Skip to main content

Advertisement

Log in

Circular RNA circ_0000741/miR-379-5p/TRIM14 signaling axis promotes HDAC inhibitor (SAHA) tolerance in glioblastoma

  • Original Article
  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

Background

Histone deacetylase (HDAC) inhibitor-based therapeutic drug tolerance is a major obstacle to glioblastoma (GBM) treatment. Meanwhile, non-coding RNAs have been reported to be involved in the regulation of HDAC inhibitor (SAHA) tolerance in some human tumors. However, the relationship between circular RNAs (circRNAs) and SAHA tolerance is still unknown. Herein, we explored the role and mechanism of circ_0000741 on SAHA tolerance in GBM.

Methods

Circ_0000741, microRNA-379-5p (miR-379-5p), and tripartite motif-containing 14 (TRIM14) level were detected by real-time quantitative polymerase chain reaction (RT-qPCR). (4-5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT), 5-ethynyl-2’-deoxyuridine (EdU), Colony formation, flow cytometry, and transwell assays were used to detect SAHA tolerance, proliferation, apoptosis, and invasion in SAHA-tolerant GBM cells. Western blot analysis of protein levels of E-cadherin, N-cadherin, and TRIM14. After Starbase2.0 analysis, the binding between miR-379-5p and circ_0000741 or TRIM14 was proved using a dual-luciferase reporter. The role of circ_0000741 on drug tolerance was assessed using a xenograft tumor model in vivo.

Results

Circ_0000741 and TRIM14 were upregulated, and miR-379-5p was reduced in SAHA-tolerant GBM cells. Furthermore, circ_0000741 absence reduced SAHA tolerance, suppressed proliferation, invasion, and induced apoptosis in SAHA-tolerant GBM cells. Mechanistically, circ_0000741 might affect TRIM14 content via sponging miR-379-5p. Besides, circ_0000741 silencing enhanced the drug sensitivity of GBM in vivo.

Conclusion

Circ_0000741 might accelerate SAHA tolerance by regulating the miR-379-5p/TRIM14 axis, which provided a promising therapeutic target for GBM treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The datasets used and analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Abbas MN, Kausar S, Cui H (2020) Therapeutic potential of natural products in glioblastoma treatment: targeting key glioblastoma signaling pathways and epigenetic alterations. Clin Transl Oncol 22(7):963–977

    Article  CAS  PubMed  Google Scholar 

  • Adams CM, Eischen CM (2016) Histone deacetylase inhibition reveals a tumor-suppressive function of MYC-regulated miRNA in breast and lung carcinoma. Cell Death Differ 23(8):1312–1321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barrett SP, Salzman J (2016) Circular RNAs: analysis, expression and potential functions. Development 143(11):1838–1847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bartel DP (2018) Metazoan MicroRNAs Cell 173(1):20–51

    CAS  PubMed  Google Scholar 

  • Belousova EA, Filipenko ML, Kushlinskii NE (2018) Circular RNA: New Regulatory Molecules. Bull Exp Biol Med 164(6):803–815

    Article  CAS  PubMed  Google Scholar 

  • Bhat AA, Younes SN, Raza SS, Zarif L, Nisar S, Ahmed I et al (2020) Role of non-coding RNA networks in leukemia progression, metastasis and drug resistance. Mol Cancer 19(1):57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bian X, Liang Z, Feng A, Salgado E, Shim H (2018) HDAC inhibitor suppresses proliferation and invasion of breast cancer cells through regulation of miR-200c targeting CRKL. Biochem Pharmacol 147:30–37

    Article  CAS  PubMed  Google Scholar 

  • Campos B, Olsen LR, Urup T, Poulsen HS (2016) A comprehensive profile of recurrent glioblastoma. Oncogene 35(45):5819–5825

    Article  CAS  PubMed  Google Scholar 

  • Chen B, Chen C, Zhang Y, Xu J (2021) Recent incidence trend of elderly patients with glioblastoma in the United States, 2000–2017. BMC Cancer 21(1):54

    Article  PubMed  PubMed Central  Google Scholar 

  • Deng Y, Zhu H, Xiao L, Liu C, Meng X (2020) Circ_0005198 enhances temozolomide resistance of glioma cells through miR-198/TRIM14 axis. Aging 13(2):2198–2211

    Article  PubMed  PubMed Central  Google Scholar 

  • Feng S, Cai X, Li Y, Jian X, Zhang L, Li B (2019) Tripartite motif-containing 14 (TRIM14) promotes epithelial-mesenchymal transition via ZEB2 in glioblastoma cells. J Exp Clin Cancer Res 38(1):57

    Article  PubMed  PubMed Central  Google Scholar 

  • Ghasabi M, Mansoori B, Mohammadi A, Duijf PH, Shomali N, Shirafkan N et al (2019) MicroRNAs in cancer drug resistance: basic evidence and clinical applications. J Cell Physiol 234(3):2152–2168

    Article  CAS  PubMed  Google Scholar 

  • Glenfield C, McLysaght A (2018) Pseudogenes provide evolutionary evidence for the competitive endogenous RNA hypothesis. Mol Biol Evol 35(12):2886–2899

    CAS  PubMed  PubMed Central  Google Scholar 

  • Goodall GJ, Wickramasinghe VO (2021) RNA in cancer. Nat Rev Cancer 21(1):22–36

    Article  CAS  PubMed  Google Scholar 

  • Grillone K, Riillo C, Scionti F, Rocca R, Tradigo G, Guzzi PH et al (2020) Non-coding RNAs in cancer: platforms and strategies for investigating the genomic “dark matter”. J Exp Clin Cancer Res 39(1):117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo X, Piao H (2021) Research Progress of circRNAs in Glioblastoma. Front Cell Dev Biol 9:791892

    Article  PubMed  PubMed Central  Google Scholar 

  • Gusyatiner O, Hegi ME (2018) Glioma epigenetics: from subclassification to novel treatment options. Semin Cancer Biol 51:50–58

    Article  CAS  PubMed  Google Scholar 

  • Hallal S, Mallawaaratchy DM, Wei H, Ebrahimkhani S, Stringer BW, Day BW et al (2019) Extracellular vesicles released by Glioblastoma cells stimulate normal astrocytes to acquire a tumor-supportive phenotype Via p53 and MYC signaling pathways. Mol Neurobiol 56(6):4566–4581

    Article  CAS  PubMed  Google Scholar 

  • Hansen TB, Jensen TI, Clausen BH, Bramsen JB, Finsen B, Damgaard CK et al (2013) Natural RNA circles function as efficient microRNA sponges. Nature 495(7441):384–388

    Article  CAS  PubMed  Google Scholar 

  • He C, Wang X, Du M, Dong Y (2021) LncRNA MSC-AS1 Promotes Colorectal Cancer Progression by Regulating miR-325/TRIM14 Axis. J Oncol 2021:9954214

  • Hu G, Pen W, Wang M (2019) TRIM14 promotes breast Cancer cell proliferation by inhibiting apoptosis. Oncol Res 27(4):439–447

    Article  PubMed  PubMed Central  Google Scholar 

  • Jiang Y, Zhao J, Xu J, Zhang H, Zhou J, Li H et al (2022) Glioblastoma-associated microglia-derived exosomal circKIF18A promotes angiogenesis by targeting FOXC2. Oncogene 41(26):3461–3473

    Article  CAS  PubMed  Google Scholar 

  • Jones PA, Issa JP, Baylin S (2016) Targeting the cancer epigenome for therapy. Nat Rev Genet 17(10):630–641

    Article  CAS  PubMed  Google Scholar 

  • Khathayer F, Taylor MA, Ray SK (2020) Synergism of 4HPR and SAHA increases anti-tumor actions in glioblastoma cells. Apoptosis 25(3–4):217–232

    Article  PubMed  Google Scholar 

  • Kristensen LS, Andersen MS, Stagsted LVW, Ebbesen KK, Hansen TB, Kjems J (2019) The biogenesis, biology and characterization of circular RNAs. Nat Rev Genet 20(11):675–691

    Article  CAS  PubMed  Google Scholar 

  • Kristensen LS, Jakobsen T, Hager H, Kjems J (2022) The emerging roles of circRNAs in cancer and oncology. Nat Rev Clin Oncol 19(3):188–206

    Article  CAS  PubMed  Google Scholar 

  • Kunadis E, Lakiotaki E, Korkolopoulou P, Piperi C (2021) Targeting post-translational histone modifying enzymes in glioblastoma. Pharmacol Ther 220:107721

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Seto E (2016) HDACs and HDAC inhibitors in Cancer Development and Therapy. Cold Spring Harb Perspect Med 6(10):a026831

    Article  PubMed  PubMed Central  Google Scholar 

  • Li X, Yang L, Chen LL (2018) The Biogenesis, Functions, and Challenges of Circular RNAs. Mol Cell 71(3):428–442

    Article  CAS  PubMed  Google Scholar 

  • Li S, Teng S, Xu J, Su G, Zhang Y, Zhao J et al (2019) Microarray is an efficient tool for circRNA profiling. Brief Bioinform 20(4):1420–1433

    Article  CAS  PubMed  Google Scholar 

  • Li X, Wang N, Leng H, Yuan H, Xu L (2022) Hsa_circ_0043949 reinforces temozolomide resistance via upregulating oncogene ITGA1 axis in glioblastoma. Metab Brain Dis 37(8):2979–2993

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Jimenez E, Rojas AM, Andres-Leon E (2018) RNA sequencing and prediction tools for circular RNAs analysis. Adv Exp Med Biol 1087:17–33

    Article  CAS  PubMed  Google Scholar 

  • Lv X, Wang M, Qiang J, Guo S (2019) Circular RNA circ-PITX1 promotes the progression of glioblastoma by acting as a competing endogenous RNA to regulate miR-379-5p/MAP3K2 axis. Eur J Pharmacol 863:172643

    Article  CAS  PubMed  Google Scholar 

  • Ostrom QT, Gittleman H, Farah P, Ondracek A, Chen Y, Wolinsky Y et al (2013) CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2006–2010. Neuro Oncol 15(Suppl 2):ii1–56

    Article  PubMed  PubMed Central  Google Scholar 

  • Panda AC (2018) Circular RNAs act as miRNA sponges. Adv Exp Med Biol 1087:67–79

    Article  CAS  PubMed  Google Scholar 

  • Pastorino O, Gentile MT, Mancini A, Del Gaudio N, Di Costanzo A, Bajetto A et al (2019) Histone deacetylase inhibitors impair vasculogenic mimicry from Glioblastoma cells. Cancers (Basel) 11(6):747

    Article  CAS  PubMed  Google Scholar 

  • Rajaratnam V, Islam MM, Yang M, Slaby R, Ramirez HM, Mirza SP (2020) Glioblastoma: pathogenesis and current status of Chemotherapy and other Novel treatments. Cancers (Basel) 12(4):937

    Article  CAS  PubMed  Google Scholar 

  • Ramaiah MJ, Tangutur AD, Manyam RR (2021) Epigenetic modulation and understanding of HDAC inhibitors in cancer therapy. Life Sci 277:119504

    Article  CAS  PubMed  Google Scholar 

  • Rasmussen RD, Gajjar MK, Jensen KE, Hamerlik P (2016) Enhanced efficacy of combined HDAC and PARP targeting in glioblastoma. Mol Oncol 10(5):751–763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh D, Assaraf YG, Gacche RN (2022) Long non-coding RNA mediated drug resistance in breast cancer. Drug Resist Updat 63:100851

    Article  CAS  PubMed  Google Scholar 

  • Tan Z, Song L, Wu W, Zhou Y, Zhu J, Wu G et al (2018) TRIM14 promotes chemoresistance in gliomas by activating Wnt/beta-catenin signaling via stabilizing Dvl2. Oncogene 37(40):5403–5415

    Article  CAS  PubMed  Google Scholar 

  • Toden S, Zumwalt TJ, Goel A (2021) Non-coding RNAs and potential therapeutic targeting in cancer. Biochim Biophys Acta Rev Cancer 1875(1):188491

    Article  CAS  PubMed  Google Scholar 

  • Touat M, Idbaih A, Sanson M, Ligon KL (2017) Glioblastoma targeted therapy: updated approaches from recent biological insights. Ann Oncol 28(7):1457–1472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uddin MS, Mamun AA, Alghamdi BS, Tewari D, Jeandet P, Sarwar MS et al (2022) Epigenetics of glioblastoma multiforme: from molecular mechanisms to therapeutic approaches. Semin Cancer Biol 83:100–120

    Article  CAS  PubMed  Google Scholar 

  • Wang C, Liu WR, Tan S, Zhou JK, Xu X, Ming Y et al (2022) Characterization of distinct circular RNA signatures in solid tumors. Mol Cancer 21(1):63

    Article  PubMed  PubMed Central  Google Scholar 

  • Wei JW, Huang K, Yang C, Kang CS (2017) Non-coding RNAs as regulators in epigenetics (review). Oncol Rep 37(1):3–9

    Article  PubMed  Google Scholar 

  • West AC, Johnstone RW (2014) New and emerging HDAC inhibitors for cancer treatment. J Clin Invest 124(1):30–39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wirsching HG, Galanis E, Weller M (2016) Glioblastoma. Handb Clin Neurol 134:381–397

    Article  PubMed  Google Scholar 

  • Xue F, Cheng Y, Xu L, Tian C, Jiao H, Wang R et al (2020) LncRNA NEAT1/miR-129/Bcl-2 signaling axis contributes to HDAC inhibitor tolerance in nasopharyngeal cancer. Aging 12(14):14174–14188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamamoto K, Seike M, Takeuchi S, Soeno C, Miyanaga A, Noro R et al (2014) MiR-379/411 cluster regulates IL-18 and contributes to drug resistance in malignant pleural mesothelioma. Oncol Rep 32(6):2365–2372

    Article  CAS  PubMed  Google Scholar 

  • Zhang HD, Jiang LH, Sun DW, Hou JC, Ji ZL (2018a) CircRNA: a novel type of biomarker for cancer. Breast Cancer 25(1):1–7

    Article  PubMed  Google Scholar 

  • Zhang Z, Yang T, Xiao J (2018b) Circular RNAs: promising biomarkers for Human Diseases. EBioMedicine 34:267–274

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang C, Zhou Y, Gao Y, Zhu Z, Zeng X, Liang W et al (2022) Radiated glioblastoma cell-derived exosomal circ_0012381 induce M2 polarization of microglia to promote the growth of glioblastoma by CCL2/CCR2 axis. J Transl Med 20(1):388

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

None.

Funding

This study was supported by Basic Research project of Knowledge Innovation Plan of Wuhan Science and Technology Bureau (Grant Agreement number: 2022020801010549) and The Seventh Batch of Wuhan Young and Middle-aged Medical Backbone Talents Project.

Author information

Authors and Affiliations

Authors

Contributions

J.Y. designed the research study. L.M. and Y.W. performed the research. Q.T. collected and analyzed the data. Y.Z. contributed essential reagents or tools. X.D. operated the software and wrote the manuscript. All authors have read and approved the final manuscript.

Corresponding author

Correspondence to Ji Yang.

Ethics declarations

Ethics approval and consent to participate

This project was approved by the Ethics Committee of Wuhan Third Hospital.

Approval to perform this animal experiment was acquired from the Wuhan Third Hospital.

Consent for publication

Not applicable.

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, L., Wang, Y., Tu, Q. et al. Circular RNA circ_0000741/miR-379-5p/TRIM14 signaling axis promotes HDAC inhibitor (SAHA) tolerance in glioblastoma. Metab Brain Dis 38, 1351–1364 (2023). https://doi.org/10.1007/s11011-023-01184-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11011-023-01184-9

Keywords

Navigation