuzvinsky W.Q. Han M.S. Fuhrer J. Cumings A. Zettl (2003) ArticleTitle‘Rotational actuators based on carbon nanotubes’ Nature 424 IssueID6947 408–410 Occurrence Handle10.1038/nature01823 Occurrence Handle2003Natur.424..408F Occurrence Handle000184318400037

    Article  ADS  ISI  Google Scholar 

  15. C. Forró C. Schönenberger (2001) ArticleTitle‘Physical properties of multi-wall nanotubes’ Topics Appl. Phys. 80 329–390 Occurrence Handle2001TApPh..80..329F

    ADS  Google Scholar 

  16. G. Friesecke F. Theil (2002) ArticleTitle‘Validity and failure of the Cauchy-Born hypothesis in a two-dimensional mass-spring lattice’ J. Nonlin. Sci. 12 IssueID5 445–478 Occurrence Handle10.1007/s00332-002-0495-z Occurrence Handle2002JNS....12..445F Occurrence Handle1923388 Occurrence Handle1084.74501

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. R. Hill (1975) ArticleTitle‘On the elasticity and stability of perfect crystals at finite strains’ Math. Proc. Cambridge Philos. Soc. 77 225–240 Occurrence Handle0305.73028 Occurrence Handle386430 Occurrence Handle10.1017/S0305004100049549 Occurrence Handle1975MPCPS..77..225H

    Article  MATH  MathSciNet  ADS  Google Scholar 

  18. S. Iijima (1991) ArticleTitle‘Helical microtubules of graphitic carbon’ Nature 354 IssueID6348 56–58 Occurrence Handle10.1038/354056a0 Occurrence Handle1991Natur.354...56I Occurrence HandleA1991GN82900055

    Article  ADS  ISI  Google Scholar 

  19. S. Iijima C. Brabec A. Maiti J. Bernholc (1996) ArticleTitle‘Structural flexibility of carbon nanotubes’ J. Chem. Phys. 104 IssueID5 2089–2092 Occurrence Handle10.1063/1.470966 Occurrence Handle1996JChPh.104.2089I

    Article  ADS  Google Scholar 

  20. T. Kuzumaki T. Hayashi H. Ichinose K. Miyazawa K. Ito Y. Ishida (1998) ArticleTitle‘In-situ observed deformation of carbon nanotubes’ Philos. Mag. A. 77 IssueID6 1461–1469 Occurrence Handle1998PMagA..77.1461K

    ADS  Google Scholar 

  21. B. Liu H. Jiang H.T. Johnson Y. Huang (2004) ArticleTitle‘The influence of mechanical deformation on the electrical properties of single wall carbon nanotubes’ J. Mech. Phys. Solids. 52 IssueID1 1–26 Occurrence Handle2004JMPSo..52....1L

    ADS  Google Scholar 

  22. J.Z. Liu Q. Zheng Q. Jiang (2001) ArticleTitle‘Effect of a rippling mode on resonances of carbon nanotubes’ Phys. Rev. Lett. 86 IssueID21 4843–4846 Occurrence Handle2001PhRvL..86.4843L

    ADS  Google Scholar 

  23. Lourie, O., Cox, D.M., and Wagner H.D., ‘Buckling and collapse of embedded carbon nanotubes’, Phys. Rev. Lett. 81(8)(1998).

  24. L. Mahadevan J. Bico G. McKinley (2004) ArticleTitle‘Popliteal rippling of layered elastic tubes and scrolls’ Europhys. Lett. 65 IssueID3 323–329 Occurrence Handle10.1209/epl/i2003-10099-9 Occurrence Handle2004EL.....65..323M

    Article  ADS  Google Scholar 

  25. S.L. Mielke D. Troya S. Zhang J.L. Li S.P. Xiao R. Car R.S. Ruoff G.C. Schatz T. Belytschko (2004) ArticleTitle‘The role of vacancy defects and holes in the fracture of carbon nanotubes’ Chem. Phys. Lett. 390 IssueID4–6 413–420 Occurrence Handle2004CPL...390..413M

    ADS  Google Scholar 

  26. M.B. Nardelli B.I. Yakobson J. Bernholc (1998) ArticleTitle‘Brittle and ductile behavior in carbon nanotubes’ Physical Review Letters. 81 IssueID21 4656–4659 Occurrence Handle10.1103/PhysRevLett.81.4656 Occurrence Handle1998PhRvL..81.4656N Occurrence Handle000077099300032

    Article  ADS  ISI  Google Scholar 

  27. A. Pantano D.M. Parks M.C. Boyce (2004) ArticleTitle‘Mechanics of deformation of single and multi-wall carbon nanotubes’ J. Mech. Phys. Solids. 52 IssueID4 789–821 Occurrence Handle1106.74376 Occurrence Handle2004JMPSo..52..789P

    MATH  ADS  Google Scholar 

  28. A. Pantano D.M. Parks M.C. Boyce M.B. Nardelli (2004) ArticleTitle‘Mixed finite element-tight-binding electromechanical analysis of carbon nanotubes’ J. Appl. Phys. 96 IssueID11 6756–6760 Occurrence Handle10.1063/1.1809252 Occurrence Handle2004JAP....96.6756P

    Article  ADS  Google Scholar 

  29. S.J. Papadakis A.R. Hall P.A. Williams L. Vicci M.R. Falvo R. Superfine S. Washburn (2004) ArticleTitle‘Resonant oscillators with carbon-nanotube torsion springs’ Phys. Rev. Lett. 93 IssueID14 146101 Occurrence Handle10.1103/PhysRevLett.93.146101 Occurrence Handle2004PhRvL..93n6101P

    Article  ADS  Google Scholar 

  30. P. Poncharal Z.L. Wang D. Ugarte W.A. Heer Particlede (1999) ArticleTitle‘Electrostatic deflections and electromechanical resonances of carbon nanotubes’ Science. 283 IssueID5407 1513–1516 Occurrence Handle10.1126/science.283.5407.1513 Occurrence Handle1999Sci...283.1513P Occurrence Handle000078959200041

    Article  ADS  ISI  Google Scholar 

  31. D. Qian G.J. Wagner W.K. Liu (2004) ArticleTitle‘A multiscale projection method for the analysis of carbon nanotubes’ Comput. Methods Appl. Mech. Eng. 193 IssueID17–20 1603–1632 Occurrence Handle1079.74595

    MATH  Google Scholar 

  32. C.Q. Ru (2001) ArticleTitlecompressed buckling of a doublewalled carbon nanotube embedded in an elastic medium’ J. Mech. Phys. Solids. 49 IssueID6 1265–1279 Occurrence Handle1015.74014 Occurrence Handle2001JMPSo..49.1265R

    MATH  ADS  Google Scholar 

  33. D. Srivastava D.W. Brenner J.D. Schall K.D. Ausman M.F. Yu R.S. Ruoff (1999) ArticleTitle‘Predictions of enhanced chemical reactivity at regions of local conformational strain on carbon nanotubes: kinky chemistry’ J. Phys. Chem. B. 103 IssueID21 4330–4337 Occurrence Handle10.1021/jp990882s

    Article  Google Scholar 

  34. I. Stakgold (1950) ArticleTitle‘The Cauchy relations in a molecular theory of elasticity’ Q. Appl. Math. 8 IssueID2 169–186 Occurrence Handle0037.42901 Occurrence Handle36650

    MATH  MathSciNet  Google Scholar 

  35. E.B. Tadmor M. Ortiz R. Phillips (1996) ArticleTitle‘Quasicontinuum analysis of defects in solids’ Philos. Mag. A. 73 IssueID6 1529–1563 Occurrence Handle1996PMagA..73.1529T

    ADS  Google Scholar 

  36. E.B. Tadmor G.S. Smith N. Bernstein E. Kaxiras (1999) ArticleTitle‘Mixed finite element and atomistic formulation for complex crystals’ Phys. Rev. B. 59 IssueID1 235–245 Occurrence Handle10.1103/PhysRevB.59.235 Occurrence Handle1999PhRvB..59..235T

    Article  ADS  Google Scholar 

  37. T.W. Tombler C. Zhou L. Alexseyev J. Kong H. Dai L. Liu C.S. Jayanthi M. Tang S.Y. Wu (2000) ArticleTitle‘Reversible electromechanical characteristics of carbon nanotubes under local-probe manipulation’ Nature 405 IssueID6788 769–772 Occurrence Handle2000Natur.405..769T Occurrence Handle000087620600043

    ADS  ISI  Google Scholar 

  38. L. Wang H. Hu (2005) ArticleTitle‘Flexural wave propagation in single-walled carbon nanotubes’ Phys. Rev. B. 71 IssueID19 195412 Occurrence Handle10.1103/PhysRevB.71.195412 Occurrence Handle2005PhRvB..71s5412W

    Article  ADS  Google Scholar 

  39. B.I. Yakobson C.J. Brabec J. Bernholc (1996) ArticleTitle‘Nanomechanics of carbon tubes: instabilities beyond the linear response’ Phys. Rev. Lett. 76 IssueID14 2511–2514 Occurrence Handle10.1103/PhysRevLett.76.2511 Occurrence Handle1996PhRvL..76.2511Y

    Article  ADS  Google Scholar 

  40. M. Yu O. Lourie M.J. Dyer K. Moloni T.F. Kelly R.S. Ruoff (2000) ArticleTitle‘Strength and Breaking Mechanism of multiwalled carbon nanotubes under tensile load’ Science 287 IssueID5453 637–640 Occurrence Handle10.1126/science.287.5453.637 Occurrence Handle2000Sci...287..637Y Occurrence Handle000084989400043

    Article  ADS  ISI  Google Scholar 

  41. P. Zhang Y. Huang H. Gao K.C. Hwang (2002) ArticleTitle‘Fracture nucleation in single-wall carbon nanotubes under tension: a continuum analysis incorporating interatomic potentials’ J. Appl. Mech. 69 IssueID4 454–458 Occurrence Handle10.1115/1.1469002 Occurrence Handle1110.74793

    Article  MATH  Google Scholar 

  42. S.L. Zhang S.L. Mielke R. Khare D. Troya R.S. Ruoff G.C. Schatz T. Belytschko (2005) ArticleTitle‘Mechanics of defects in carbon nanotubes: atomistic and multiscale simulations’ Phys. Rev. B. 71 IssueID11 115403 Occurrence Handle2005PhRvB..71k5403Z

    ADS  Google Scholar 

  43. L.V. Zhigilei C. Wei D. Srivastava (2005) ArticleTitle‘Mesoscopic model for dynamic simulations of carbon nanotubes’ Phys. Rev. B. 71 IssueID16 165417 Occurrence Handle10.1103/PhysRevB.71.165417 Occurrence Handle2005PhRvB..71p5417Z

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Marino Arroyo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arroyo, M., Belytschko, T. Continuum Mechanics Modeling and Simulation of Carbon Nanotubes. Meccanica 40, 455–469 (2005).

Download citation

  • Accepted:

  • Issue Date:

  • DOI: