Skip to main content
Log in

Capsaicin induces redox imbalance and ferroptosis through ACSL4/GPx4 signaling pathways in U87-MG and U251 glioblastoma cells

  • Original Article
  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

Glioblastoma is one of the deadliest malignant gliomas. Capsaicin is a homovanillic acid derivative that can show anti-cancer effects by regulating various signaling pathways. The aim of this study is to investigate the effects of capsaicin on cell proliferation via ferroptosis in human U87-MG and U251 glioblastoma cells. Firstly, effects of capsaicin treatment on cell viability were determined by MTT analysis. Next, cellular-proliferation and cytotoxicity assays were determined by analyzing bromodeoxyuridine (BrdU) and lactate dehydrogenase (LDH) activity, respectively. Following, acyl-CoA synthetase long chain family member 4 (ACSL4), glutathione peroxidase 4 (GPx4), 5-hydroxyeicosatetraenoic acid (5-HETE), total oxidant status (TOS), malondialdehyde (MDA), total antioxidant status (TAS) and reduced glutathione (GSH) levels were determined by ELISA. Additionally, ACSL4 and GPx4 mRNA and protein levels were analyzed. Capsaicin showed a concentration-dependent anti-proliferative effects in U87-MG and U251 cells. Cell viability was decreased in the both cell lines treated with capsaicin concentrations above 50 μM, while LDH activity increased. Treatment of 121.6, 188.5, and 237.2 μM capsaicin concentrations for 24 h indicated an increase in ACSL4, 5-HETE, TOS and MDA levels in U87-MG and U251 cells (p < 0.05). On the other hand, we found that capsaicin administration caused a decrease in BrdU, GPx4, TAS and GSH levels in U87-MG and U251 cells (p < 0.05). Besides, ACSL4 mRNA and protein levels were increased in the glioblastoma cells treated with capsaicin, whereas GPx4 mRNA and protein levels were decreased. Finally, capsaicin might be used as a potential anticancer agent with ferroptosis-induced anti-proliferative effects in the treatment of human glioblastoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All data generated during this study are available from the corresponding author on reasonable request.

References

Download references

Author information

Authors and Affiliations

Authors

Contributions

The design of the study, the performing of the experiments, the evaluation of the results and the writing of the article were carried out by CH and FK. The authors critically reviewed the article and approved the final version.

Corresponding author

Correspondence to Ceyhan Hacioglu.

Ethics declarations

Ethics approval

Since experimental procedures were performed on cell lines in this study, ethics committee permission was not needed.

Consent for publication

Not applicable.

Competing interests

The author declares that there is no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hacioglu, C., Kar, F. Capsaicin induces redox imbalance and ferroptosis through ACSL4/GPx4 signaling pathways in U87-MG and U251 glioblastoma cells. Metab Brain Dis 38, 393–408 (2023). https://doi.org/10.1007/s11011-022-00983-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11011-022-00983-w

Keywords

Navigation