Skip to main content

Moringa oleifera-supplemented diet protect against cortico-hippocampal neuronal degeneration in scopolamine-induced spatial memory deficit in mice: role of oxido-inflammatory and cholinergic neurotransmission pathway

Abstract

The therapeutic and pharmacological management of Alzheimer’s disease (AD) is generally considered a major concern in ethnomedicine. Moreover, plant-based foods containing flavonoids were previously reported to show neuroprotective effects by modulating self-aggregation of amyloid-β (Aβ)/or tau peptide into oligomers and fibrils, associated with the pathogenesis of AD. This study investigated the impact of Moringa oleifera-supplemented diet (MO-SD) in scopolamine-induced spatial memory deficit in mice. Mice were partitioned into two phases with five groups each (n=6) and pretreated intraperitoneally with scopolamine (1 mg/kg) prior the daily oral administration of MO-SD (1 %, 5 % and 10 %) for 7 and 14 days. Spatial memory function was assessed using the Morris water maze (MWM) test. Thereafter, markers of cholinergic system inhibition (Acetylcholinesterase; AChE) and oxido-inflammatory stress (Malonaldehyde, MDA; Nitrite; Superoxide Dismutase, SOD; Tumor necrosis factor-alpha, TNF-α) and histo-morphology of the cortico-hippocampal neuron were measured. The scopolamine treatment led to loss of spatial memory function in mice spatial exploration of the escape platform in the MWM test. Meanwhile, treatment with MO-SD attenuated loss of spatial memory function via significant decrease in escape latency, significant increase in the frequency of cross with time spent in the platform quadrant. Furthermore, scopolamine treatment altered the endogenous antioxidants and pro-inflammatory mediators, elevated acetylcholinesterase activity and promoted chromatolysis of the cortico-hippocampal neuron. However, MO-SD significantly ameliorated oxido-inflammatory stress, restored cholinergic transmission via acetylcholinesterase inhibition and maintains neuronal integrity in the mice brain at both phases. These results suggest that Moringa oleifera-supplemented diet may serve a potential therapeutic and possible pharmacological macromolecule for preventing loss of neuronal cells and management of Alzheimer’s disease.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Data availability

Data included in article/supplementary material/referenced in article.

References

  1. Ajayi AM, Chidebe EO, Ben-Azu B, Umukoro S (2020) Chrysophyllum albidum (African star apple) fruit-supplemented diet enhances cognitive functions and attenuates lipopolysaccharide-induced memory impairment, oxidative stress, and release of proinflammatory cytokines. Nutrire 45(2):1–3

    Google Scholar 

  2. Al-Malki AL, El Rabey HA (2015) The antidiabetic effect of low doses of Moringa oleifera Lam. seeds on streptozotocin induced diabetes and diabetic nephropathy in male rats. Biomed Res Int 2015:381040

  3. Amaglo NK, Bennett RN, Lo Curto RB (2010) Profiling selected phytochemicals and nutrients in different tissues of the multipurpose tree Moringa oleifera L., grown in Ghana. Food Chem 122(4):1047–1054

    CAS  Google Scholar 

  4. Arulselvan P, Tan WS, Gothai S, Muniandy K, Fakurazi S, Esa NM, Alarfaj AA, Kumar SS (2016) Anti-inflammatory potential of ethyl acetate fraction of Moringa oleifera in downregulating the NF-kappaB signaling pathway in lipopolysaccharide-stimulated macrophages. Molecules 21:1452

    PubMed Central  Google Scholar 

  5. Bajo R, Pusil S, López ME, Canuet L, Pereda E, Osipova D, Maestú F, Pekkonen E (2015) Scopolamine effects on functional brain connectivity: a pharmacological model of Alzheimer’s disease. Sci Rep 5:9748

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Berkovich L, Earon G, Ron I, Rimmon A, Vexler A, Lev-Ari S (2013) Moringa oleifera aqueous leaf extract down-regulates nuclear factor-kappaB and increases cytotoxic effect of chemotherapy in pancreatic cancer cells. BMC Complement Altern Med 13:212

    PubMed  PubMed Central  Google Scholar 

  7. Budzynska B, Boguszewska-Czubara A, Kruk-Slomka M, Skalicka-Wozniak K, Michalak A, Musik I (2015) Effects of imperatorin on scopolamine-induced cognitive impairment and oxidative stress in mice. Psychopharmacology 232(5):931–942

    CAS  Google Scholar 

  8. Debanne D, Campanac E, Bialowas A, Carlier E, Alcaraz G (2011) Axon physiology. Physiol Rev 91:555–602

    CAS  PubMed  Google Scholar 

  9. Drapeau E, Mayo W, Aurousseau C, Le Moal M, Piazza PV, Abrous DN (2003) Spatial memory performances of aged rats in the water maze predict levels of hippocampal neurogenesis. Proc Natl Acad Sci USA 100(24):14385–14390

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Drever BD, Anderson WG, Johnson H, O’Callaghan M, Seo S, Choi DY (2007) Memantine acts as a cholinergic stimulant in the mouse hippocampus. J Alzheimers Dis 12:319–333. https://doi.org/10.3233/JAD-2007-12405

    CAS  Article  PubMed  Google Scholar 

  11. Eduviere AT, Umukoro S, Aderibigbe AO, Ajayi AM, Adewole FA (2015) Methyl jasmonate enhances memory performance through inhibition of oxidative stress and acetylcholinesterase activity in mice. Life Sci 132(20):673–686

    Google Scholar 

  12. Ekong MB, Ekpo MM, Akpanyung EO, Nwaokonko DU (2017) Neuroprotective effect of Moringa oleifera leaf extract on aluminium-induced temporal cortical degeneration. Metab Brain Dis 32:1437–1447

    CAS  PubMed  Google Scholar 

  13. Ellman GL, Courtney KD, Andres V Jr, Feather-Stone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–95

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Gardener SL, Rainey-Smith SR, Martins RN (2016) Diet and inflammation in Alzheimer’s disease and related chronic diseases: a review. J Alzheimers Dis 50:301–334

    PubMed  Google Scholar 

  15. Giacoppo S, Rajan TS, De Nicola GR, Iori R, Rollin P, Bramanti P, Mazzon E (2017) The isothiocyanate isolated from Moringa oleifera shows potent anti-inflammatory activity in the treatment of murine subacute Parkinson’s disease. Rejuvenat Res 20:50–63

    CAS  Google Scholar 

  16. Gornall AG, Bardawill CJ, David MM (1949) Determination of serum proteins by means of the biuret reaction. J Biol Chem 177(2):751–766

    CAS  PubMed  Google Scholar 

  17. Green LC, Wagner DA, Glogowski J, Skipper PL, Wishnok JS, Tannenbaum SR (1982) Analysis of nitrate, nitrite, and [15 N] nitrate in biological fluids. Anal Biochem 126(1):131–138

    CAS  Google Scholar 

  18. Guon TE, Chung HS (2017) Moringa oleifera fruit induce apoptosis via reactive oxygen species-dependent activation of mitogen-activated protein kinases in human melanoma A2058 cells. Oncol Lett 14:1703–1710

    PubMed  PubMed Central  Google Scholar 

  19. Hasselmo ME (2006) The role of acetylcholine in learning and memory. Curr Opin Neurobiol 16:710–715. https://doi.org/10.1016/j.conb.2006.09.002

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. Ishola IO, Jacinta AA, Adeyemi OO (2019) Cortico-hippocampal memory enhancing activity of hesperetin on scopolamine-induced amnesia in mice: role of antioxidant defense system, cholinergic neurotransmission and expression of BDNF. Metab Brain Dis 34:979–989

    CAS  PubMed  Google Scholar 

  21. Iversen SD (1997) Behavioural evaluation of cholinergic drugs. Life Sci 60:1145–1152. https://doi.org/10.1016/S0024-3205(97)00059-3

    CAS  Article  PubMed  Google Scholar 

  22. Jaja-Chimedza A, Graf BL, Simmler C, Kim Y, Kuhn P, Pauli GF, Raskin I (2017) Biochemical characterization and anti-inflammatory properties of an isothiocyanate-enriched moringa (Moringa oleifera) seed extract. PLoS ONE 12:e0182658

    PubMed  PubMed Central  Google Scholar 

  23. Karim NA, Ibrahim MD, Kntayya SB, Rukayadi Y, Hamid HA, Razis AF (2016) Moringa oleifera Lam: Targeting chemoprevention. Asian Pac J Cancer Prev APJCP 17:3675–3686

    PubMed  Google Scholar 

  24. Lahiri DK, Farlow MR, Sambamurti K, Greig NH, Giacobini E, Schneider LS (2003) A critical analysis of new molecular targets and strategies for drug developments in Alzheimer’s disease. Curr Drug Targets 4:97–112

    CAS  PubMed  Google Scholar 

  25. Laila CMD, Santos MO, Assis GFR, Costa NEB, Pereira GS, Marques GO, de Oliveira ACL, Lopes IV, Pinto FCH (2019) Analysis of nuclear volume and morphology of neuronal brain tissue of rats trained. EC Neurol 11:717–726

    Google Scholar 

  26. Liu A, Zhao X, Li H, Liu Z, Liu B, Mao X, Guo L, Bi K, Jia Y (2014) 5-Hydroxymethylfurfural, an antioxidant agent from AlpiniaoxyphyllaMiq improves cognitive impairment in Aβ1–42 mouse model of Alzheimer’s disease. Int Immunopharmacol 23(2):719–725

    CAS  PubMed  Google Scholar 

  27. Misra HP, Fridovich I (1972) The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J Biol Chem 247(10):3170–3175

    CAS  Google Scholar 

  28. Morris R (1984) Developments of a water-maze procedure for studying spatial learning in the rat. J Neurosci Methods 11:47–60

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Nagababu E, Rifkind JM, Sesikeran B, Lakshmaiah N (2010) Assessment of antioxidant activity of eugenol in vitro and in vivo. Methods Mol Biol 610:165–180

    CAS  PubMed  PubMed Central  Google Scholar 

  30. National Institute of Health Guide for the Care and Use of Laboratory Animals (1996) National Academic Press, Washington DC

  31. Ning H, Cao D, Wang H, Kang B, Xie S, Meng Y (2017) Effects of haloperidol, olanzapine, ziprasidone, and PHA-543613 on spatial learning and memory in the Morris water maze test in naïve and MK-801-treated mice. Brain Behav 7(8):e00764

    PubMed  PubMed Central  Google Scholar 

  32. Omotoso GO, Gbadamosi IT, Afolabi TT, Abdulwahab AB, Akinlolu AA (2018) Ameliorative effects of Moringa on cuprizone induced memory decline in rat model of multiple sclerosis. Anat Cell Biol 51:119–127

    PubMed  PubMed Central  Google Scholar 

  33. Pepeu G, Grazia Giovannini M (2017) The fate of the brain cholinergic neurons in neurodegenerative diseases. Brain Res 1670:173–184

    CAS  PubMed  Google Scholar 

  34. Schliebs R, Arendt T (2011) The cholinergic system in aging and neuronal degeneration. Behav Brain Res 221(2):555–563

    CAS  PubMed  Google Scholar 

  35. Shanmugavel G, Prabakaran K, George B (2018) Evaluation of phytochemical constituents of Moringa oleifera (Lam.) leaves collected from Puducherry region, South India. Int J Zool Appl Biosci 3:1–8

    Google Scholar 

  36. Sharifudin SA, Fakurazi S, Hidayat MT, Hairuszah I, Moklas MA, Arulselvan P (2013) Therapeutic potential of Moringa oleifera extracts against acetaminophen-induced hepatotoxicity in rats. Pharm Biol 51:279–288

    PubMed  Google Scholar 

  37. Singh D, Arya PV, Aggarwal VP, Gupta RS (2014) Evaluation of antioxidant and hepatoprotective activities of Moringa oleifera Lam. leaves in carbon tetrachloride-intoxicated rats. Antioxidants (Basel) 3:569–591

    Google Scholar 

  38. Sinha M, Das DK, Datta S, Ghosh S, Dey S (2012) Amelioration of ionizing radiation induced lipid peroxidation in mouse liver by Moringa oleifera Lam. leaf extract. Indian J Exp Biol 50:209–215

    PubMed  Google Scholar 

  39. Stohs SJ, Hartman MJ (2015) Review of the safety and efficacy of Moringa oleifera. Phytother Res 29:796–804

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Suganthy N, Malar DS, Devi KP (2016) Rhizophora mucronata attenuatesbeta-amyloid induced cognitive dysfunction, oxidative stressand cholinergic deficit in Alzheimer’s disease animal model. Metab Brain Dis 31(4):937–949

    CAS  PubMed  Google Scholar 

  41. Sun J, Zhang X, Broderick M, Fein H (2003) Measurement of nitric oxide production in biological systems by using Griess reaction assay. Sensors 3(8):276–284

    CAS  Google Scholar 

  42. Sutalangka C, Wattanathorn J, Muchimapura S, Thukham-mee W (2013) Moringa oleifera mitigates memory impairment and neurodegeneration in animal model of age-related dementia. Oxid Med Cell Longev 2013:695936

  43. Thapa A, Chi EY (2015) Biflavonoids as potential small molecule therapeutics for Alzheimer’s disease. Adv Exp Med Biol 863:55–77

    CAS  PubMed  Google Scholar 

  44. Tyagi E, Agrawal R, Nath C, Shukla R (2008) Influence of LPS-induced neuroinflammation on acetylcholinesterase activity in rat brain. J Neuroimmunol 205:51–56

    CAS  PubMed  Google Scholar 

  45. Umukoro S, Ben-Azu B, Ajayi AM, Adebesin A, Emokpae O (2020) Cymbopogon citratus aqueous leaf extract attenuates neurobehavioral and biochemical changes induced by social defeat stress in mice. Chin Herb Med 12(3):303–309

    Google Scholar 

  46. Waterman C, Cheng DM, Rojas-Silva P, Poulev A, Dreifus J, Lila MA, Raskin I (2014) Stable, water extractable isothiocyanates from Moringa oleifera leaves attenuate inflammation in vitro. Phytochemistry 103:114–122

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Zhou J, Yang WS, Suo DQ, Li Y, Peng L, Xu LX, Zeng KY, Ren T, Wang Y, Zhou Y, Zhao Y, Yang LC, Jin X (2018) Moringa oleifera seed extract alleviates scopolamine-induced learning and memory impairment in mice. Front Pharmacol 9:389

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Affiliations

Authors

Contributions

SAO and VOA designed the study, VOA, OGA and SEE conducted the experiments and analyzed the data, SAO, VOA and OGA prepared the manuscript. OGA and SEE performed the analysis of the manuscript. All authors contributed to this research work and the development of the final manuscript.

Corresponding author

Correspondence to Samuel Adetunji Onasanwo.

Ethics declarations

Conflict of interest

Author(s) declare no conflict of interest whatsoever.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Onasanwo, S.A., Adamaigbo, V.O., Adebayo, O.G. et al. Moringa oleifera-supplemented diet protect against cortico-hippocampal neuronal degeneration in scopolamine-induced spatial memory deficit in mice: role of oxido-inflammatory and cholinergic neurotransmission pathway. Metab Brain Dis 36, 2445–2460 (2021). https://doi.org/10.1007/s11011-021-00855-9

Download citation

Keywords

  • Moringa oleifera
  • Cortico-hippocampal neuron
  • Oxidative stress
  • Inflammatory stress
  • Spatial memory