Skip to main content

Advertisement

Log in

Royal jelly improves learning and memory deficits in an amyloid β-induced model of Alzheimer's disease in male rats: Involvement of oxidative stress

  • Original Article
  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

Alzheimer’s disease (AD) as the commonest type of dementia is associated with the cognitive function failure. Oxidative stress performs an essential role in the progression of AD. Royal jelly (RJ) is a natural product of bees with antioxidant and anti-inflammatory properties. The present research aimed to investigate the possible protective effect of RJ on learning and memory in a rat model of Aβ-induced AD. Forty male adult Wistar rats were equally distributed into five groups: control, sham-operated, Aβ (receiving intracerebroventricular (ICV) injection of amyloid beta (Aβ1–40)), Aβ + RJ 50 mg/kg, and Aβ + RJ 100 mg/kg. RJ was administered daily post-surgery by oral gavage for four weeks. Behavioral learning and memory were examined using the novel object recognition (NOR) and passive avoidance learning (PAL) tests. Also, oxidative stress markers, such as malondialdehyde (MDA), total oxidant status (TOS) and total antioxidant capacity (TAC), were assessed in the hippocampus. Aβ reduced step-through latency (STLr) and increased time spent in the dark compartment (TDC) in the PAL task and also decreased discrimination index in the NOR test. Administration of RJ ameliorated the Aβ-related memory impairment in both NOR and PAL tasks. Aβ decreased TAC and increased MDA and TOS levels in the hippocampus, whereas RJ administration reversed these Aβ-induced alterations. Our results indicated that RJ has the potential to ameliorate learning and memory impairment in the Aβ model of AD via attenuating oxidative stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author on reasonable request.

Code availability

Not applicable.

References

  • Abramov AY, Canevari L, Duchen MR (2004) β-amyloid peptides induce mitochondrial dysfunction and oxidative stress in astrocytes and death of neurons through activation of NADPH oxidase. J Neurosci 24(2):565–575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahmad S, Campos MG, Fratini F, Altaye SZ, Li J (2020) New insights into the biological and pharmaceutical properties of royal jelly. Int J Mol Sci 21(2):382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahmadi N, Safari S, Mirazi N, Karimi SA, Komaki A (2021) Effects of vanillic acid on Aβ1-40-induced oxidative stress and learning and memory deficit in male rats. Brain Res Bull 170:264–273

    Article  CAS  PubMed  Google Scholar 

  • Ali AM, Hendawy AO (2019) Royal jelly acid, 10-hydroxy-trans-2-decenoic acid, for psychiatric and neurological disorders: how helpful could it be?! Edelweiss J Food Sci Technol 1(1):1–4

    Google Scholar 

  • Ali AM, Kunugi H (2020) Apitherapy for age-related skeletal muscle dysfunction (sarcopenia): a review on the effects of royal jelly, propolis, and bee pollen. Foods 9(10):1362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ali AM, Kunugi H (2020) "Royal Jelly as an Intelligent Anti-Aging Agent—A focus on cognitive aging and Alzheimer’s Disease. Rev " Antioxid 9(10):937

    Article  CAS  Google Scholar 

  • Ali AM, Kunugi H (2021) The effects of royal jelly acid, 10-hydroxy-trans-2-decenoic acid, on neuroinflammation and oxidative stress in astrocytes stimulated with lipopolysaccharide and hydrogen peroxide. Immuno 1(3):212–222

  • Allen G, Barnard H, McColl R, Hester AL, Fields JA, Weiner MF, Ringe WK, Lipton AM, Brooker M, McDonald E (2007) Reduced hippocampal functional connectivity in Alzheimer disease. Arch Neurol 64(10):1482–1487

    Article  PubMed  Google Scholar 

  • Almasi A, Zarei M, Raoufi S, Sarihi A, Salehi I, Komaki A, Hashemi-Firouzi N, Shahidi S (2018) Influence of hippocampal GABAB receptor inhibition on memory in rats with acute β-amyloid toxicity. Metab Brain Dis 33(6):1859–1867

    Article  CAS  PubMed  Google Scholar 

  • Almeer RS, Kassab RB, AlBasher GI, Alarifi S, Alkahtani S, Ali D, Abdel Moneim AE (2019) Royal jelly mitigates cadmium-induced neuronal damage in mouse cortex. Mol Biol Rep 46(1):119–131

    Article  CAS  PubMed  Google Scholar 

  • Association As, Thies W, Bleiler L (2013) 2013 Alzheimer’s disease facts and figures. Alzheimer’s Dement 9(2):208–245

    Article  Google Scholar 

  • Balkanska R (2018) Determination of trans-10-hydroxy-2-decenoic acid in royal jelly by high performance liquid chromatography after different bee feeding. Int J Curr Microbiol Appl Sci 7(04):3738–3743

    Article  Google Scholar 

  • Benzie IF, Strain JJ (1996) The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal Biochem 239(1):70–76

    Article  CAS  PubMed  Google Scholar 

  • Bertoni-Freddari C, Fattoretti P, Casoli T, Di Stefano G, Balietti M, Giorgetti B, Perretta G (2009) "Neuronal apoptosis in Alzheimer’s Disease: the role of Age‐Related. Mitochondrial Metabolic Competence " Annals of the New York Academy of Sciences 1171(1):18–24

    Article  CAS  PubMed  Google Scholar 

  • Bonda DJ, Wang X, Perry G, Nunomura A, Tabaton M, Zhu X, Smith MA (2010) Oxidative stress in Alzheimer disease: a possibility for prevention. Neuropharmacology 59(4–5):290–294

    Article  CAS  PubMed  Google Scholar 

  • Butterfield DA, Castegna A, Lauderback CM, Drake J (2002) Evidence that amyloid beta-peptide-induced lipid peroxidation and its sequelae in Alzheimer’s disease brain contribute to neuronal death. Neurobiol Aging 23(5):655–664

    Article  PubMed  Google Scholar 

  • Butterfield DA, Perluigi M, Sultana R (2006) Oxidative stress in Alzheimer’s disease brain: new insights from redox proteomics. Eur J Pharmacol 545(1):39–50

    Article  CAS  PubMed  Google Scholar 

  • Chen D, Liu F, Wan J-B, Lai C-Q, Shen L-r (2017a) Effect of major royal jelly proteins on spatial memory in aged rats: Metabolomics analysis in urine. J Agric Food Chem 65(15):3151–3159

    Article  CAS  PubMed  Google Scholar 

  • Chen H-y, Xu Q-l, Guo A-C, Wang Q (2017b) Royal Jelly decrease the impairment of learning and memory in the APP/PS1 transgenic mice model. 中国神经科学学会第十二届全国学术会议论文集

  • Dalfardi M, Taghavi MM, Shariati Kohbanani M, Taghipour Z, Nosratabadi R, Jalili C, Salahshoor MR, Kaeidi A, Shabanizadeh A (2019) Protective and modulatory effects of royal jelly used against the induced changes in silver nanoparticles on the hippocampus of male rats. Nanomed J 6(2):136–141

    CAS  Google Scholar 

  • Deibel S, Weishaupt N, Regis A, Hong N, Keeley R, Balog R, Bye C, Himmler S, Whitehead S, McDonald R (2016) Subtle learning and memory impairment in an idiopathic rat model of Alzheimer’s disease utilizing cholinergic depletions and β-amyloid. Brain Res 1646:12–24

    Article  CAS  PubMed  Google Scholar 

  • Dos Santos Picanco L, Ozela P, de Fatima de Bri-to, Brito M, Pinheiro AA, Padilha EC, Braga FS et al (2018) Alzheimer’s Disease: A review from the pathophysiology to diagnosis. New perspectives for pharmacological treatment. Curr Med Chem 25(26):3141–3159

  • e Silva TG, d S, da Silva JRM, da Silva Alves A, Britto LRG, Xavier GF, Sandoval MRL (2020) Oral treatment with royal jelly improves memory and presents neuroprotective effects on icv-STZ rat model of sporadic Alzheimer’s disease. Heliyon 6(2):e03281

    Article  PubMed  PubMed Central  Google Scholar 

  • Eckert GP, Renner K, Eckert SH, Eckmann J, Hagl S, Abdel-Kader RM, Kurz C, Leuner K, Muller WE (2012) Mitochondrial dysfunction—a pharmacological target in Alzheimer’s disease. Mol Neurobiol 46(1):136–150

    Article  CAS  PubMed  Google Scholar 

  • Erel O (2005) A new automated colorimetric method for measuring total oxidant status. Clin Biochem 38(12):1103–1111

    Article  CAS  PubMed  Google Scholar 

  • Ferreira-Vieira H, Guimaraes TIM, Silva FR, Ribeiro FM (2016) Alzheimer’s disease: targeting the cholinergic system. Curr Neuropharmacol 14(1):101–115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galasko D, Montine TJ (2010) Biomarkers of oxidative damage and inflammation in Alzheimer’s disease. Biomark Med 4(1):27–36

    Article  CAS  PubMed  Google Scholar 

  • George P, Charles W (2007) The rat brain in stereotaxic coordinates Qingchuan Zhuge translate. People’s Medical Publishing House, Beijing, 32

  • Hammond RS, Tull LE, Stackman RW (2004) On the delay-dependent involvement of the hippocampus in object recognition memory. Neurobiol Learn Mem 82(1):26–34

    Article  PubMed  Google Scholar 

  • Hensley K, Carney J, Mattson M, Aksenova M, Harris M, Wu J, Floyd R, Butterfield D (1994) A model for beta-amyloid aggregation and neurotoxicity based on free radical generation by the peptide: relevance to Alzheimer disease. Proc Natl Acad Sci 91(8):3270–3274

  • Iaccarino L, Tammewar G, Ayakta N, Baker SL, Bejanin A, Boxer AL, Gorno-Tempini ML, Janabi M, Kramer JH, Lazaris A (2018) Local and distant relationships between amyloid, tau and neurodegeneration in Alzheimer’s Disease. NeuroImage: Clin 17:452–464

    Article  PubMed  Google Scholar 

  • Jack CR Jr, Bennett DA, Blennow K, Carrillo MC, Dunn B, Haeberlein SB, Holtzman DM, Jagust W, Jessen F, Karlawish J (2018) NIA-AA research framework: toward a biological definition of Alzheimer’s disease. Alzheimer’s Dement 14(4):535–562

    Article  Google Scholar 

  • Jarrard LE (1993) On the role of the hippocampus in learning and memory in the rat. Behav Neural Biol 60(1):9–26

    Article  CAS  PubMed  Google Scholar 

  • Ji W, Zhang C, Wei W, Hu F (2016) The in vivo antiaging effect of enzymatic hydrolysate from royal jelly in d-galactose induced aging mouse. J Chin Inst Food Sci Technol 16(1):18–25

    Google Scholar 

  • Kasza Á, Penke B, Frank Z, Bozsó Z, Szegedi V, Hunya Á, Németh K, Kozma G, Fülöp L (2017) Studies for improving a rat model of Alzheimer’s disease: icv administration of well-characterized β-amyloid 1–42 oligomers induce dysfunction in spatial memory. Molecules 22(11):2007

  • Kim JJ, Baxter MG (2001) Multiple brain-memory systems: the whole does not equal the sum of its parts. Trends Neurosci 24(6):324–330

    Article  CAS  PubMed  Google Scholar 

  • Kirouac L, Rajic AJ, Cribbs DH, Padmanabhan J (2017) Activation of Ras-ERK signaling and GSK-3 by amyloid precursor protein and amyloid beta facilitates neurodegeneration in Alzheimer’s disease. Eneuro 4(2):0149–16

    Article  Google Scholar 

  • Kocot J, Kiełczykowska M, Luchowska-Kocot D, Kurzepa J, Musik I (2018) Antioxidant potential of propolis, bee pollen and royal jelly.  possible medical application. Oxidative Med Cell Longev Article ID 7074209.

    Google Scholar 

  • Komaki H, Faraji N, Komaki A, Shahidi S, Etaee F, Raoufi S, Mirzaei F (2019) Investigation of protective effects of coenzyme Q10 on impaired synaptic plasticity in a male rat model of Alzheimer’s disease. Brain Res Bull 147:14–21

    Article  CAS  PubMed  Google Scholar 

  • Li C, Zhao R, Gao K, Wei Z, Yaoyao Yin M, Ting Lau L, Chui D, Cheung Hoi Yu A (2011) Astrocytes: implications for neuroinflammatory pathogenesis of Alzheimer’s disease. Curr Alzheimer Res 8(1):67–80

  • Lisman JE, Grace AA (2005) The hippocampal-VTA loop: controlling the entry of information into long-term memory. Neuron 46(5):703–713

    Article  CAS  PubMed  Google Scholar 

  • Lohrasbi M, Taghian F, Jalali Dehkordi K, Hosseini SA (2022) Interactive effects of endurance training with royal jelly consumption on motor balance in an experimental encephalomyelitis model. J Nutr Fasting Health 10(1):44–50

    Google Scholar 

  • Lorenzini CGA, Baldi E, Bucherelli C, Sacchetti B, Tassoni G (1997) Role of ventral hippocampus in acquisition, consolidation and retrieval of rat’s passive avoidance response memory trace. Brain Res 768(1–2):242–248

    Article  Google Scholar 

  • Nunomura A, Perry G, Aliev G, Hirai K, Takeda A, Balraj EK, Jones PK, Ghanbari H, Wataya T, Shimohama S (2001) Oxidative damage is the earliest event in Alzheimer disease. J Neuropathol Exp Neurol 60(8):759–767

    Article  CAS  PubMed  Google Scholar 

  • Obulesu M, Jhansilakshmi M (2014) Neuroinflammation in Alzheimer’s disease: an understanding of physiology and pathology. Int J Neurosci 124(4):227–235

    Article  CAS  PubMed  Google Scholar 

  • Pan Y, Xu J, Chen C, Chen F, Jin P, Zhu K, Hu CW, You M, Chen M, Hu F (2018) Royal jelly reduces cholesterol levels, ameliorates Aβ pathology and enhances neuronal metabolic activities in a rabbit model of Alzheimer’s disease. Front Aging Neurosci 10:50

    Article  PubMed  PubMed Central  Google Scholar 

  • Pan Y, Xu J, Jin P, Yang Q, Zhu K, You M, Hu F, Chen M (2019) Royal jelly ameliorates behavioral deficits, cholinergic system deficiency, and autonomic nervous dysfunction in ovariectomized cholesterol-fed rabbits. Molecules 24(6):1149

    Article  PubMed  PubMed Central  Google Scholar 

  • Park MJ, Kim BY, Park HG, Deng Y, Yoon HJ, Choi YS, Lee KS, Jin BR (2019) Major royal jelly protein 2 acts as an antimicrobial agent and antioxidant in royal jelly. J Asia Pac Entomol 22(3):684–689

    Article  Google Scholar 

  • Peng Y, Zhong B, Yang R-j, Gao, Su F (2011) Effect of royal jelly on learning and memory performance of aged rats. Food Sci 32:269–272

    CAS  Google Scholar 

  • Postu PA, Sadiki FZ, El Idrissi M, Cioanca O, Trifan A, Hancianu M, Hritcu L (2019) Pinus halepensis essential oil attenuates the toxic Alzheimer’s amyloid beta (1–42)-induced memory impairment and oxidative stress in the rat hippocampus. Biomed Pharmacother 112:108673

    Article  CAS  PubMed  Google Scholar 

  • Pyrzanowska J, Wawer A, Joniec-Maciejak I, Piechal A, Blecharz-Klin K, Graikou K, Chinou I, Widy-Tyszkiewicz E (2018) Long-term administration of Greek Royal Jelly decreases GABA concentration in the striatum and hypothalamus of naturally aged Wistar male rats. Neurosci Lett 675:17–22

    Article  CAS  PubMed  Google Scholar 

  • Setti SE, Hunsberger HC, Reed MN (2017) Alterations in hippocampal activity and Alzheimer’s disease. Transl Issues Psychol Sci 3(4):348

    Article  PubMed  PubMed Central  Google Scholar 

  • Sharma S, Verma S, Kapoor M, Saini A, Nehru B (2016) Alzheimer’s disease like pathology induced six weeks after aggregated amyloid-beta injection in rats: increased oxidative stress and impaired long-term memory with anxiety-like behavior. Neurol Res 38(9):838–850

    Article  CAS  PubMed  Google Scholar 

  • Shekarian M, Komaki A, Shahidi S, Sarihi A, Salehi I, Raoufi S (2020) The protective and therapeutic effects of vinpocetine, a PDE1 inhibitor, on oxidative stress and learning and memory impairment induced by an intracerebroventricular (ICV) injection of amyloid beta (aβ) peptide. Behav Brain Res 383:112512

    Article  CAS  PubMed  Google Scholar 

  • Shimohama S (2000) Apoptosis in Alzheimer’s disease—an update. Apoptosis 5(1):9–16

  • Shohamy D, Wagner AD (2008) Integrating memories in the human brain: hippocampal-midbrain encoding of overlapping events. Neuron 60(2):378–389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swomley AM, Butterfield DA (2015) Oxidative stress in Alzheimer disease and mild cognitive impairment: evidence from human data provided by redox proteomics. Arch Toxicol 89(10):1669–1680

    Article  CAS  PubMed  Google Scholar 

  • Takuma K, Hara Y, Kataoka S, Kawanai T, Maeda Y, Watanabe R, Takano E, Hayata-Takano A, Hashimoto H, Ago Y (2014) Chronic treatment with valproic acid or sodium butyrate attenuates novel object recognition deficits and hippocampal dendritic spine loss in a mouse model of autism. Pharmacol Biochem Behav 126:43–49

    Article  CAS  PubMed  Google Scholar 

  • Teixeira RR, de Souza AV, Peixoto LG, Machado HL, Caixeta DC, Vilela DD, Baptista NB, Franci CR, Espindola FS (2017) Royal jelly decreases corticosterone levels and improves the brain antioxidant system in restraint and cold stressed rats. Neurosci Lett 655:179–185

    Article  CAS  PubMed  Google Scholar 

  • Tsai F-S, Wu L-Y, Yang S-E, Cheng H-Y, Tsai C-C, Wu C-R, Lin L-W (2015) Ferulic acid reverses the cognitive dysfunction caused by amyloid β peptide 1–40 through anti-oxidant activity and cholinergic activation in rats. Am J Chin Med 43(02):319–335

    Article  CAS  PubMed  Google Scholar 

  • Van de Pol L, Hensel A, Barkhof F, Gertz H, Scheltens P (2006) Hippocampal atrophy in Alzheimer disease: age matters. Neurology 66(2):236–238

    Article  PubMed  Google Scholar 

  • Wang J-Y, Wen L-L, Huang Y-N, Chen Y-T, Ku M-C (2006) Dual effects of antioxidants in neurodegeneration: direct neuroprotection against oxidative stress and indirect protection via suppression of gliamediated inflammation. Curr Pharm Design 12(27):3521–3533

    Article  CAS  Google Scholar 

  • Wenjing J, Cuiping Z, Wenting W, Fuliang H (2016) The in vivo antiaging effect of enzymatic hydrolysate from Royal Jelly in D-galactose Induced Aging mouse. J Chin Inst Food Sci Technol 01. https://doi.org/10.16429/j.1009-7848.2016.01.003

  • Yamaguchi Y, Kawashima S (2001) Effects of amyloid-β-(25–35) on passive avoidance, radial-arm maze learning and choline acetyltransferase activity in the rat. Eur J Pharmacol 412(3):265–272

    Article  CAS  PubMed  Google Scholar 

  • Yatin S, Varadarajan S, Link C, Butterfield D (1999) In vitro and in vivo oxidative stress associated with Alzheimer’s amyloid ß-peptide (1–42)  Neurobiol Aging 20(3):325–330

    CAS  PubMed  Google Scholar 

  • You M, Pan Y, Liu Y, Chen Y, Wu Y, Si J, Wang K, Hu F (2019) Royal jelly alleviates cognitive deficits and β-amyloid accumulation in APP/PS1 mouse model via activation of the cAMP/PKA/CREB/BDNF pathway and inhibition of neuronal apoptosis. Front Aging Neurosci 10:428

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Yu Y, Sun P, Fan Z, Zhang W, Feng C (2019) Royal jelly peptides: potential inhibitors of β-secretase in N2a/APP695swe cells. Sci Rep 9(1):1–11

    Google Scholar 

  • Ziegler-Waldkirch S, Meyer-Luehmann M (2018) The role of glial cells and synapse loss in mouse models of Alzheimer’s disease. Front Cell Neurosci 12:473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study has been supported by a grant (Grant number: 9802241456) from the Neurophysiology Research Centre of Hamadan University of Medical Sciences.

Author information

Authors and Affiliations

Authors

Contributions

Safoura Raoufi: Study supervision, designing the study, defining the aims, conceptualization, generating graphs, writing- reviewing and editing of the manuscript, supervising the experiment performing and result analyzing.

Zahra Salavati: Conceptualization, Data acquisition, Statistical analysis.

Alireza Komaki: Study supervision, Manuscript writing and revision, data acquisition.

Siamak Shahidi: Statistical analysis and interpretation.

Mohammad Zarei: Data acquisition, Statistical analysis.

Corresponding author

Correspondence to Zahra Salavati.

Ethics declarations

Ethics approval

Animal care and all experimental procedures were in accordance with the Hamadan University of Medical Sciences Ethics Committee and were performed in line with the National Institute of Health Guidelines for Care and Use of laboratory animals(NIH Publication 80–23, 1996).

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare that there are no conflicts of interest for this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raoufi, S., Salavati, Z., Komaki, A. et al. Royal jelly improves learning and memory deficits in an amyloid β-induced model of Alzheimer's disease in male rats: Involvement of oxidative stress. Metab Brain Dis 38, 1239–1248 (2023). https://doi.org/10.1007/s11011-023-01168-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11011-023-01168-9

Keywords

Navigation