Abstract
Alzheimer's disease (AD) lacks effective clinical treatments. As the disease progresses, the cerebral glucose hypometabolism that appears in the preclinical phase of AD gradually worsens, leading to increasingly severe brain energy disorders. This review analyzes the brain energy deficit in AD and its etiology, brain energy rescue strategies based on ketone intervention, the effects and mechanisms of IF, the differences in efficacy between IF and ketogenic diet and the duality of IF. The evidence suggests that brain energy deficits lead to the development and progression of AD pathology. IF, which improves brain energy impairments by promoting ketone metabolism, thus has good therapeutic potential for AD.
Similar content being viewed by others
Data availability
Not applicable.
References
Adafer R, Messaadi W, Meddahi M, Patey A, Haderbache A, Bayen S, et al. (2020) Food Timing, Circadian Rhythm and Chrononutrition: A Systematic Review of Time-Restricted Eating's Effects on Human Health. Nutrients 12(12). https://doi.org/10.3390/nu12123770
An Y, Varma VR, Varma S, Casanova R, Dammer E, Pletnikova O et al (2018) Evidence for brain glucose dysregulation in Alzheimer’s disease. Alzheimers Dement 14(3):318–329. https://doi.org/10.1016/j.jalz.2017.09.011
Andersen JV, Christensen SK, Westi EW, Diaz-delCastillo M, Tanila H, Schousboe A et al (2021) Deficient astrocyte metabolism impairs glutamine synthesis and neurotransmitter homeostasis in a mouse model of Alzheimer’s disease. Neurobiol Dis 148:105198. https://doi.org/10.1016/j.nbd.2020.105198
Andersen JV, Westi EW, Jakobsen E, Urruticoechea N, Borges K, Aldana BI (2021b) Astrocyte metabolism of the medium-chain fatty acids octanoic acid and decanoic acid promotes GABA synthesis in neurons via elevated glutamine supply. Mol Brain 14(1):132. https://doi.org/10.1186/s13041-021-00842-2
Anton S, Ezzati A, Witt D, McLaren C, Vial P (2021) The effects of intermittent fasting regimens in middle-age and older adults: Current state of evidence. Exp Gerontol 156:111617. https://doi.org/10.1016/j.exger.2021.111617
Apatiga-Perez R, Soto-Rojas LO, Campa-Cordoba BB, Luna-Viramontes NI, Cuevas E, Villanueva-Fierro I et al (2022) Neurovascular dysfunction and vascular amyloid accumulation as early events in Alzheimer’s disease. Metab Brain Dis 37(1):39–50. https://doi.org/10.1007/s11011-021-00814-4
Arnold SE, Arvanitakis Z, Macauley-Rambach SL, Koenig AM, Wang HY, Ahima RS et al (2018) Brain insulin resistance in type 2 diabetes and Alzheimer disease: concepts and conundrums. Nat Rev Neurol 14(3):168–181. https://doi.org/10.1038/nrneurol.2017.185
Athanasaki A, Melanis K, Tsantzali I, Stefanou MI, Ntymenou S, Paraskevas SG, et al. (2022) Type 2 Diabetes Mellitus as a Risk Factor for Alzheimer's Disease: Review and Meta-Analysis. Biomedicines 10(4). https://doi.org/10.3390/biomedicines10040778
Auestad N, Korsak RA, Morrow JW, Edmond J (1991) Fatty acid oxidation and ketogenesis by astrocytes in primary culture. J Neurochem 56(4):1376–1386. https://doi.org/10.1111/j.1471-4159.1991.tb11435.x
Beard E, Lengacher S, Dias S, Magistretti PJ, Finsterwald C (2021) Astrocytes as Key Regulators of Brain Energy Metabolism: New Therapeutic Perspectives. Front Physiol 12:825816. https://doi.org/10.3389/fphys.2021.825816
Beckett TL, Studzinski CM, Keller JN, Paul Murphy M, Niedowicz DM (2013) A ketogenic diet improves motor performance but does not affect beta-amyloid levels in a mouse model of Alzheimer’s disease. Brain Res 1505:61–67. https://doi.org/10.1016/j.brainres.2013.01.046
Bi D, Wen L, Wu Z, Shen Y (2020) GABAergic dysfunction in excitatory and inhibitory (E/I) imbalance drives the pathogenesis of Alzheimer’s disease. Alzheimers Dement 16(9):1312–1329. https://doi.org/10.1002/alz.12088
Blazquez C, Woods A, de Ceballos ML, Carling D, Guzman M (1999) The AMP-activated protein kinase is involved in the regulation of ketone body production by astrocytes. J Neurochem 73(4):1674–1682. https://doi.org/10.1046/j.1471-4159.1999.731674.x
Brooks WM, Lynch PJ, Ingle CC, Hatton A, Emson PC, Faull RL et al (2007) Gene expression profiles of metabolic enzyme transcripts in Alzheimer’s disease. Brain Res 1127(1):127–135. https://doi.org/10.1016/j.brainres.2006.09.106
Brown PJ, Devanand DP, Liu X, Caccappolo E (2011) Functional impairment in elderly patients with mild cognitive impairment and mild Alzheimer disease. Arch Gen Psychiatry 68(6):617–626. https://doi.org/10.1001/archgenpsychiatry.2011.57
Brownlow ML, Benner L, D’Agostino D, Gordon MN, Morgan D (2013) Ketogenic diet improves motor performance but not cognition in two mouse models of Alzheimer’s pathology. PLoS One 8(9):e75713. https://doi.org/10.1371/journal.pone.0075713
Butterfield DA, Halliwell B (2019) Oxidative stress, dysfunctional glucose metabolism and Alzheimer disease. Nat Rev Neurosci 20(3):148–160. https://doi.org/10.1038/s41583-019-0132-6
Calderon N, Betancourt L, Hernandez L, Rada P (2017) A ketogenic diet modifies glutamate, gamma-aminobutyric acid and agmatine levels in the hippocampus of rats: A microdialysis study. Neurosci Lett 642:158–162. https://doi.org/10.1016/j.neulet.2017.02.014
Castellano CA, Nugent S, Paquet N, Tremblay S, Bocti C, Lacombe G et al (2015) Lower brain 18F-fluorodeoxyglucose uptake but normal 11C-acetoacetate metabolism in mild Alzheimer’s disease dementia. J Alzheimers Dis 43(4):1343–1353. https://doi.org/10.3233/jad-141074
Castello L, Froio T, Maina M, Cavallini G, Biasi F, Leonarduzzi G et al (2010) Alternate-day fasting protects the rat heart against age-induced inflammation and fibrosis by inhibiting oxidative damage and NF-kB activation. Free Radic Biol Med 48(1):47–54. https://doi.org/10.1016/j.freeradbiomed.2009.10.003
Chaix A, Deota S, Bhardwaj R, Lin T, Panda S (2021) Sex- and age-dependent outcomes of 9-hour time-restricted feeding of a Western high-fat high-sucrose diet in C57BL/6J mice. Cell Rep 36(7):109543. https://doi.org/10.1016/j.celrep.2021.109543
Chamberlain KA, Huang N, Xie Y, LiCausi F, Li S, Li Y et al (2021) Oligodendrocytes enhance axonal energy metabolism by deacetylation of mitochondrial proteins through transcellular delivery of SIRT2. Neuron 109(21):3456-3472 e3458. https://doi.org/10.1016/j.neuron.2021.08.011
Chandrasekaran K, Hatanpaa K, Brady DR, Rapoport SI (1996) Evidence for physiological down-regulation of brain oxidative phosphorylation in Alzheimer’s disease. Exp Neurol 142(1):80–88. https://doi.org/10.1006/exnr.1996.0180
Chen S, Sun J, Zhao G, Guo A, Chen Y, Fu R et al (2017) Liraglutide Improves Water Maze Learning and Memory Performance While Reduces Hyperphosphorylation of Tau and Neurofilaments in APP/PS1/Tau Triple Transgenic Mice. Neurochem Res 42(8):2326–2335. https://doi.org/10.1007/s11064-017-2250-8
Chen W, Huang Q, Lazdon EK, Gomes A, Wong M, Stephens E et al (2023) Loss of insulin signaling in astrocytes exacerbates Alzheimer-like phenotypes in a 5xFAD mouse model. Proc Natl Acad Sci U S A 120(21):e2220684120. https://doi.org/10.1073/pnas.2220684120
Chen Z, Zhong C (2013) Decoding Alzheimer’s disease from perturbed cerebral glucose metabolism: implications for diagnostic and therapeutic strategies. Prog Neurobiol 108:21–43. https://doi.org/10.1016/j.pneurobio.2013.06.004
Chung JY, Kim OY, Song J (2022) Role of ketone bodies in diabetes-induced dementia: sirtuins, insulin resistance, synaptic plasticity, mitochondrial dysfunction, and neurotransmitter. Nutr Rev 80(4):774–785. https://doi.org/10.1093/nutrit/nuab118
Cienfuegos S, Gabel K, Kalam F, Ezpeleta M, Wiseman E, Pavlou V et al (2020) Effects of 4- and 6-h Time-Restricted Feeding on Weight and Cardiometabolic Health: A Randomized Controlled Trial in Adults with Obesity. Cell Metab 32(3):366-378.e363. https://doi.org/10.1016/j.cmet.2020.06.018
Cignarella F, Cantoni C, Ghezzi L, Salter A, Dorsett Y, Chen L et al (2018) Intermittent Fasting Confers Protection in CNS Autoimmunity by Altering the Gut Microbiota. Cell Metab 27(6):1222-1235 e1226. https://doi.org/10.1016/j.cmet.2018.05.006
Collaborators GBDDF (2022) Estimation of the global prevalence of dementia in 2019 and forecasted prevalence in 2050: an analysis for the Global Burden of Disease Study 2019. Lancet Public Health 7(2):e105–e125. https://doi.org/10.1016/S2468-2667(21)00249-8
Corley BT, Carroll RW, Hall RM, Weatherall M, Parry-Strong A, Krebs JD (2018) Intermittent fasting in Type 2 diabetes mellitus and the risk of hypoglycaemia: a randomized controlled trial. Diabet Med 35(5):588–594. https://doi.org/10.1111/dme.13595
Costantini LC, Barr LJ, Vogel JL, Henderson ST (2008) Hypometabolism as a therapeutic target in Alzheimer’s disease. BMC Neurosci 9(Suppl 2):S1-16. https://doi.org/10.1186/1471-2202-9-S2-S16
Crosby L, Davis B, Joshi S, Jardine M, Paul J, Neola M et al (2021) Ketogenic Diets and Chronic Disease: Weighing the Benefits Against the Risks. Front Nutr 8:702802. https://doi.org/10.3389/fnut.2021.702802
Croteau E, Castellano CA, Fortier M, Bocti C, Fulop T, Paquet N et al (2018) A cross-sectional comparison of brain glucose and ketone metabolism in cognitively healthy older adults, mild cognitive impairment and early Alzheimer’s disease. Exp Gerontol 107:18–26. https://doi.org/10.1016/j.exger.2017.07.004
Cullingford TE, Eagles DA, Sato H (2002) The ketogenic diet upregulates expression of the gene encoding the key ketogenic enzyme mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase in rat brain. Epilepsy Res 49(2):99–107. https://doi.org/10.1016/s0920-1211(02)00011-6
Cunnane S, Nugent S, Roy M, Courchesne-Loyer A, Croteau E, Tremblay S et al (2011) Brain fuel metabolism, aging, and Alzheimer’s disease. Nutrition 27(1):3–20. https://doi.org/10.1016/j.nut.2010.07.021
Cunnane SC, Courchesne-Loyer A, St-Pierre V, Vandenberghe C, Pierotti T, Fortier M et al (2016) Can ketones compensate for deteriorating brain glucose uptake during aging? Implications for the risk and treatment of Alzheimer’s disease. Ann N Y Acad Sci 1367(1):12–20. https://doi.org/10.1111/nyas.12999
Cunnane SC, Trushina E, Morland C, Prigione A, Casadesus G, Andrews ZB et al (2020) Brain energy rescue: an emerging therapeutic concept for neurodegenerative disorders of ageing. Nat Rev Drug Discov 19(9):609–633. https://doi.org/10.1038/s41573-020-0072-x
Davis KE, Fox S, Gigg J (2014) Increased hippocampal excitability in the 3xTgAD mouse model for Alzheimer’s disease in vivo. PLoS One 9(3):e91203. https://doi.org/10.1371/journal.pone.0091203
de Cabo R, Mattson MP (2019) Effects of Intermittent Fasting on Health, Aging, and Disease. N Engl J Med 381(26):2541–2551. https://doi.org/10.1056/NEJMra1905136
Deota S, Lin T, Chaix A, Williams A, Le H, Calligaro H et al (2023) Diurnal transcriptome landscape of a multi-tissue response to time-restricted feeding in mammals. Cell Metab 35(1):150-165.e154. https://doi.org/10.1016/j.cmet.2022.12.006
Depp C, Sun T, Sasmita AO, Spieth L, Berghoff SA, Nazarenko T et al (2023) Myelin dysfunction drives amyloid-β deposition in models of Alzheimer’s disease. Nature 618(7964):349–357. https://doi.org/10.1038/s41586-023-06120-6
Dienel GA (2019) Brain Glucose Metabolism: Integration of Energetics with Function. Physiol Rev 99(1):949–1045. https://doi.org/10.1152/physrev.00062.2017
Dilmore AH, Martino C, Neth BJ, West KA, Zemlin J, Rahman G et al (2023) Effects of a ketogenic and low-fat diet on the human metabolome, microbiome, and foodome in adults at risk for Alzheimer’s disease. Alzheimers Dement. https://doi.org/10.1002/alz.13007
Ding F, Yao J, Rettberg JR, Chen S, Brinton RD (2013) Early decline in glucose transport and metabolism precedes shift to ketogenic system in female aging and Alzheimer’s mouse brain: implication for bioenergetic intervention. PLoS One 8(11):e79977. https://doi.org/10.1371/journal.pone.0079977
Dwivedi D, Megha K, Mishra R, Mandal PK (2020) Glutathione in Brain: Overview of Its Conformations, Functions, Biochemical Characteristics, Quantitation and Potential Therapeutic Role in Brain Disorders. Neurochem Res 45(7):1461–1480. https://doi.org/10.1007/s11064-020-03030-1
Ezpeleta M, Gabel K, Cienfuegos S, Kalam F, Lin S, Pavlou V et al (2023) Effect of alternate day fasting combined with aerobic exercise on non-alcoholic fatty liver disease: A randomized controlled trial. Cell Metab 35(1):56-70.e53. https://doi.org/10.1016/j.cmet.2022.12.001
Falkowska A, Gutowska I, Goschorska M, Nowacki P, Chlubek D, Baranowska-Bosiacka I (2015) Energy Metabolism of the Brain, Including the Cooperation between Astrocytes and Neurons, Especially in the Context of Glycogen Metabolism. Int J Mol Sci 16(11):25959–25981. https://doi.org/10.3390/ijms161125939
Fernandez-Perez EJ, Munoz B, Bascunan DA, Peters C, Riffo-Lepe NO, Espinoza MP et al (2021) Synaptic dysregulation and hyperexcitability induced by intracellular amyloid beta oligomers. Aging Cell 20(9):e13455. https://doi.org/10.1111/acel.13455
Fostinelli S, De Amicis R, Leone A, Giustizieri V, Binetti G, Bertoli S et al (2020) Eating Behavior in Aging and Dementia: The Need for a Comprehensive Assessment. Front Nutr 7:604488. https://doi.org/10.3389/fnut.2020.604488
Fukao T, Song XQ, Mitchell GA, Yamaguchi S, Sukegawa K, Orii T et al (1997) Enzymes of ketone body utilization in human tissues: protein and messenger RNA levels of succinyl-coenzyme A (CoA):3-ketoacid CoA transferase and mitochondrial and cytosolic acetoacetyl-CoA thiolases. Pediatr Res 42(4):498–502. https://doi.org/10.1203/00006450-199710000-00013
Furth SL, Casey JC, Pyzik PL, Neu AM, Docimo SG, Vining EP et al (2000) Risk factors for urolithiasis in children on the ketogenic diet. Pediatr Nephrol 15(1–2):125–128. https://doi.org/10.1007/s004670000443
García-Rodríguez D, Giménez-Cassina A (2021) Ketone Bodies in the Brain Beyond Fuel Metabolism: From Excitability to Gene Expression and Cell Signaling. Front Mol Neurosci 14:732120. https://doi.org/10.3389/fnmol.2021.732120
Garnier-Crussard A, Bougacha S, Wirth M, Dautricourt S, Sherif S, Landeau B et al (2022) White matter hyperintensity topography in Alzheimer’s disease and links to cognition. Alzheimers Dement 18(3):422–433. https://doi.org/10.1002/alz.12410
Gjedde A, Crone C (1975) Induction processes in blood-brain transfer of ketone bodies during starvation. Am J Physiol 229(5):1165–1169. https://doi.org/10.1152/ajplegacy.1975.229.5.1165
Golbidi S, Daiber A, Korac B, Li H, Essop MF, Laher I (2017) Health Benefits of Fasting and Caloric Restriction. Curr Diab Rep 17(12):123. https://doi.org/10.1007/s11892-017-0951-7
Gong CX, Liu F, Iqbal K (2018) Multifactorial Hypothesis and Multi-Targets for Alzheimer’s Disease. J Alzheimers Dis 64(s1):S107–S117. https://doi.org/10.3233/JAD-179921
Groscolas R, Robin JP (2001) Long-term fasting and re-feeding in penguins. Comp Biochem Physiol A Mol Integr Physiol 128(3):645–655. https://doi.org/10.1016/s1095-6433(00)00341-x
Gudden J, Arias Vasquez A, Bloemendaal M (2021) The Effects of Intermittent Fasting on Brain and Cognitive Function. Nutrients 13(9):3166. https://doi.org/10.3390/nu13093166
Hahn O, Drews LF, Nguyen A, Tatsuta T, Gkioni L, Hendrich O et al (2019) A nutritional memory effect counteracts benefits of dietary restriction in old mice. Nat Metab 1(11):1059–1073. https://doi.org/10.1038/s42255-019-0121-0
Hajek P, Przulj D, Pesola F, McRobbie H, Peerbux S, Phillips-Waller A et al (2021) A randomised controlled trial of the 5:2 diet. PLoS One 16(11):e0258853. https://doi.org/10.1371/journal.pone.0258853
Halagappa VK, Guo Z, Pearson M, Matsuoka Y, Cutler RG, Laferla FM et al (2007) Intermittent fasting and caloric restriction ameliorate age-related behavioral deficits in the triple-transgenic mouse model of Alzheimer’s disease. Neurobiol Dis 26(1):212–220. https://doi.org/10.1016/j.nbd.2006.12.019
Hazzaa SM, Eldaim MAA, Fouda AA, Mohamed A, Soliman MM, Elgizawy EI (2020) Intermittent Fasting Ameliorated High-Fat Diet-Induced Memory Impairment in Rats via Reducing Oxidative Stress and Glial Fibrillary Acidic Protein Expression in Brain. Nutrients, 13(1). https://doi.org/10.3390/nu13010010.
Heni M, Hennige AM, Peter A, Siegel-Axel D, Ordelheide AM, Krebs N et al (2011) Insulin promotes glycogen storage and cell proliferation in primary human astrocytes. PLoS One 6(6):e21594. https://doi.org/10.1371/journal.pone.0021594
Hindle AG, Grabek KR, Epperson LE, Karimpour-Fard A, Martin SL (2014) Metabolic changes associated with the long winter fast dominate the liver proteome in 13-lined ground squirrels. Physiol Genom 46(10):348–361. https://doi.org/10.1152/physiolgenomics.00190.2013
Hipkiss AR (2019) Aging, Alzheimer's disease and dysfunctional glycolysis; similar effects of too much and too little. Aging Dis 10(6): 1328–1331. https://doi.org/10.14336/AD.2019.0611
Howarth C, Gleeson P, Attwell D (2012) Updated energy budgets for neural computation in the neocortex and cerebellum. J Cereb Blood Flow Metab 32(7):1222–1232. https://doi.org/10.1038/jcbfm.2012.35
Hutchison AT, Regmi P, Manoogian ENC, Fleischer JG, Wittert GA, Panda S et al (2019) Time-Restricted Feeding Improves Glucose Tolerance in Men at Risk for Type 2 Diabetes: A Randomized Crossover Trial. Obesity (Silver Spring) 27(5):724–732. https://doi.org/10.1002/oby.22449
Ishii K, Sasaki M, Kitagaki H, Yamaji S, Sakamoto S, Matsuda K et al (1997) Reduction of Cerebellar Glucose Metabolism in Advanced Alzheimer’s Disease. J Nucl Med 38(6):925–928
Jamshed H, Beyl RA, Della MD, Yang ES, Ravussin E, Peterson CM (2019) Early Time-Restricted Feeding Improves 24-Hour Glucose Levels and Affects Markers of the Circadian Clock, Aging, and Autophagy in Humans. Nutrients 11(6):1234. https://doi.org/10.3390/nu11061234
Janssen H, Kahles F, Liu D, Downey J, Koekkoek LL, Roudko V et al (2023) Monocytes re-enter the bone marrow during fasting and alter the host response to infection. Immunity 56(4):783-796.e787. https://doi.org/10.1016/j.immuni.2023.01.024
Jarrett SG, Milder JB, Liang LP, Patel M (2008) The ketogenic diet increases mitochondrial glutathione levels. J Neurochem 106(3):1044–1051. https://doi.org/10.1111/j.1471-4159.2008.05460.x
Jensen NJ, Wodschow HZ, Nilsson M, Rungby J (2020) Effects of Ketone Bodies on Brain Metabolism and Function in Neurodegenerative Diseases. Int J Mol Sci 21(22):8767. https://doi.org/10.3390/ijms21228767
Jia L, Du Y, Chu L, Zhang Z, Li F, Lyu D et al (2020) Prevalence, risk factors, and management of dementia and mild cognitive impairment in adults aged 60 years or older in China: a cross-sectional study. Lancet Public Health 5(12):e661–e671. https://doi.org/10.1016/S2468-2667(20)30185-7
Solis E Jr, Hascup KN, Hascup ER (2020) Alzheimer’s Disease: the link between amyloid-beta and neurovascular dysfunction. J Alzheimers Dis 76(4):1179–1198. https://doi.org/10.3233/jad-20047
Kang HC, Chung DE, Kim DW, Kim HD (2004) Early- and late-onset complications of the ketogenic diet for intractable epilepsy. Epilepsia 45(9):1116–1123. https://doi.org/10.1111/j.0013-9580.2004.10004.x
Kashiwaya Y, Bergman C, Lee JH, Wan R, King MT, Mughal MR et al (2013) A ketone ester diet exhibits anxiolytic and cognition-sparing properties, and lessens amyloid and tau pathologies in a mouse model of Alzheimer’s disease. Neurobiol Aging 34(6):1530–1539. https://doi.org/10.1016/j.neurobiolaging.2012.11.023
Kephart WC, Mumford PW, Mao X, Romero MA, Hyatt HW, Zhang Y et al (2017) The 1-Week and 8-Month Effects of a Ketogenic Diet or Ketone Salt Supplementation on Multi-Organ Markers of Oxidative Stress and Mitochondrial Function in Rats. Nutrients 9(9):1019. https://doi.org/10.3390/nu9091019
Kesztyüs D, Fuchs M, Cermak P, Kesztyüs T (2020) Associations of time-restricted eating with health-related quality of life and sleep in adults: a secondary analysis of two pre-post pilot studies. BMC Nutr 6(1):76. https://doi.org/10.1186/s40795-020-00402-2
Kossoff EH, Pyzik PL, Furth SL, Hladky HD, Freeman JM, Vining EP (2002) Kidney stones, carbonic anhydrase inhibitors, and the ketogenic diet. Epilepsia 43(10):1168–1171. https://doi.org/10.1046/j.1528-1157.2002.11302.x
Kshirsagar V, Thingore C, Juvekar A (2021) Insulin resistance: a connecting link between Alzheimer’s disease and metabolic disorder. Metab Brain Dis 36(1):67–83. https://doi.org/10.1007/s11011-020-00622-2
Kuntzelmann A, Guenther T, Haberkorn U, Essig M, Giesel F, Henze R et al (2013) Impaired cerebral glucose metabolism in prodromal Alzheimer’s disease differs by regional intensity normalization. Neurosci Lett 534:12–17. https://doi.org/10.1016/j.neulet.2012.11.026
Lee Y, Morrison BM, Li Y, Lengacher S, Farah MH, Hoffman PN et al (2012) Oligodendroglia metabolically support axons and contribute to neurodegeneration. Nature 487(7408):443–448. https://doi.org/10.1038/nature11314
Leino RL, Gerhart DZ, Duelli R, Enerson BE, Drewes LR (2001) Diet-induced ketosis increases monocarboxylate transporter (MCT1) levels in rat brain. Neurochem Int 38(6):519–527. https://doi.org/10.1016/s0197-0186(00)00102-9
Li S, Sheng ZJ (2022) Energy matters: presynaptic metabolism and the maintenance of synaptic transmission. Nat Rev Neurosci 23(1):4–22. https://doi.org/10.1038/s41583-021-00535-8
Lin Z, Sur S, Liu P, Li Y, Jiang D, Hou X et al (2021) Blood-Brain Barrier Breakdown in Relationship to Alzheimer and Vascular Disease. Ann Neurol 90(2):227–238. https://doi.org/10.1002/ana.26134
Liu CC, Yamazaki Y, Heckman MG, Martens YA, Jia L, Yamazaki A et al (2020a) Tau and apolipoprotein E modulate cerebrovascular tight junction integrity independent of cerebral amyloid angiopathy in Alzheimer’s disease. Alzheimers Dement 16(10):1372–1383. https://doi.org/10.1002/alz.12104
Liu H, Yang Y, Wang Y, Tang H, Zhang F, Zhang Y et al (2018) Ketogenic diet for treatment of intractable epilepsy in adults: A meta-analysis of observational studies. Epilepsia Open 3(1):9–17. https://doi.org/10.1002/epi4.12098
Liu Y, Cheng A, Li YJ, Yang Y, Kishimoto Y, Zhang S et al (2019) SIRT3 mediates hippocampal synaptic adaptations to intermittent fasting and ameliorates deficits in APP mutant mice. Nat Commun 10(1):1886. https://doi.org/10.1038/s41467-019-09897-1
Liu Z, Dai X, Zhang H, Shi R, Hui Y, Jin X et al (2020b) Gut microbiota mediates intermittent-fasting alleviation of diabetes-induced cognitive impairment. Nat Commun 11(1):855. https://doi.org/10.1038/s41467-020-14676-4
Lowe DA, Wu N, Rohdin-Bibby L, Moore AH, Kelly N, Liu YE et al (2020) Effects of Time-Restricted Eating on Weight Loss and Other Metabolic Parameters in Women and Men With Overweight and Obesity: The TREAT Randomized Clinical Trial. JAMA Intern Med 180(11):1491–1499. https://doi.org/10.1001/jamainternmed.2020.4153
Marcus DL, Freedman ML (1997) Decreased brain glucose metabolism in microvessels from patients with Alzheimer’s disease. Ann N Y Acad Sci 826:248–253. https://doi.org/10.1111/j.1749-6632.1997.tb48476.x
Marosi K, Kim SW, Moehl K, Scheibye-Knudsen M, Cheng A, Cutler R et al (2016) 3-Hydroxybutyrate regulates energy metabolism and induces BDNF expression in cerebral cortical neurons. J Neurochem 139(5):769–781. https://doi.org/10.1111/jnc.13868. (%/ Published 2016. This article is a U.S. Government work and is in the public domain in the USA)
Mastroeni D, Khdour OM, Delvaux E, Nolz J, Olsen G, Berchtold N et al (2017) Nuclear but not mitochondrial-encoded oxidative phosphorylation genes are altered in aging, mild cognitive impairment, and Alzheimer’s disease. Alzheimers Dement 13(5):510–519. https://doi.org/10.1016/j.jalz.2016.09.003
Mattson MP, Moehl K, Ghena N, Schmaedick M, Cheng A (2018) Intermittent metabolic switching, neuroplasticity and brain health. Nat Rev Neurosci 19(2):63–80. https://doi.org/10.1038/nrn.2017.156
McKhann G, Knopman D, Chertkow H, Hyman B, Jack C, Kawas C et al (2011) The Diagnosis of Dementia Due to Alzheimer’s Disease: Recommendations from the National Institute on Aging-Alzheimer’s Association Workgroups on Diagnostic Guidelines for Alzheimer’s Disease. Alzheimers Dement 7(3):263–269. https://doi.org/10.1016/j.jalz.2011.03.005
Mejia-Toiber J, Montiel T, Massieu L (2006) D-beta-hydroxybutyrate prevents glutamate-mediated lipoperoxidation and neuronal damage elicited during glycolysis inhibition in vivo. Neurochem Res 31(12):1399–1408. https://doi.org/10.1007/s11064-006-9189-5
Mindikoglu AL, Abdulsada MM, Jain A, Choi JM, Jalal PK, Devaraj S et al (2020) Intermittent fasting from dawn to sunset for 30 consecutive days is associated with anticancer proteomic signature and upregulates key regulatory proteins of glucose and lipid metabolism, circadian clock, DNA repair, cytoskeleton remodeling, immune system and cognitive function in healthy subjects. J Proteomics 217:103645. https://doi.org/10.1016/j.jprot.2020.103645
Mitchell SJ, Bernier M, Mattison JA, Aon MA, Kaiser TA, Anson RM et al (2019) Daily Fasting Improves Health and Survival in Male Mice Independent of Diet Composition and Calories. Cell Metab 29(1):221-228.e223. https://doi.org/10.1016/j.cmet.2018.08.011
Morris GP, Clark IA, Vissel B (2014) Inconsistencies and controversies surrounding the amyloid hypothesis of Alzheimer’s disease. Acta Neuropathol Commun 2:135. https://doi.org/10.1186/s40478-014-0135-5
Mosconi L, Pupi A, De Leon MJ (2008) Brain glucose hypometabolism and oxidative stress in preclinical Alzheimer’s disease. Ann N Y Acad Sci 1147(1):180–195. https://doi.org/10.1196/annals.1427.007
Muddapu VR, Dharshini SAP, Chakravarthy VS, Gromiha MM (2020) Neurodegenerative Diseases - Is Metabolic Deficiency the Root Cause? Front Neurosci 14:213. https://doi.org/10.3389/fnins.2020.00213
Musa-Veloso K, Likhodii SS, Cunnane SC (2002) Breath acetone is a reliable indicator of ketosis in adults consuming ketogenic meals. Am J Clin Nutr 76(1):65–70. https://doi.org/10.1093/ajcn/76.1.65
Musa-Veloso K, Likhodii SS, Rarama E, Benoit S, Liu YM, Chartrand D et al (2006) Breath acetone predicts plasma ketone bodies in children with epilepsy on a ketogenic diet. Nutrition 22(1):1–8. https://doi.org/10.1016/j.nut.2005.04.008
Narine M, Colognato H (2022) Current insights into oligodendrocyte metabolism and its power to sculpt the myelin landscape. Front Cell Neurosci 16:892968. https://doi.org/10.3389/fncel.2022.892968
Nugent S, Tremblay S, Chen KW, Ayutyanont N, Roontiva A, Castellano CA et al (2014) Brain glucose and acetoacetate metabolism: a comparison of young and older adults. Neurobiol Aging 35(6):1386–1395. https://doi.org/10.1016/j.neurobiolaging.2013.11.027
O’Keefe JH, Torres-Acosta N, O’Keefe EL, Saeed IM, Lavie CJ, Smith SE et al (2020) A Pesco-Mediterranean Diet With Intermittent Fasting: JACC Review Topic of the Week. J Am Coll Cardiol 76(12):1484–1493. https://doi.org/10.1016/j.jacc.2020.07.049
Ogama N, Sakurai T, Nakai T, Niida S, Saji N, Toba K et al (2017) Impact of frontal white matter hyperintensity on instrumental activities of daily living in elderly women with Alzheimer disease and amnestic mild cognitive impairment. PLoS One 12(3):e0172484. https://doi.org/10.1371/journal.pone.0172484
Oh Y, Lai JS, Mills HJ, Erdjument-Bromage H, Giammarinaro B, Saadipour K et al (2019) A glucose-sensing neuron pair regulates insulin and glucagon in Drosophila. Nature 574(7779):559–564. https://doi.org/10.1038/s41586-019-1675-4
Ooi TC, Meramat A, Rajab NF, Shahar S, Ismail IS, Azam AA et al (2020) Intermittent Fasting Enhanced the Cognitive Function in Older Adults with Mild Cognitive Impairment by Inducing Biochemical and Metabolic changes: A 3-Year Progressive Study. Nutrients 12(9):2644. https://doi.org/10.3390/nu12092644
Owen OE, Morgan AP, Kemp HG, Sullivan JM, Herrera MG, Cahill GF Jr (1967) Brain metabolism during fasting. J Clin Invest 46(10):1589–1595. https://doi.org/10.1172/JCI105650
Oyarzabal A, Marin-Valencia I (2019) Synaptic energy metabolism and neuronal excitability, in sickness and health. J Inherit Metab Dis 42(2):220–236. https://doi.org/10.1002/jimd.12071
Pan R-Y, Zhang J, Wang J, Wang Y, Li Z, Liao Y et al (2022a) Intermittent fasting protects against Alzheimer’s disease in mice by altering metabolism through remodeling of the gut microbiota. Nature Aging 2(11):1024–1039. https://doi.org/10.1038/s43587-022-00311-y
Patikorn C, Roubal K, Veettil SK, Chandran V, Pham T, Lee YY et al (2021) Intermittent fasting and obesity-related health outcomes: an umbrella review of meta-analyses of randomized clinical trials. JAMA Netw Open 4(12):e2139558. https://doi.org/10.1001/jamanetworkopen.2021.39558
Pawlosky RJ et al (2017) Effects of a dietary ketone ester on hippocampal glycolytic and TCA cycle intermediates and amino acids in a 3xTgAD mouse model of Alzheimer’s disease. J Neurochem 2(141):195–207
Pellerin L, Bergersen LH, Halestrap AP, Pierre K (2005) Cellular and subcellular distribution of monocarboxylate transporters in cultured brain cells and in the adult brain. J Neurosci Res 79(1–2):55–64. https://doi.org/10.1002/jnr.20307
Pellerin L, Magistretti PJ (1994) Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilization. Proc Natl Acad Sci U S A 91(22):10625–10629. https://doi.org/10.1073/pnas.91.22.10625
Peng W, Tan C, Mo L, Jiang J, Zhou W, Du J et al (2021) Glucose transporter 3 in neuronal glucose metabolism: Health and diseases. Metabolism 123:154869. https://doi.org/10.1016/j.metabol.2021.154869
Persynaki A, Karras S, Pichard C (2017) Unraveling the metabolic health benefits of fasting related to religious beliefs: A narrative review. Nutrition 35:14–20. https://doi.org/10.1016/j.nut.2016.10.005
Pichet Binette A, Theaud G, Rheault F, Roy M, Collins DL, Levin J, et al. (2021) Bundle-specific associations between white matter microstructure and Abeta and tau pathology in preclinical Alzheimer's disease. Elife 10. https://doi.org/10.7554/eLife.62929
Pierre K, Pellerin L (2005) Monocarboxylate transporters in the central nervous system: distribution, regulation and function. J Neurochem 94(1):1–14. https://doi.org/10.1111/j.1471-4159.2005.03168.x
Placone AL, McGuiggan PM, Bergles DE, Guerrero-Cazares H, Quiñones-Hinojosa A, Searson PC (2015) Human astrocytes develop physiological morphology and remain quiescent in a novel 3D matrix. Biomaterials 42:134–143. https://doi.org/10.1016/j.biomaterials.2014.11.046
Puchalska P, Crawford PA (2017) Multi-dimensional Roles of Ketone Bodies in Fuel Metabolism, Signaling, and Therapeutics. Cell Metab 25(2):262–284. https://doi.org/10.1016/j.cmet.2016.12.022
Rahmani J, KordVarkaneh H, Clark C, Zand H, Bawadi H, Ryan PM et al (2019) The influence of fasting and energy restricting diets on IGF-1 levels in humans: A systematic review and meta-analysis. Ageing Res Rev 53:100910. https://doi.org/10.1016/j.arr.2019.100910
Rangan P, Lobo F, Parrella E, Rochette N, Morselli M, Stephen TL et al (2022) Fasting-mimicking diet cycles reduce neuroinflammation to attenuate cognitive decline in Alzheimer’s models. Cell Rep 40(13):111417. https://doi.org/10.1016/j.celrep.2022.111417
Rohlenova K, Veys K, Miranda-Santos I, De Bock K, Carmeliet P (2018) Endothelial Cell Metabolism in Health and Disease. Trends Cell Biol 28(3):224–236. https://doi.org/10.1016/j.tcb.2017.10.010
Rolfe DF, Brown GC (1997) Cellular energy utilization and molecular origin of standard metabolic rate in mammals. Physiol Rev 77(3):731–758. https://doi.org/10.1152/physrev.1997.77.3.731
Rosko L, Smith VN, Yamazaki R, Huang JK (2019) Oligodendrocyte Bioenergetics in Health and Disease. Neuroscientist 25(4):334–343. https://doi.org/10.1177/1073858418793077
Rossi S, Zanier ER, Mauri I, Columbo A, Stocchetti N (2001) Brain temperature, body core temperature, and intracranial pressure in acute cerebral damage. J Neurol Neurosurg Psychiatry 71(4):448–454. https://doi.org/10.1136/jnnp.71.4.448
Roy M, Rheault F, Croteau E, Castellano CA, Fortier M, St-Pierre V et al (2020) Fascicle- and Glucose-Specific Deterioration in White Matter Energy Supply in Alzheimer’s Disease. J Alzheimers Dis 76(3):863–881. https://doi.org/10.3233/jad-200213
Rui-Yuan P, Lin H, Jing Z, Xinhua L, Yajin L, Ju G et al (2022) Positive feedback regulation of microglial glucose metabolism by histone H4 lysine 12 lactylation in Alzheimer’s disease. Cell Metab 34(4):634-648.e636. https://doi.org/10.1016/j.cmet.2022.02.013
Saab AS, Tzvetavona ID, Trevisiol A, Baltan S, Dibaj P, Kusch K et al (2016) Oligodendroglial NMDA Receptors Regulate Glucose Import and Axonal Energy Metabolism. Neuron 91(1):119–132. https://doi.org/10.1016/j.neuron.2016.05.016
Saito ER, Miller JB, Harari O, Cruchaga C, Mihindukulasuriya KA, Kauwe J et al (2021) Alzheimer’s disease alters oligodendrocytic glycolytic and ketolytic gene expression. Alzheimers Dement 17(9):1474–1486. https://doi.org/10.1002/alz.12310
Santos T, Fonseca LC, Tedrus G, Delbue JL. (2018) Alzheimer's disease: nutritional status and cognitive aspects associated with disease severity. Nutr Hosp 35(6): 1298–1304. https://doi.org/10.20960/nh.2067
Schuppelius B, Peters B, Ottawa A, Pivovarova-Ramich O (2021) Time Restricted Eating: A Dietary Strategy to Prevent and Treat Metabolic Disturbances. Front Endocrinol (Lausanne) 12:683140. https://doi.org/10.3389/fendo.2021.683140
Sędzikowska A, Szablewski L (2021) Insulin and Insulin Resistance in Alzheimer’s Disease. Int J Mol Sci 22(18):9987. https://doi.org/10.3390/ijms22189987
Seufert A, Hickman J, Traxler S, Peterson R, Waugh T, Lashley S, et al. (2022) Enriched dietary saturated fatty acids induce trained immunity via ceramide production that enhances severity of endotoxemia and clearance of infection. 11. https://doi.org/10.7554/eLife.76744
Shin BK, Kang S, Kim DS, Park S (2018) Intermittent fasting protects against the deterioration of cognitive function, energy metabolism and dyslipidemia in Alzheimer’s disease-induced estrogen deficient rats. Exp Biol Med (Maywood) 243(4):334–343. https://doi.org/10.1177/1535370217751610
Silva B, Mantha OL, Schor J, Pascual A, Placais PY, Pavlowsky A et al (2022) Glia fuel neurons with locally synthesized ketone bodies to sustain memory under starvation. Nat Metab 4(2):213–224. https://doi.org/10.1038/s42255-022-00528-6
Simpson IA, Chundu KR, Davies-Hill T, Honer WG, Davies P (1994) Decreased concentrations of GLUT1 and GLUT3 glucose transporters in the brains of patients with Alzheimer’s disease. Ann Neurol 35(5):546–551. https://doi.org/10.1002/ana.410350507
Soeters MR, Sauerwein HP, Faas L, Smeenge M, Duran M, Wanders RJ et al (2009) Effects of insulin on ketogenesis following fasting in lean and obese men. Obesity (silver Spring) 17(7):1326–1331. https://doi.org/10.1038/oby.2008.678
Sullivan PG, Rippy NA, Dorenbos K, Concepcion RC, Agarwal AK, Rho JM (2004) The ketogenic diet increases mitochondrial uncoupling protein levels and activity. Ann Neurol 55(4):576–580. https://doi.org/10.1002/ana.20062
Sutton EF, Beyl R, Early KS, Cefalu WT, Ravussin E, Peterson CM (2018) Early Time-Restricted Feeding Improves Insulin Sensitivity, Blood Pressure, and Oxidative Stress Even without Weight Loss in Men with Prediabetes. Cell Metab 27(6):1212-1221 e1213. https://doi.org/10.1016/j.cmet.2018.04.010
Sweeney MD, Kisler K, Montagne A, Toga AW, Zlokovic BV (2018) The role of brain vasculature in neurodegenerative disorders. Nat Neurosci 21(10):1318–1331. https://doi.org/10.1038/s41593-018-0234-x
Takahashi S (2020) Metabolic compartmentalization between astroglia and neurons in physiological and pathophysiological conditions of the neurovascular unit. Neuropathology 40(2):121–137. https://doi.org/10.1111/neup.12639
Takahashi S (2021) Neuroprotective Function of High Glycolytic Activity in Astrocytes: Common Roles in Stroke and Neurodegenerative Diseases. Int J Mol Sci 22(12):6568. https://doi.org/10.3390/ijms22126568
Takahashi S (2022) Metabolic Contribution and Cerebral Blood Flow Regulation by Astrocytes in the Neurovascular Unit. Cells 11(5):813. https://doi.org/10.3390/cells11050813
Tang BL (2019) Neuroprotection by glucose-6-phosphate dehydrogenase and the pentose phosphate pathway. J Cell Biochem 120(9):14285–14295. https://doi.org/10.1002/jcb.29004
Taylor JL, Pritchard H, Walsh KR, Strangward P, White C, Hill-Eubanks D et al (2022) Functionally linked potassium channel activity in cerebral endothelial and smooth muscle cells is compromised in Alzheimer’s disease. Proc Natl Acad Sci U S A 119(26):e2204581119. https://doi.org/10.1073/pnas.2204581119
Teong XT, Liu K, Vincent AD, Bensalem J, Liu B, Hattersley KJ et al (2023) Intermittent fasting plus early time-restricted eating versus calorie restriction and standard care in adults at risk of type 2 diabetes: a randomized controlled trial. Nat Med 29(4):963–972. https://doi.org/10.1038/s41591-023-02287-7
Thevenet J, De Marchi U, Domingo JS, Christinat N, Bultot L, Lefebvre G et al (2016) Medium-chain fatty acids inhibit mitochondrial metabolism in astrocytes promoting astrocyte-neuron lactate and ketone body shuttle systems. FASEB J 30(5):1913–1926. https://doi.org/10.1096/fj.201500182
Tosto G, Zimmerman ME, Carmichael OT, Brickman AM (2014) Predicting aggressive decline in mild cognitive impairment: the importance of white matter hyperintensities. JAMA Neurol 71(7):872–877. https://doi.org/10.1001/jamaneurol.2014.667
Trevisiol A, Kusch K, Steyer AM, Gregor I, Nardis C, Winkler U et al (2020) Structural myelin defects are associated with low axonal ATP levels but rapid recovery from energy deprivation in a mouse model of spastic paraplegia. PLoS Biol 18(11):e3000943. https://doi.org/10.1371/journal.pbio.3000943
Uemura E, Greenlee HW (2001) Amyloid beta-peptide inhibits neuronal glucose uptake by preventing exocytosis. Exp Neurol 170(2):270–276. https://doi.org/10.1006/exnr.2001.7719
Uemura E, Greenlee HW (2006) Insulin regulates neuronal glucose uptake by promoting translocation of glucose transporter GLUT3. Exp Neurol 198(1):48–53. https://doi.org/10.1016/j.expneurol.2005.10.035
Ulgherait M, Midoun AM, Park SJ, Gatto JA, Tener SJ, Siewert J et al (2021) Circadian autophagy drives iTRF-mediated longevity. Nature 598(7880):353–358. https://doi.org/10.1038/s41586-021-03934-0
Varady KA, Cienfuegos S, Ezpeleta M, Gabel K (2022) Clinical application of intermittent fasting for weight loss: progress and future directions. Nat Rev Endocrinol 18(5):309–321. https://doi.org/10.1038/s41574-022-00638-x
Versele R, Corsi M, Fuso A, Sevin E, Businaro R, Gosselet F et al (2020) Ketone Bodies Promote Amyloid-β(1–40) Clearance in a Human in Vitro Blood-Brain Barrier Model. Int J Mol Sci 21(3):934. https://doi.org/10.3390/ijms21030934
Vipin A, Ng KK, Ji F, Shim HY, Lim JKW, Pasternak O et al (2019) Amyloid burden accelerates white matter degradation in cognitively normal elderly individuals. Hum Brain Mapp 40(7):2065–2075. https://doi.org/10.1002/hbm.24507
Vlassenko AG, Vaishnavi SN, Couture L, Sacco D, Shannon BJ, Mach RH et al (2010) Spatial correlation between brain aerobic glycolysis and amyloid-beta (Abeta ) deposition. Proc Natl Acad Sci U S A 107(41):17763–17767. https://doi.org/10.1073/pnas.1010461107
Wang W, Zhao F, Ma X, Perry G, Zhu X (2020) Mitochondria dysfunction in the pathogenesis of Alzheimer’s disease: recent advances. Mol Neurodegener 15(1):30. https://doi.org/10.1186/s13024-020-00376-6
White H, Venkatesh B (2011) Clinical review: ketones and brain injury. Crit Care 15(2):219. https://doi.org/10.1186/cc10020
Wilhelmi de Toledo F, Grundler F, Sirtori CR, Ruscica M (2020) Unravelling the health effects of fasting: a long road from obesity treatment to healthy life span increase and improved cognition. Ann Med 52(5):147–161. https://doi.org/10.1080/07853890.2020.1770849
Wilkinson MJ, Manoogian ENC, Zadourian A, Lo H, Fakhouri S, Shoghi A et al (2020) Ten-Hour Time-Restricted Eating Reduces Weight, Blood Pressure, and Atherogenic Lipids in Patients with Metabolic Syndrome. Cell Metab 31(1):92-104 e105. https://doi.org/10.1016/j.cmet.2019.11.004
Wilson KA, Beck JN, Nelson CS, Hilsabeck TA, Promislow D, Brem RB et al (2020) GWAS for Lifespan and Decline in Climbing Ability in Flies upon Dietary Restriction Reveal decima as a Mediator of Insulin-like Peptide Production. Curr Biol 30(14):2749-2760.e2743. https://doi.org/10.1016/j.cub.2020.05.020
Winkler EA, Nishida Y, Sagare AP, Rege SV, Bell RD, Perlmutter D et al (2015) GLUT1 reductions exacerbate Alzheimer’s disease vasculo-neuronal dysfunction and degeneration. Nat Neurosci 18(4):521–530. https://doi.org/10.1038/nn.3966
Wlodarek D (2019) Role of Ketogenic Diets in Neurodegenerative Diseases (Alzheimer’s Disease and Parkinson’s Disease). Nutrients 11(1):169. https://doi.org/10.3390/nu11010169
Xiang X, Wind K, Wiedemann T, Blume T, Shi Y, Briel N et al (2021) Microglial activation states drive glucose uptake and FDG-PET alterations in neurodegenerative diseases. Sci Transl Med 13(615):eabe5640. https://doi.org/10.1126/scitranslmed.abe5640
Xie Z, Sun Y, Ye Y, Hu D, Zhang H, He Z et al (2022) Randomized controlled trial for time-restricted eating in healthy volunteers without obesity. Nat Commun 13(1):1003. https://doi.org/10.1038/s41467-022-28662-5
Xin W, Mironova Y, Shen H, Marino R, Waisman A, Lamers W et al (2019) Oligodendrocytes Support Neuronal Glutamatergic Transmission via Expression of Glutamine Synthetase. Cell Rep 27(8):2262-2271.e2265. https://doi.org/10.1016/j.celrep.2019.04.094
Yao J, Chen S, Mao Z, Cadenas E, Brinton RD (2011) 2-Deoxy-D-glucose treatment induces ketogenesis, sustains mitochondrial function, and reduces pathology in female mouse model of Alzheimer’s disease. PLoS One 6(7):e21788. https://doi.org/10.1371/journal.pone.0021788
Yao J, Hamilton RT, Cadenas E, Brinton RD (2010) Decline in mitochondrial bioenergetics and shift to ketogenic profile in brain during reproductive senescence. Biochim Biophys Acta 1800(10):1121–1126. https://doi.org/10.1016/j.bbagen.2010.06.002
Yao J, Irwin RW, Zhao L, Nilsen J, Hamilton RT, Brinton RD (2009) Mitochondrial bioenergetic deficit precedes Alzheimer’s pathology in female mouse model of Alzheimer’s disease. Proc Natl Acad Sci U S A 106(34):14670–14675. https://doi.org/10.1073/pnas.0903563106
Yin JX, Maalouf M, Han P, Zhao M, Gao M, Dharshaun T et al (2016) Ketones block amyloid entry and improve cognition in an Alzheimer’s model. Neurobiol Aging 39:25–37. https://doi.org/10.1016/j.neurobiolaging.2015.11.018
Yoshitake M, Maeshima E, Maeshima S, Osawa A, Ito N, Ueda I et al (2022) Olfactory identification ability in patients with mild cognitive impairment and Alzheimer’s disease. J Phys Ther Sci 34(11):710–714. https://doi.org/10.1589/jpts.34.710
You Y, Liu Z, Chen Y, Xu Y, Qin J, Guo S et al (2021) The prevalence of mild cognitive impairment in type 2 diabetes mellitus patients: a systematic review and meta-analysis. Acta Diabetol 58(6):671–685. https://doi.org/10.1007/s00592-020-01648-9
Zhang J, Zhan Z, Li X, Xing A, Jiang C, Chen Y et al (2017) Intermittent Fasting Protects against Alzheimer’s Disease Possible through Restoring Aquaporin-4 Polarity. Front Mol Neurosci 10:395. https://doi.org/10.3389/fnmol.2017.00395
Zhang S-s, Zhu L, Peng Y, Zhang L, Chao F-l, Jiang L, et al. (2022). Long-term running exercise improves cognitive function and promotes microglial glucose metabolism and morphological plasticity in the hippocampus of APP/PS1 mice. J Neuroinflammation, 19(1). https://doi.org/10.1186/s12974-022-02401-5.
Zhang X, Alshakhshir N, Zhao L (2021) Glycolytic Metabolism, Brain Resilience, and Alzheimer’s Disease. Front Neurosci 15:662242. https://doi.org/10.3389/fnins.2021.662242
Zhang X, Qin J, Zhao Y, Shi J, Lan R, Gan Y et al (2016) Long-term ketogenic diet contributes to glycemic control but promotes lipid accumulation and hepatic steatosis in type 2 diabetic mice. Nutr Res 36(4):349–358. https://doi.org/10.1016/j.nutres.2015.12.002
Zheng J, Xie Y, Ren L, Qi L, Wu L, Pan X et al (2021) GLP-1 improves the supportive ability of astrocytes to neurons by promoting aerobic glycolysis in Alzheimer’s disease. Mol Metab 47:101180. https://doi.org/10.1016/j.molmet.2021.101180
Zhou B, Zuo YX, Jiang RT (2019) Astrocyte morphology: Diversity, plasticity, and role in neurological diseases. CNS Neurosci Ther 25(6):665–673. https://doi.org/10.1111/cns.13123
Zott B, Simon MM, Hong W, Unger F, Chen-Engerer HJ, Frosch MP et al (2019) A vicious cycle of beta amyloid-dependent neuronal hyperactivation. Science 365(6453):559–565. https://doi.org/10.1126/science.aay0198
Funding
This work was supported by the Applied Basic Research Program of Shanxi Province of China, No. 20210302123306 (to ZJW); National Natural Science Foundation of China, No. 82171428 (to HYC); and Research Project supported by Shanxi Scholarship Council of China, No. 2022–115 (to HYC).
Author information
Authors and Affiliations
Contributions
Yu-Cai Ye: Wrote the manuscript. Zhao-Jun Wang: critically reviewed the manuscript. All authors read and approved the final manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors have no relevant financial or non-financial interests to disclose.
Ethics approval
Not applicable.
Consent to participate
Not applicable.
Consent to publish
Not applicable.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Ye, Y.C., Chai, SF., Li, XR. et al. Intermittent fasting and Alzheimer's disease—Targeting ketone bodies as a potential strategy for brain energy rescue. Metab Brain Dis 39, 129–146 (2024). https://doi.org/10.1007/s11011-023-01288-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11011-023-01288-2