Skip to main content

Advertisement

Log in

Metformin attenuates sevoflurane-induced neurogenesis damage and cognitive impairment: involvement of the Nrf2/G6PD pathway

  • Original Article
  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

Anesthetics such as sevoflurane are commonly administered to infants and children. However, the possible neurotoxicity caused by prolonged or repetitive exposure to it should be a concern. The neuroprotective effects of metformin are observed in many models of neurological disorders. In this study, we investigated whether metformin could reduce the developmental neurotoxicity induced by sevoflurane exposure in neonatal rats and the potential mechanism. Postnatal day 7 (PND 7) Sprague-Dawley rats and neural stem cells (NSCs) were treated with normal saline or metformin before sevoflurane exposure. The Morris water maze (MWM) was used to observe spatial memory and learning at PND 35–42. Immunofluorescence staining was used to detect neurogenesis in the subventricular zone (SVZ) of the lateral ventricle and the subgranular zone (SGZ) of the dentate gyrus at PND 14. MTT assays, immunofluorescence staining, and TUNEL staining were used to assess the viability, proliferation, differentiation, and apoptosis of NSCs. Western blotting and ELISA were used to assess the protein expression of cleaved caspase-3, nuclear factor erythroid 2-related factor 2 (Nrf2), and glucose-6-phosphate dehydrogenase (G6PD) pathway-related molecules. Exposure to sevoflurane resulted in late cognitive defects, impaired neurogenesis in both the SVZ and SGZ, reduced NSC viability and proliferation, increased NSC apoptosis, and decreased protein expression of G6PD in vitro. Metformin pretreatment attenuated sevoflurane-induced cognitive functional decline and neurogenesis inhibition. Metformin pretreatment also increased the protein expression of Nrf2 and G6PD. However, treatment with the Nrf2 inhibitor, ML385 or the G6PD inhibitor, dehydroepiandrosterone (DHEA) reversed the protective effect of metformin on sevoflurane-induced NSC damage in vitro. Our findings suggested that metformin could reduce sevoflurane-induced neurogenesis damage and neurocognitive defects in the developing rat brain by influencing the Nrf2/G6PD signaling pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The analyzed data sets generated during the present study are available from the corresponding author on reasonable request.

Abbreviations

PND 7:

Postnatal day 7

SD:

Sprague-Dawley

NSCs:

Neural stem cells

MWM:

Morris water maze

SVZ:

Subventricular zone

SGZ:

Subgranular zone

MTT:

3-(4,5)-Dimethylthiahiazo (-z-y1)-3,5-di- phenytetrazoliumromide

TUNEL:

Terminal dUTP nick-end labeling

ELISA:

Enzyme-Linked Immunosorbent Assay

Nrf2:

Nuclear factor erythroid 2-related factor 2

G6PD:

Glucose-6-phosphate dehydrogenase

DHEA:

Dehydroepiandrosterone

AMPK:

AMP-activated protein kinase

PPP:

Pentose phosphate pathway

NADPH:

Nicotinamide adenine dinucleotide phosphate

Ctrl:

Control

Sev:

Sevoflurane

Met:

Metformin

CO2 :

Carbon dioxide

O2 :

Oxygen

BrdU:

5-Bromo-2´-deoxyuridine

PBS:

Phosphate buffered saline

DMEM/F12:

Dulbecco’s Modified Eagle Medium/Nutrient Mixture F-12

EGF:

Epidermal growth factor

bFGF:

Basic fibroblast growth factor

FBS:

Fetal bovine serum

GSH:

Glutathione

HO-1:

Heme oxygenase-1

MCAO:

Middle cerebral artery occlusion

References

  • Almeida AS, Soares NL, Sequeira CO, Pereira SA, Sonnewald U, Vieira HLA (2018) Improvement of neuronal differentiation by carbon monoxide: role of pentose phosphate pathway. Redox Biol 17:338–347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Altman J, Das GD (1965) Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats. J Comp Neurol 124:319–335

    Article  CAS  PubMed  Google Scholar 

  • Boorman E, Killick R, Aarsland D, Zunszain P, Mann GE (2022) NRF2: an emerging role in neural stem cell regulation and neurogenesis. Free Radic Biol Med 193:437–446

    Article  CAS  PubMed  Google Scholar 

  • Boren J, Ramos-Montoya A, Bosch KS, Vreeling H, Jonker A, Centelles JJ, Cascante M, Frederiks WM (2006) In situ localization of transketolase activity in epithelial cells of different rat tissues and subcellularly in liver parenchymal cells. J Histochem Cytochem 54:191–199

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Shen WB, Yang P, Dong D, Sun W, Yang P (2018) High glucose inhibits neural stem cell differentiation through oxidative stress and endoplasmic reticulum stress. Stem Cells Dev 27:745–755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deshpande SS, Malik SC, Conforti P, Lin JD, Chu YH, Nath S, Greulich F, Dumbach MA, Uhlenhaut NH, Schachtrup C (2022) P75 neurotrophin receptor controls subventricular zone neural stem cell migration after stroke. Cell Tissue Res 387:415–431

    Article  CAS  PubMed  Google Scholar 

  • DiTacchio KA, Heinemann SF, Dziewczapolski G (2015) Metformin treatment alters memory function in a mouse model of Alzheimer’s disease. J Alzheimers Dis 44:43–48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Emsley JG, Mitchell BD, Kempermann G, Macklis JD (2005) Adult neurogenesis and repair of the adult CNS with neural progenitors, precursors, and stem cells. Prog Neurobiol 75:321–341

    Article  CAS  PubMed  Google Scholar 

  • Fang F, Xue Z, Cang J (2012) Sevoflurane exposure in 7-day-old rats affects neurogenesis, neurodegeneration and neurocognitive function. Neurosci Bull 28:499–508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farr SA, Roesler E, Niehoff ML, Roby DA, McKee A, Morley JE (2019) Metformin improves Learning and Memory in the SAMP8 mouse model of Alzheimer’s Disease. J Alzheimers Dis 68:1699–1710

    Article  CAS  PubMed  Google Scholar 

  • Gao J, Luo A, Yan J, Fang X, Tang X, Zhao Y, Li S (2018) Mdivi-1 pretreatment mitigates isoflurane-induced cognitive deficits in developmental rats. Am J Transl Res 10:432–443

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hu LH, Yang JH, Zhang DT, Zhang S, Wang L, Cai PC, Zheng JF, Huang JS (2007) The TKTL1 gene influences total transketolase activity and cell proliferation in human colon cancer LoVo cells. Anticancer Drugs 18:427–433

    Article  CAS  PubMed  Google Scholar 

  • Imayoshi I, Sakamoto M, Ohtsuka T, Takao K, Miyakawa T, Yamaguchi M, Mori K, Ikeda T, Itohara S, Kageyama R (2008) Roles of continuous neurogenesis in the structural and functional integrity of the adult forebrain. Nat Neurosci 11:1153–1161

    Article  CAS  PubMed  Google Scholar 

  • Jinpiao Z, Zongze Z, Qiuyue Y, Peng F, Qi Z, Yanlin W, Chang C (2020) Metformin attenuates sevoflurane-induced neurocognitive impairment through AMPK-ULK1-dependent autophagy in aged mice. Brain Res Bull 157:18–25

    Article  PubMed  Google Scholar 

  • Kahroba H, Ramezani B, Maadi H, Sadeghi MR, Jaberie H, Ramezani F (2021) The role of Nrf2 in neural stem/progenitors cells: from maintaining stemness and self-renewal to promoting differentiation capability and facilitating therapeutic application in neurodegenerative disease. Ageing Res Rev 65:101211

    Article  CAS  PubMed  Google Scholar 

  • Kong F, Xu L, He D, Zhang X, Lu H (2011) Effects of gestational isoflurane exposure on postnatal memory and learning in rats. Eur J Pharmacol 670:168–174

    Article  CAS  PubMed  Google Scholar 

  • Li H, Wang Y, Hu X, Ma B, Zhang H (2019) Thymosin beta 4 attenuates oxidative stress-induced injury of spinal cord-derived neural stem/progenitor cells through the TLR4/MyD88 pathway. Gene 707:136–142

    Article  CAS  PubMed  Google Scholar 

  • Li W, Lu P, Lu Y, Wei H, Niu X, Xu J, Wang K, Zhang H, Li R, Qiu Z, Wang N, Jia P, Zhang Y, Zhang S, Lu H, Chen X, Liu Y, Zhang P (2020) 17β-Estradiol protects neural Stem/Progenitor cells against Ketamine-Induced Injury through Estrogen receptor β pathway. Front Neurosci 14:576813

  • Lin EP, Lee JR, Lee CS, Deng M, Loepke AW (2017) Do anesthetics harm the developing human brain? An integrative analysis of animal and human studies. Neurotoxicol Teratol 60:117–128

    Article  CAS  PubMed  Google Scholar 

  • Liu B, Bai W, Ou G, Zhang J (2019) Cdh1-Mediated metabolic switch from Pentose phosphate pathway to Glycolysis contributes to Sevoflurane-Induced neuronal apoptosis in developing brain. ACS Chem Neurosci 10:2332–2344

    Article  CAS  PubMed  Google Scholar 

  • Liu C, Zhang D, Lu Z, Man J, Zhang Z, Fu X, Cui K, Wang J (2022) Metformin protects against pericyte apoptosis and promotes neurogenesis through suppressing JNK p38 MAPK signalling activation in ischemia/reperfusion injury. Neurosci Lett 783:136708

    Article  CAS  PubMed  Google Scholar 

  • Lu Y, Lei S, Wang N, Lu P, Li W, Zheng J, Giri PK, Lu H, Chen X, Zuo Z, Liu Y, Zhang P (2016) Protective effect of Minocycline against Ketamine-Induced Injury in neural stem cell: involvement of PI3K/Akt and Gsk-3 Beta pathway. Front Mol Neurosci 9:135

    Article  PubMed  PubMed Central  Google Scholar 

  • Mao FX, Li WJ, Chen HJ, Qian LH, Buzby JS (2013) White matter and SVZ serve as endogenous sources of glial progenitor cells for self-repair in neonatal rats with ischemic PVL. Brain Res 1535:38–51

    Article  CAS  PubMed  Google Scholar 

  • Ming GL, Song H (2005) Adult neurogenesis in the mammalian central nervous system. Annu Rev Neurosci 28:223–250

    Article  CAS  PubMed  Google Scholar 

  • Ming GL, Song H (2011) Adult neurogenesis in the mammalian brain: significant answers and significant questions. Neuron 70:687–702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muramatsu R, Ikegaya Y, Matsuki N, Koyama R (2007) Neonatally born granule cells numerically dominate adult mice dentate gyrus. Neuroscience 148:593–598

    Article  CAS  PubMed  Google Scholar 

  • Neag MA, Mitre AO, Catinean A, Mitre CI (2020) An overview on the Mechanisms of Neuroprotection and neurotoxicity of isoflurane and sevoflurane in experimental studies. Brain Res Bull 165:281–289

    Article  CAS  PubMed  Google Scholar 

  • Nie Y, Li S, Yan T, Ma Y, Ni C, Wang H, Zheng H (2020) Propofol attenuates Isoflurane-Induced neurotoxicity and cognitive impairment in fetal and offspring mice. Anesth Analg 131:1616–1625

    Article  CAS  PubMed  Google Scholar 

  • Ortega JA, Memi F, Radonjic N, Filipovic R, Bagasrawala I, Zecevic N, Jakovcevski I (2018) The Subventricular Zone: A Key Player in Human Neocortical Development. Neuroscientist 24:156–70

  • Pontén E, Viberg H, Gordh T, Eriksson P, Fredriksson A (2012) Clonidine abolishes the adverse effects on apoptosis and behaviour after neonatal ketamine exposure in mice. Acta Anaesthesiol Scand 56:1058–1065

    Article  PubMed  Google Scholar 

  • Ramage TM, Chang FL, Shih J, Alvi RS, Quitoriano GR, Rau V, Barbour KC, Elphick SA, Kong CL, Tantoco NK, Ben-Tzur D, Kang H, McCreery MS, Huang P, Park A, Uy J, Rossi MJ, Zhao C, Di Geronimo RT, Stratmann G, Sall JW (2013) Distinct long-term neurocognitive outcomes after equipotent sevoflurane or isoflurane anaesthesia in immature rats. Br J Anaesth 110(Suppl 1):i39-46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen X, Dong Y, Xu Z, Wang H, Miao C, Soriano SG, Sun D, Baxter MG, Zhang Y, Xie Z (2013) Selective anesthesia-induced neuroinflammation in developing mouse brain and cognitive impairment. Anesthesiology 118:502–515

    Article  CAS  PubMed  Google Scholar 

  • Shi Y, Zhao X, Hsieh J, Wichterle H, Impey S, Banerjee S, Neveu P, Kosik KS (2010) MicroRNA regulation of neural stem cells and neurogenesis. J Neurosci 30:14931–6

  • Shors TJ, Townsend DA, Zhao M, Kozorovitskiy Y, Gould E (2002) Neurogenesis may relate to some but not all types of hippocampal-dependent learning. Hippocampus 12:578–584

    Article  PubMed  PubMed Central  Google Scholar 

  • Slikker W Jr, Zou X, Hotchkiss CE, Divine RL, Sadovova N, Twaddle NC, Doerge DR, Scallet AC, Patterson TA, Hanig JP, Paule MG, Wang C (2007) Ketamine-induced neuronal cell death in the perinatal rhesus monkey. Toxicol Sci 98:145–158

    Article  CAS  PubMed  Google Scholar 

  • Snyder JS, Hong NS, McDonald RJ, Wojtowicz JM (2005) A role for adult neurogenesis in spatial long-term memory. Neuroscience 130:843–52

  • Song R, Ling X, Peng M, Xue Z, Cang J, Fang F (2017) Maternal sevoflurane exposure causes abnormal development of fetal prefrontal cortex and induces cognitive dysfunction in offspring. Stem Cells Int 2017:6158468

  • Song R, Wang R, Shen Z, Chu H (2022) Sevoflurane diminishes neurogenesis and promotes ferroptosis in embryonic prefrontal cortex via inhibiting nuclear factor-erythroid 2-related factor 2 expression. Neuroreport 33:252–58

  • Sritawan N, Prajit R, Chaisawang P, Sirichoat A, Pannangrong W, Wigmore P, Welbat JU (2020) Metformin alleviates memory and hippocampal neurogenesis decline induced by methotrexate chemotherapy in a rat model. Biomed Pharmacother 131:110651

    Article  CAS  PubMed  Google Scholar 

  • Sun LS, Li G, Dimaggio C, Byrne M, Rauh V, Brooks-Gunn J, Kakavouli A, Wood A (2008) Anesthesia and neurodevelopment in children: time for an answer? Anesthesiology 109:757–61

  • Tchouagué M, Grondin M, Glory A, Averill-Bates D (2019) Heat shock induces the cellular antioxidant defenses peroxiredoxin, glutathione and glucose 6-phosphate dehydrogenase through Nrf2. Chem Biol Interact 310:108717

    Article  PubMed  Google Scholar 

  • Tokuda K, Baron B, Yamashiro C, Kuramitsu Y, Kitagawa T, Kobayashi M, Sonoda KH, Kimura K (2019) Up-regulation of the pentose phosphate pathway and HIF-1α expression during neural progenitor cell induction following glutamate treatment in rat ex vivo retina. Cell Biol Int 44:137–144

    Article  PubMed  Google Scholar 

  • Vutskits L, Davidson A (2017) Update on developmental anesthesia neurotoxicity. Curr Opin Anaesthesiol 30:337–342

    Article  PubMed  Google Scholar 

  • Walters JL, Paule MG (2017) Review of preclinical studies on pediatric general anesthesia-induced developmental neurotoxicity. Neurotoxicol Teratol 60:2–23

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Xiao B, Han F, Shi Y (2017) Metformin alleviated the neuronal oxidative stress in Hippocampus of rats under single prolonged stress. J Mol Neurosci 63:28–35

    Article  CAS  PubMed  Google Scholar 

  • Xia Y, Sun X, Luo Y, Stary CM (2018) Ferroptosis contributes to isoflurane neurotoxicity. Front Mol Neurosci 11:486

    Article  CAS  PubMed  Google Scholar 

  • Xu Z, You Y, Tang Q, Zeng H, Zhao T, Wang J, Li F (2022) Echinatin mitigates sevoflurane-induced hippocampal neurotoxicity and cognitive deficits through mitigation of iron overload and oxidative stress. Pharm Biol 60:1915–1924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan YH, Li SH, Li HY, Lin Y, Yang JX (2017) Osthole protects bone marrow-derived neural stem cells from oxidative damage through PI3K/Akt-1 pathway. Neurochem Res 42:398–405

    Article  CAS  PubMed  Google Scholar 

  • Yang HC, Wu YH, Liu HY, Stern A, Chiu DT (2016) What has passed is prolog: new cellular and physiological roles of G6PD. Free Radic Res 50:1047–1064

    Article  CAS  PubMed  Google Scholar 

  • Yu J, Wang WN, Matei N, Li X, Pang JW, Mo J, Chen SP, Tang JP, Yan M, Zhang JH (2020) Ezetimibe attenuates oxidative stress and neuroinflammation via the AMPK/Nrf2/TXNIP pathway after MCAO in rats. Oxid Med Cell Longev 2020:4717258

    Article  PubMed  PubMed Central  Google Scholar 

  • Yue T, Shanbin G, Ling M, Yuan W, Ying X, Ping Z (2015) Sevoflurane aggregates cognitive dysfunction and hippocampal oxidative stress induced by β-amyloid in rats. Life Sci 143:194–201

    Article  CAS  PubMed  Google Scholar 

  • Yufune S, Satoh Y, Akai R, Yoshinaga Y, Kobayashi Y, Endo S, Kazama T (2016) Suppression of ERK phosphorylation through oxidative stress is involved in the mechanism underlying sevoflurane-induced toxicity in the developing brain. Sci Rep 6:21859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang HS, Zhang ZG, Du GY, Sun HL, Liu HY, Zhou Z, Gou XM, Wu XH, Yu XY, Huang YH (2019) Nrf2 promotes breast cancer cell migration via up-regulation of G6PD/HIF-1α/Notch1 axis. J Cell Mol Med 23:3451–3463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Zhao Y, Ran Y, Guo J, Cui H, Liu S (2020) Notoginsenoside R1 attenuates sevoflurane-induced neurotoxicity. Transl Neurosci 11:215–226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Kuai S, Zhang Y, Xue H, Wu Z, Zhao P (2022a) Maternal sevoflurane exposure affects neural stem cell differentiation in offspring rats through NRF2 signaling. Neurotoxicology 93:348–54

  • Zhang Y, Li H, Zhang X, Wang S, Wang D, Wang J, Tong T, Zhang Z, Yang Q, Dong H (2020b) Estrogen receptor-a in medial preoptic area contributes to sex difference of mice in response to sevoflurane anesthesia. Neurosci Bull 38:703–719

  • Zhao C, Deng W, Gage FH (2008) Mechanisms and functional implications of adult neurogenesis. Cell 132:645–60

  • Zuo Y, Chang Y, Thirupathi A, Zhou C, Shi Z (2021) Prenatal sevoflurane exposure: Effects of iron metabolic dysfunction on offspring cognition and potential mechanism. Int J Dev Neurosci 81:1–9

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (2019YFE0115300), the National Natural Science Foundation of China (82071482), and the Key Research and Development Program of Shaanxi Province (2021KWZ-27).

Funding

This work was supported by the National Key Research and Development Program of China (2019YFE0115300), the National Natural Science Foundation of China (82071482), and the Key Research and Development Program of Shaanxi Province (2021KWZ-27).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Pei Fan and Yuying Lu. The first draft of the manuscript was written by Pei Fan and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Pengbo Zhang.

Ethics declarations

Competing interests

The authors have no relevant financial interests to disclose.

Ethics approval

All applicable international and national guidelines for the care and use of animals were followed. All procedures performed in the study involving animals were approved by the Xi’an Jiaotong University Animal Care Committee (2020-14), in accordance with the ethical standards of Xi’an Jiaotong University.

Consent to participate

Informed consent was obtained from all individual participants included in the study.

Consent to publish

All authors of the study consent to publish this paper.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, P., Lu, Y., Wei, H. et al. Metformin attenuates sevoflurane-induced neurogenesis damage and cognitive impairment: involvement of the Nrf2/G6PD pathway. Metab Brain Dis 38, 2037–2053 (2023). https://doi.org/10.1007/s11011-023-01218-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11011-023-01218-2

Keywords

Navigation