Skip to main content

Metabolism in Huntington’s disease: a major contributor to pathology

Abstract

Huntington’s disease (HD) is a progressively debilitating neurodegenerative disease exhibiting autosomal-dominant inheritance. It is caused by an unstable expansion in the CAG repeat tract of HD gene, which transforms the disease-specific Huntingtin protein (HTT) to a mutant form (mHTT). The profound neuronal death in cortico-striatal circuits led to its identification and characterisation as a neurodegenerative disease. However, equally disturbing are the concomitant whole-body manifestations affecting nearly every organ of the diseased individuals, at varying extents. Altered central and peripheral metabolism of energy, proteins, nucleic acids, lipids and carbohydrates encompass the gross pathology of the disease. Intense fluctuation of body weight, glucose homeostasis and organ-specific subcellular abnormalities are being increasingly recognised in HD. Many of these metabolic abnormalities exist years before the neuropathological manifestations such as chorea, cognitive decline and behavioural abnormalities develop, and prove to be reliable predictors of the disease progression. In this review, we provide a consolidated overview of the central and peripheral metabolic abnormalities associated with HD, as evidenced from clinical and experimental studies. Additionally, we have discussed the potential of metabolic biomolecules to translate into efficient biomarkers for the disease onset as well as progression. Finally, we provide a brief outlook on the efficacy of existing therapies targeting metabolic remediation. While it is clear that components of altered metabolic pathways can mark many aspects of the disease, it is only conceivable that combinatorial therapies aiming for neuronal protection in consort with metabolic upliftment will prove to be more efficient than the existing symptomatic treatment options.

This is a preview of subscription content, access via your institution.

References

  1. Aditi K, Shakarad MN, Agrawal N (2016) Altered lipid metabolism in Drosophila model of Huntington’s disease. Sci Rep 6:31411. https://doi.org/10.1038/srep31411

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  2. Aldaz T, Nigro P, Sánchez-Gómez A et al (2019) Non-motor symptoms in Huntington’s disease: a comparative study with Parkinson’s disease. J Neurol 266:1340–1350. https://doi.org/10.1007/s00415-019-09263-7

    Article  PubMed  Google Scholar 

  3. Andersen JV, Skotte NH, Aldana BI et al (2019) Enhanced cerebral branched-chain amino acid metabolism in R6/2 mouse model of Huntington’s disease. Cell Mol Life Sci 76:2449–2461. https://doi.org/10.1007/s00018-019-03051-2

    CAS  Article  PubMed  Google Scholar 

  4. Andreassen OA, Dedeoglu A, Stanojevic V et al (2002) Huntington’s disease of the endocrine pancreas: insulin deficiency and diabetes mellitus due to impaired insulin gene expression. Neurobiol Dis 11:410–424. https://doi.org/10.1006/nbdi.2002.0562

    CAS  Article  PubMed  Google Scholar 

  5. Andrich J, Schmitz T, Saft C et al (2002) Autonomic nervous system function in Huntington’s disease. J Neurol Neurosurg Psychiatry 72:726–731. https://doi.org/10.1136/jnnp.72.6.726

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. Andrich JE, Wobben M, Klotz P et al (2009) Upper gastrointestinal findings in Huntington’s disease: patients suffer but do not complain. J Neural Transm 116:1607–1611. https://doi.org/10.1007/s00702-009-0310-1

    Article  PubMed  Google Scholar 

  7. Antonini A, Leenders KL, Spiegel R et al (1996) Striatal glucose metabolism and dopamine D2 receptor binding in asymptomatic gene carriers and patients with Huntington’s disease. Brain 119(Pt 6):2085–2095. https://doi.org/10.1093/brain/119.6.2085

    Article  PubMed  Google Scholar 

  8. Arnoux I, Willam M, Griesche N et al (2018) Metformin reverses early cortical network dysfunction and behavior changes in Huntington’s disease. Elife 7:e38744. https://doi.org/10.7554/eLife.38744

    Article  PubMed  PubMed Central  Google Scholar 

  9. Aziz NA, Pijl H, Frölich M et al (2010) Leptin secretion rate increases with higher CAG repeat number in Huntington’s disease patients. Clin Endocrinol 73:206–211. https://doi.org/10.1111/j.1365-2265.2009.03661.x

    CAS  Article  Google Scholar 

  10. Bacos K, Björkqvist M, Petersén A et al (2008) Islet beta-cell area and hormone expression are unaltered in Huntington’s disease. Histochem Cell Biol 129:623–629. https://doi.org/10.1007/s00418-008-0393-z

    CAS  Article  PubMed  Google Scholar 

  11. Bae B-I, Xu H, Igarashi S et al (2005) p53 mediates cellular dysfunction and behavioral abnormalities in Huntington’s disease. Neuron 47:29–41. https://doi.org/10.1016/j.neuron.2005.06.005

    CAS  Article  PubMed  Google Scholar 

  12. Bär KJ, Boettger MK, Andrich J et al (2008) Cardiovagal modulation upon postural change is altered in Huntington’s disease. Eur J Neurol 15:869–871. https://doi.org/10.1111/j.1468-1331.2008.02173.x

    Article  PubMed  Google Scholar 

  13. Bates G, Harper P, Jones L (2002) Huntington’s disease. Oxford University Press, Oxford

    Google Scholar 

  14. Bellosta Diago E, Pérez-Pérez J, Santos Lasaosa S, Viloria Alebesque A, Martínez-Horta S, Kulisevsky J, López Del Val J (2018) Neurocardiovascular pathology in pre-manifest and early-stage Huntington’s disease. Eur J Neurol 25(7):956–962. https://doi.org/10.1111/ene.13630

    CAS  Article  PubMed  Google Scholar 

  15. Benraiss A, Wang S, Herrlinger S et al (2016) Human glia can both induce and rescue aspects of disease phenotype in Huntington disease. Nat Commun 7:11758. https://doi.org/10.1038/ncomms11758

    Article  PubMed  PubMed Central  Google Scholar 

  16. Berent S, Giordani B, Lehtinen S et al (1988) Positron emission tomographic scan investigations of Huntington’s disease: cerebral metabolic correlates of cognitive function. Ann Neurol 23:541–546. https://doi.org/10.1002/ana.410230603

    CAS  Article  PubMed  Google Scholar 

  17. Björkqvist M, Fex M, Renström E et al (2005) The R6/2 transgenic mouse model of Huntington’s disease develops diabetes due to deficient beta-cell mass and exocytosis. Hum Mol Genet 14:565–574. https://doi.org/10.1093/hmg/ddi053

    CAS  Article  PubMed  Google Scholar 

  18. Boesgaard TW, Nielsen TT, Josefsen K et al (2009) Huntington’s disease does not appear to increase the risk of diabetes mellitus. J Neuroendocrinol 21:770–776. https://doi.org/10.1111/j.1365-2826.2009.01898.x

    CAS  Article  PubMed  Google Scholar 

  19. Boussicault L, Hérard A-S, Calingasan N et al (2014) Impaired brain energy metabolism in the BACHD mouse model of Huntington’s disease: critical role of astrocyte-neuron interactions. J Cereb Blood Flow Metab 34:1500–1510. https://doi.org/10.1038/jcbfm.2014.110

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. Browne SE, Beal MF (2006) Oxidative damage in Huntington’s disease pathogenesis. Antioxid Redox Signal 8:2061–2073. https://doi.org/10.1089/ars.2006.8.2061

    CAS  Article  PubMed  Google Scholar 

  21. Browne SE, Bowling AC, MacGarvey U et al (1997) Oxidative damage and metabolic dysfunction in Huntington’s disease: selective vulnerability of the basal ganglia. Ann Neurol 41:646–653. https://doi.org/10.1002/ana.410410514

    CAS  Article  PubMed  Google Scholar 

  22. Buonincontri G, Wood NI, Puttick SG et al (2014) Right ventricular dysfunction in the R6/2 transgenic mouse model of Huntington’s disease is unmasked by dobutamine. J Huntingtons Dis 3:25–32. https://doi.org/10.3233/JHD-130083

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. Busse ME, Hughes G, Wiles CM, Rosser AE (2008) Use of hand-held dynamometry in the evaluation of lower limb muscle strength in people with Huntington’s disease. J Neurol 255:1534–1540. https://doi.org/10.1007/s00415-008-0964-x

    Article  PubMed  Google Scholar 

  24. Cepeda C, Cummings DM, André VM et al (2010) Genetic mouse models of Huntington’s disease: focus on electrophysiological mechanisms. ASN Neuro 2:e00033. https://doi.org/10.1042/AN20090058

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. Chaturvedi RK, Adhihetty P, Shukla S et al (2009) Impaired PGC-1alpha function in muscle in Huntington’s disease. Hum Mol Genet 18:3048–3065. https://doi.org/10.1093/hmg/ddp243

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  26. Chaves G, Özel RE, Rao NV et al (2017) Metabolic and transcriptomic analysis of Huntington’s disease model reveal changes in intracellular glucose levels and related genes. Heliyon 3:e00381. https://doi.org/10.1016/j.heliyon.2017.e00381

    Article  PubMed  PubMed Central  Google Scholar 

  27. Chaves G, Stanley J, Pourmand N (2019) Mutant Huntingtin affects diabetes and Alzheimer’s markers in human and cell models of Huntington’s disease. Cells 8:E962. https://doi.org/10.3390/cells8090962

    CAS  Article  PubMed  Google Scholar 

  28. Chen C-M, Wu Y-R, Cheng M-L et al (2007) Increased oxidative damage and mitochondrial abnormalities in the peripheral blood of Huntington’s disease patients. Biochem Biophys Res Commun 359:335–340. https://doi.org/10.1016/j.bbrc.2007.05.093

    CAS  Article  PubMed  Google Scholar 

  29. Chiang M-C, Chen H-M, Lee Y-H et al (2007) Dysregulation of C/EBPalpha by mutant Huntingtin causes the urea cycle deficiency in Huntington’s disease. Hum Mol Genet 16:483–498. https://doi.org/10.1093/hmg/ddl481

    CAS  Article  PubMed  Google Scholar 

  30. Chiang M-C, Chern Y, Juo C-G (2011) The dysfunction of hepatic transcriptional factors in mice with Huntington’s disease. Biochim Biophys Acta 1812:1111–1120. https://doi.org/10.1016/j.bbadis.2011.05.006

    CAS  Article  PubMed  Google Scholar 

  31. Child DD, Lee JH, Pascua CJ et al (2018) Cardiac mTORC1 dysregulation impacts stress adaptation and survival in Huntington’s disease. Cell Rep 23:1020–1033. https://doi.org/10.1016/j.celrep.2018.03.117

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  32. Choo YS, Johnson GVW, MacDonald M et al (2004) Mutant huntingtin directly increases susceptibility of mitochondria to the calcium-induced permeability transition and cytochrome c release. Hum Mol Genet 13:1407–1420. https://doi.org/10.1093/hmg/ddh162

    CAS  Article  PubMed  Google Scholar 

  33. Ciammola A, Sassone J, Sciacco M et al (2011) Low anaerobic threshold and increased skeletal muscle lactate production in subjects with Huntington’s disease. Mov Disord 26:130–137. https://doi.org/10.1002/mds.23258

    Article  PubMed  Google Scholar 

  34. Davidson MB, Green S, Menkes JH (1974) Normal glucose, insulin, and growth hormone responses to oral glucose in Huntington’s disease. J Lab Clin Med 84:807–812. https://doi.org/10.5555/uri:pii:0022214374901784

    CAS  Article  Google Scholar 

  35. Di Pardo A, Pepe G, Capocci L et al (2020) Treatment with K6PC-5, a selective stimulator of SPHK1, ameliorates intestinal homeostasis in an animal model of Huntington’s disease. Neurobiol Dis 143:105009. https://doi.org/10.1016/j.nbd.2020.105009

    CAS  Article  PubMed  Google Scholar 

  36. Dickey AS, La Spada AR (2018) Therapy development in Huntington disease: from current strategies to emerging opportunities. Am J Med Genet A 176:842–861. https://doi.org/10.1002/ajmg.a.38494

    CAS  Article  PubMed  Google Scholar 

  37. Duyao M, Ambrose C, Myers R et al (1993) Trinucleotide repeat length instability and age of onset in Huntington’s disease. Nat Genet 4:387–392. https://doi.org/10.1038/ng0893-387

    CAS  Article  PubMed  Google Scholar 

  38. Ehrnhoefer DE, Butland SL, Pouladi MA, Hayden MR (2009) Mouse models of Huntington disease: variations on a theme. Dis Model Mech 2:123–129. https://doi.org/10.1242/dmm.002451

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  39. Elifani F, Amico E, Pepe G, Capocci L, Castaldo S, Rosa P, Montano E, Pollice A, Madonna M, Filosa S, Calogero A, Maglione V, Crispi S, Di Pardo A (2019) Curcumin dietary supplementation ameliorates disease phenotype in an animal model of Huntington’s disease. Hum Mol Genet 28(23):4012–4021. https://doi.org/10.1093/hmg/ddz247

  40. Elfers CT, Simmons JH, Roth CL (2012) Glucagon-like peptide-1 agonist exendin-4 leads to reduction of weight and caloric intake in a rat model of hypothalamic obesity. Horm Res Paediatr 78:47–53. https://doi.org/10.1159/000338464

    CAS  Article  PubMed  Google Scholar 

  41. OrthHandley MOJ, European Huntington’s Disease Network et al (2011) Observing Huntington’s disease: the European Huntington’s disease network’s REGISTRY. J Neurol Neurosurg Psychiatry 82:1409–1412. https://doi.org/10.1136/jnnp.2010.209668

    Article  Google Scholar 

  42. Fain JN, Del Mar NA, Meade CA et al (2001) Abnormalities in the functioning of adipocytes from R6/2 mice that are transgenic for the Huntington’s disease mutation. Hum Mol Genet 10:145–152. https://doi.org/10.1093/hmg/10.2.145

    CAS  Article  PubMed  Google Scholar 

  43. Farrer LA (1985) Diabetes mellitus in Huntington disease. Clin Genet 27:62–67. https://doi.org/10.1111/j.1399-0004.1985.tb00185.x

    CAS  Article  PubMed  Google Scholar 

  44. Farrer LA, Meaney FJ (1985) An anthropometric assessment of Huntington’s disease patients and families. Am J Phys Anthropol 67:185–194. https://doi.org/10.1002/ajpa.1330670304

    CAS  Article  PubMed  Google Scholar 

  45. Ferrante RJ (2009) Mouse models of Huntington’s disease and methodological considerations for therapeutic trials. Biochim Biophys Acta 1792:506–520. https://doi.org/10.1016/j.bbadis.2009.04.001

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  46. Folstein SE (1989) The psychopathology of Huntington’s disease. J Nerv Ment Dis 177:645

    Article  Google Scholar 

  47. Friedman JM, Halaas JL (1998) Leptin and the regulation of body weight in mammals. Nature 395:763–770. https://doi.org/10.1038/27376

    CAS  Article  PubMed  Google Scholar 

  48. Grafton ST, Mazziotta JC, Pahl JJ et al (1992) Serial changes of cerebral glucose metabolism and caudate size in persons at risk for Huntington’s disease. Arch Neurol 49:1161–1167. https://doi.org/10.1001/archneur.1992.00530350075022

    CAS  Article  PubMed  Google Scholar 

  49. Gu M, Gash MT, Mann VM et al (1996) Mitochondrial defect in Huntington’s disease caudate nucleus. Ann Neurol 39:385–389. https://doi.org/10.1002/ana.410390317

    CAS  Article  PubMed  Google Scholar 

  50. Guidetti P, Charles V, Chen EY et al (2001) Early degenerative changes in transgenic mice expressing mutant huntingtin involve dendritic abnormalities but no impairment of mitochondrial energy production. Exp Neurol 169:340–350. https://doi.org/10.1006/exnr.2000.7626

    CAS  Article  PubMed  Google Scholar 

  51. Handley RR, Reid SJ, Patassini S et al (2016) Metabolic disruption identified in the Huntington’s disease transgenic sheep model. Sci Rep 6:20681. https://doi.org/10.1038/srep20681

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  52. Handley RR, Reid SJ, Brauning R et al (2017) Brain urea increase is an early Huntington’s disease pathogenic event observed in a prodromal transgenic sheep model and HD cases. Proc Natl Acad Sci USA 114:E11293–E11302. https://doi.org/10.1073/pnas.1711243115

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  53. Herben-Dekker M, van Oostrom JCH, Roos RAC et al (2014) Striatal metabolism and psychomotor speed as predictors of motor onset in Huntington’s disease. J Neurol 261:1387–1397. https://doi.org/10.1007/s00415-014-7350-7

    CAS  Article  PubMed  Google Scholar 

  54. Hersch SM, Gevorkian S, Marder K et al (2006) Creatine in Huntington disease is safe, tolerable, bioavailable in brain and reduces serum 8OH2’dG. Neurology 66:250–252. https://doi.org/10.1212/01.wnl.0000194318.74946.b6

    CAS  Article  PubMed  Google Scholar 

  55. Hersch SM, Schifitto G, Oakes D et al (2017) The CREST-E study of creatine for Huntington disease: a randomized controlled trial. Neurology 89:594–601. https://doi.org/10.1212/WNL.0000000000004209

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  56. Hervás D, Fornés-Ferrer V, Gómez-Escribano AP et al (2017) Metformin intake associates with better cognitive function in patients with Huntington’s disease. PLoS ONE 12:e0179283. https://doi.org/10.1371/journal.pone.0179283

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  57. Himms-Hagen J (1999) Physiological roles of the leptin endocrine system: differences between mice and humans. Crit Rev Clin Lab Sci 36:575–655. https://doi.org/10.1080/10408369991239259

    CAS  Article  PubMed  Google Scholar 

  58. Hoffmann R, Stüwe SH, Goetze O et al (2014) Progressive hepatic mitochondrial dysfunction in premanifest Huntington’s disease. Mov Disord 29:831–834. https://doi.org/10.1002/mds.25862

    CAS  Article  PubMed  Google Scholar 

  59. Hu Y, Liang J, Yu S (2014) High prevalence of diabetes mellitus in a five-generation Chinese family with Huntington’s disease. J Alzheimers Dis 40:863–868. https://doi.org/10.3233/JAD-131847

    CAS  Article  PubMed  Google Scholar 

  60. Hunt MJ, Morton AJ (2005) Atypical diabetes associated with inclusion formation in the R6/2 mouse model of Huntington’s disease is not improved by treatment with hypoglycaemic agents. Exp Brain Res 166:220–229. https://doi.org/10.1007/s00221-005-2357-z

    CAS  Article  PubMed  Google Scholar 

  61. Huntington G (1872) On chorea. Med Surg Rep 26:320–321

    Google Scholar 

  62. Huntington Study Group COHORT Investigators, Dorsey ER (2012) Characterization of a large group of individuals with huntington disease and their relatives enrolled in the COHORT study. PLoS ONE 7:e29522. https://doi.org/10.1371/journal.pone.0029522

    CAS  Article  Google Scholar 

  63. Huntington’s Disease Sheep Collaborative Research Group, Reid SJ, Patassini S et al (2013) Further molecular characterisation of the OVT73 transgenic sheep model of Huntington’s disease identifies cortical aggregates. J Huntingtons Dis 2:279–295. https://doi.org/10.3233/JHD-130067

    CAS  Article  Google Scholar 

  64. Jenkins BG, Koroshetz WJ, Beal MF, Rosen BR (1993) Evidence for impairment of energy metabolism in vivo in Huntington’s disease using localized 1H NMR spectroscopy. Neurology 43:2689–2695. https://doi.org/10.1212/wnl.43.12.2689

    CAS  Article  PubMed  Google Scholar 

  65. Jenkins BG, Rosas HD, Chen YC et al (1998) 1H NMR spectroscopy studies of Huntington’s disease: correlations with CAG repeat numbers. Neurology 50:1357–1365. https://doi.org/10.1212/wnl.50.5.1357

    CAS  Article  PubMed  Google Scholar 

  66. Johri A, Calingasan NY, Hennessey TM et al (2012) Pharmacologic activation of mitochondrial biogenesis exerts widespread beneficial effects in a transgenic mouse model of Huntington’s disease. Hum Mol Genet 21:1124–1137. https://doi.org/10.1093/hmg/ddr541

    CAS  Article  PubMed  Google Scholar 

  67. Josefsen K, Nielsen MD, Jørgensen KH et al (2008) Impaired glucose tolerance in the R6/1 transgenic mouse model of Huntington’s disease. J Neuroendocrinol 20:165–172. https://doi.org/10.1111/j.1365-2826.2007.01629.x

    CAS  Article  PubMed  Google Scholar 

  68. Josefsen K, Nielsen SMB, Campos A et al (2010) Reduced gluconeogenesis and lactate clearance in Huntington’s disease. Neurobiol Dis 40:656–662. https://doi.org/10.1016/j.nbd.2010.08.009

    CAS  Article  PubMed  Google Scholar 

  69. Joshi AU, Ebert AE, Haileselassie B, Mochly-Rosen D (2019) Drp1/Fis1-mediated mitochondrial fragmentation leads to lysosomal dysfunction in cardiac models of Huntington’s disease. J Mol Cell Cardiol 127:125–133. https://doi.org/10.1016/j.yjmcc.2018.12.004

    CAS  Article  PubMed  Google Scholar 

  70. Joviano-Santos JV, Santos-Miranda A, Botelho AFM et al (2019) Increased oxidative stress and CaMKII activity contribute to electro-mechanical defects in cardiomyocytes from a murine model of Huntington’s disease. FEBS J 286:110–123. https://doi.org/10.1111/febs.14706

    CAS  Article  PubMed  Google Scholar 

  71. Kannike K, Sepp M, Zuccato C et al (2014) Forkhead transcription factor FOXO3a levels are increased in Huntington disease because of overactivated positive autofeedback loop. J Biol Chem 289:32845–32857. https://doi.org/10.1074/jbc.M114.612424

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  72. Keogh HJ, Johnson RH, Nanda RN, Sulaiman WR (1976) Altered growth hormone release in Huntington’s chorea. J Neurol Neurosurg Psychiatry 39:244–248. https://doi.org/10.1136/jnnp.39.3.244

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  73. Kobal J, Meglic B, Mesec A, Peterlin B (2004) Early sympathetic hyperactivity in Huntington’s disease. Eur J Neurol 11:842–848. https://doi.org/10.1111/j.1468-1331.2004.00894.x

    CAS  Article  PubMed  Google Scholar 

  74. Kong G, Cao K-AL, Judd LM et al (2020) Microbiome profiling reveals gut dysbiosis in a transgenic mouse model of Huntington’s disease. Neurobiol Dis 135:104268. https://doi.org/10.1016/j.nbd.2018.09.001

    CAS  Article  PubMed  Google Scholar 

  75. Koroshetz WJ, Jenkins BG, Rosen BR, Beal MF (1997) Energy metabolism defects in Huntington’s disease and effects of coenzyme Q10. Ann Neurol 41:160–165. https://doi.org/10.1002/ana.410410206

    CAS  Article  PubMed  Google Scholar 

  76. Kosinski CM, Schlangen C, Gellerich FN et al (2007) Myopathy as a first symptom of Huntington’s disease in a Marathon runner. Mov Disord 22:1637–1640. https://doi.org/10.1002/mds.21550

    Article  PubMed  Google Scholar 

  77. Kremer HP, Roos RA, Frölich M et al (1989) Endocrine functions in Huntington’s disease. A two-and-a-half years follow-up study. J Neurol Sci 90:335–344. https://doi.org/10.1016/0022-510x(89)90120-2

    CAS  Article  PubMed  Google Scholar 

  78. Kuhl DE, Markham CH, Metter EJ et al (1985) Local cerebral glucose utilization in symptomatic and presymptomatic Huntington’s disease. Res Publ Assoc Res Nerv Ment Dis 63:199–209

    CAS  PubMed  Google Scholar 

  79. Kuwert T, Lange HW, Langen KJ et al (1990) Cortical and subcortical glucose consumption measured by PET in patients with Huntington’s disease. Brain 113(Pt 5):1405–1423. https://doi.org/10.1093/brain/113.5.1405

    Article  PubMed  Google Scholar 

  80. Kuwert T, Lange HW, Boecker H et al (1993) Striatal glucose consumption in chorea-free subjects at risk of Huntington’s disease. J Neurol 241:31–36. https://doi.org/10.1007/BF00870669

    CAS  Article  PubMed  Google Scholar 

  81. Lakra P, Aditi K, Agrawal N (2019) Peripheral expression of mutant huntingtin is a critical determinant of weight loss and metabolic disturbances in Huntington’s disease. Sci Rep 9:10127. https://doi.org/10.1038/s41598-019-46470-8

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  82. Lalić NM, Marić J, Svetel M et al (2008) Glucose homeostasis in Huntington disease: abnormalities in insulin sensitivity and early-phase insulin secretion. Arch Neurol 65:476–480. https://doi.org/10.1001/archneur.65.4.476

    Article  PubMed  Google Scholar 

  83. Lanska DJ, Lavine L, Lanska MJ, Schoenberg BS (1988) Huntington’s disease mortality in the United States. Neurology 38:769–772. https://doi.org/10.1212/wnl.38.5.769

    CAS  Article  PubMed  Google Scholar 

  84. Leoni V, Mariotti C, Tabrizi SJ et al (2008) Plasma 24S-hydroxycholesterol and caudate MRI in pre-manifest and early Huntington’s disease. Brain 131:2851–2859. https://doi.org/10.1093/brain/awn212

    Article  PubMed  Google Scholar 

  85. Leoni V, Long JD, Mills JA et al (2013) Plasma 24S-hydroxycholesterol correlation with markers of Huntington disease progression. Neurobiol Dis 55:37–43. https://doi.org/10.1016/j.nbd.2013.03.013

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  86. Lin J, Wu P-H, Tarr PT et al (2004) Defects in adaptive energy metabolism with CNS-linked hyperactivity in PGC-1alpha null mice. Cell 119:121–135. https://doi.org/10.1016/j.cell.2004.09.013

    CAS  Article  PubMed  Google Scholar 

  87. Lin J, Handschin C, Spiegelman BM (2005) Metabolic control through the PGC-1 family of transcription coactivators. Cell Metab 1:361–370. https://doi.org/10.1016/j.cmet.2005.05.004

    CAS  Article  PubMed  Google Scholar 

  88. Lodi R, Schapira AH, Manners D et al (2000) Abnormal in vivo skeletal muscle energy metabolism in Huntington’s disease and dentatorubropallidoluysian atrophy. Ann Neurol 48:72–76

    CAS  Article  Google Scholar 

  89. Luthi-Carter R, Hanson SA, Strand AD et al (2002) Dysregulation of gene expression in the R6/2 model of polyglutamine disease: parallel changes in muscle and brain. Hum Mol Genet 11:1911–1926. https://doi.org/10.1093/hmg/11.17.1911

    CAS  Article  PubMed  Google Scholar 

  90. Ma TC, Buescher JL, Oatis B et al (2007) Metformin therapy in a transgenic mouse model of Huntington’s disease. Neurosci Lett 411:98–103. https://doi.org/10.1016/j.neulet.2006.10.039

    CAS  Article  PubMed  Google Scholar 

  91. MacDonald ME et al (1993) A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. The Huntington’s Disease Collaborative Research Group. Cell 72:971–983. https://doi.org/10.1016/0092-8674(93)90585-e

    Article  Google Scholar 

  92. Marsh JL, Thompson LM (2004) Can flies help humans treat neurodegenerative diseases? BioEssays 26:485–496. https://doi.org/10.1002/bies.20029

    CAS  Article  PubMed  Google Scholar 

  93. Marsh JL, Lukacsovich T, Thompson LM (2009) Animal models of polyglutamine diseases and therapeutic approaches. J Biol Chem 284:7431–7435. https://doi.org/10.1074/jbc.R800065200

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  94. Martin B, Golden E, Carlson OD et al (2009) Exendin-4 improves glycemic control, ameliorates brain and pancreatic pathologies, and extends survival in a mouse model of Huntington’s disease. Diabetes 58:318–328. https://doi.org/10.2337/db08-0799

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  95. Martin B, Chadwick W, Cong W et al (2012) Euglycemic agent-mediated hypothalamic transcriptomic manipulation in the N171–82Q model of Huntington disease is related to their physiological efficacy. J Biol Chem 287:31766–31782. https://doi.org/10.1074/jbc.M112.387316

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  96. McColgan P, Gregory S, Seunarine KK et al (2018) Brain regions showing white matter loss in Huntington’s disease are enriched for synaptic and metabolic genes. Biol Psychiatry 83:456–465. https://doi.org/10.1016/j.biopsych.2017.10.019

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  97. McCourt AC, O’Donovan KL, Ekblad E et al (2015) Characterization of gastric mucosa biopsies reveals alterations in Huntington’s disease. PLoS Curr. https://doi.org/10.1371/currents.hd.858b4cc7f235df068387e9c20c436a79

    Article  PubMed  PubMed Central  Google Scholar 

  98. McCourt AC, Jakobsson L, Larsson S et al (2016) White adipose tissue browning in the R6/2 mouse model of Huntington’s disease. PLoS ONE 11:e0159870. https://doi.org/10.1371/journal.pone.0159870

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  99. McGarry A, McDermott M, Kieburtz K et al (2017) A randomized, double-blind, placebo-controlled trial of coenzyme Q10 in Huntington disease. Neurology 88:152–159. https://doi.org/10.1212/WNL.0000000000003478

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  100. Mielcarek M (2015) Huntington’s disease is a multi-system disorder. Rare Dis 3:e1058464. https://doi.org/10.1080/21675511.2015.1058464

    Article  PubMed  PubMed Central  Google Scholar 

  101. Mielcarek M, Inuabasi L, Bondulich MK et al (2014) Dysfunction of the CNS-heart axis in mouse models of Huntington’s disease. PLoS Genet 10:e1004550. https://doi.org/10.1371/journal.pgen.1004550

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  102. Mielcarek M, Toczek M, Smeets CJLM et al (2015) HDAC4-myogenin axis as an important marker of HD-related skeletal muscle atrophy. PLoS Genet 11:e1005021. https://doi.org/10.1371/journal.pgen.1005021

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  103. Mielcarek M, Smolenski RT, Isalan M (2017) Transcriptional signature of an altered purine metabolism in the skeletal muscle of a Huntington’s disease mouse model. Front Physiol 8:127. https://doi.org/10.3389/fphys.2017.00127

    Article  PubMed  PubMed Central  Google Scholar 

  104. Mihm MJ, Amann DM, Schanbacher BL et al (2007) Cardiac dysfunction in the R6/2 mouse model of Huntington’s disease. Neurobiol Dis 25:297–308. https://doi.org/10.1016/j.nbd.2006.09.016

    CAS  Article  PubMed  Google Scholar 

  105. Mochel F, Haller RG (2011) Energy deficit in Huntington disease: why it matters. J Clin Investig 121:493–499. https://doi.org/10.1172/JCI45691

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  106. Mochel F, Charles P, Seguin F et al (2007) Early energy deficit in Huntington disease: identification of a plasma biomarker traceable during disease progression. PLoS ONE 2:e647. https://doi.org/10.1371/journal.pone.0000647

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  107. MoffittMcPhailWoodman HGDB et al (2009) Formation of polyglutamine inclusions in a wide range of non-CNS tissues in the HdhQ150 knock-in mouse model of Huntington’s disease. PLoS ONE. https://doi.org/10.1371/journal.pone.0008025

    Article  Google Scholar 

  108. Montojo MT, Aganzo M, González N (2017) Huntington’s disease and diabetes: chronological sequence of its association. J Huntingtons Dis 6:179–188. https://doi.org/10.3233/JHD-170253

    Article  PubMed  PubMed Central  Google Scholar 

  109. Morales LM, Estévez J, Suárez H et al (1989) Nutritional evaluation of Huntington disease patients. Am J Clin Nutr 50:145–150. https://doi.org/10.1093/ajcn/50.1.145

    CAS  Article  PubMed  Google Scholar 

  110. Morton AJ (2018) Large-brained animal models of Huntington’s disease: sheep. Methods Mol Biol 1780:221–239. https://doi.org/10.1007/978-1-4939-7825-0_12

    CAS  Article  PubMed  Google Scholar 

  111. Myers RH, Sax DS, Koroshetz WJ et al (1991) Factors associated with slow progression in Huntington’s disease. Arch Neurol 48:800–804. https://doi.org/10.1001/archneur.1991.00530200036015

    CAS  Article  PubMed  Google Scholar 

  112. Nambron R, Silajdžić E, Kalliolia E et al (2016) A metabolic study of Huntington’s disease. PLoS ONE 11:e0146480. https://doi.org/10.1371/journal.pone.0146480

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  113. Niccolini F, Haider S, Reis Marques T et al (2015) Altered PDE10A expression detectable early before symptomatic onset in Huntington’s disease. Brain 138:3016–3029. https://doi.org/10.1093/brain/awv214

    Article  PubMed  Google Scholar 

  114. Nielsen SMB, Hasholt L, Nørremølle A, Josefsen K (2015) Progressive impairment of lactate-based gluconeogenesis in the Huntington’s disease mouse model R6/2. PLoS Curr. https://doi.org/10.1371/currents.hd.019b33aae1c519e6e8b68e7cf3e7818e

    Article  PubMed  PubMed Central  Google Scholar 

  115. Nielsen SMB, Vinther-Jensen T, Nielsen JE et al (2016) Liver function in Huntington’s disease assessed by blood biochemical analyses in a clinical setting. J Neurol Sci 362:326–332. https://doi.org/10.1016/j.jns.2016.02.018

    CAS  Article  PubMed  Google Scholar 

  116. Panov AV, Gutekunst C-A, Leavitt BR et al (2002) Early mitochondrial calcium defects in Huntington’s disease are a direct effect of polyglutamines. Nat Neurosci 5:731–736. https://doi.org/10.1038/nn884

    CAS  Article  PubMed  Google Scholar 

  117. Patassini S, Begley P, Xu J et al (2016) Metabolite mapping reveals severe widespread perturbation of multiple metabolic processes in Huntington’s disease human brain. Biochim Biophys Acta 1862:1650–1662. https://doi.org/10.1016/j.bbadis.2016.06.002

    CAS  Article  PubMed  Google Scholar 

  118. Paulsen JS, Langbehn DR, Stout JC et al (2008) Detection of Huntington’s disease decades before diagnosis: the Predict-HD study. J Neurol Neurosurg Psychiatry 79:874–880. https://doi.org/10.1136/jnnp.2007.128728

    CAS  Article  PubMed  Google Scholar 

  119. Petersén A, Björkqvist M (2006) Hypothalamic-endocrine aspects in Huntington’s disease. Eur J Neurosci 24:961–967. https://doi.org/10.1111/j.1460-9568.2006.04985.x

    Article  PubMed  Google Scholar 

  120. Phan J, Hickey MA, Zhang P et al (2009) Adipose tissue dysfunction tracks disease progression in two Huntington’s disease mouse models. Hum Mol Genet 18:1006–1016. https://doi.org/10.1093/hmg/ddn428

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  121. Podolsky S, Leopold NA (1977) Abnormal glucose tolerance and arginine tolerance tests in Huntington’s disease. Gerontology 23:55–63. https://doi.org/10.1159/000212174

    CAS  Article  PubMed  Google Scholar 

  122. Podolsky S, Leopold NA, Sax DS (1972) Increased frequency of diabetes mellitus in patients with Huntington’s chorea. Lancet 1:1356–1358. https://doi.org/10.1016/s0140-6736(72)91092-6

    CAS  Article  PubMed  Google Scholar 

  123. Polyzos AA, Lee DY, Datta R et al (2019) Metabolic reprogramming in astrocytes distinguishes region-specific neuronal susceptibility in Huntington mice. Cell Metab 29:1258-1273.e11. https://doi.org/10.1016/j.cmet.2019.03.004

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  124. Popovic V, Svetel M, Djurovic M et al (2004) Circulating and cerebrospinal fluid ghrelin and leptin: potential role in altered body weight in Huntington’s disease. Eur J Endocrinol 151:451–455. https://doi.org/10.1530/eje.0.1510451

    CAS  Article  PubMed  Google Scholar 

  125. Potkin KT, Potkin SG (2018) New directions in therapeutics for Huntington disease. Future Neurol 13:101–121. https://doi.org/10.2217/fnl-2017-0035

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  126. Reiner A, Dragatsis I, Dietrich P (2011) Genetics and neuropathology of Huntington’s disease. Int Rev Neurobiol 98:325–372. https://doi.org/10.1016/B978-0-12-381328-2.00014-6

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  127. Rodinova M, Krizova J, Stufkova H et al (2019) Deterioration of mitochondrial bioenergetics and ultrastructure impairment in skeletal muscle of a transgenic minipig model in the early stages of Huntington’s disease. Dis Model Mech 12:dmm038737. https://doi.org/10.1242/dmm.038737

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  128. Rodrigues FB, Ferreira JJ, Wild EJ (2019) Huntington’s disease clinical trials corner: June 2019. J Huntingtons Dis 8:363–371. https://doi.org/10.3233/JHD-199003

    Article  PubMed  PubMed Central  Google Scholar 

  129. Roos RAC (2010) Huntington’s disease: a clinical review. Orphanet J Rare Dis 5:40. https://doi.org/10.1186/1750-1172-5-40

    Article  PubMed  PubMed Central  Google Scholar 

  130. Rosas HD, Koroshetz WJ, Chen YI et al (2003) Evidence for more widespread cerebral pathology in early HD: an MRI-based morphometric analysis. Neurology 60:1615–1620. https://doi.org/10.1212/01.wnl.0000065888.88988.6e

    CAS  Article  PubMed  Google Scholar 

  131. Rosenblatt A, Brinkman RR, Liang KY et al (2001) Familial influence on age of onset among siblings with Huntington disease. Am J Med Genet 105:399–403

    CAS  Article  Google Scholar 

  132. Russell DS, Barret O, Jennings DL, Friedman JH, Tamagnan GD, Thomae D, Alagille D, Morley TJ, Papin C, Papapetropoulos S, Waterhouse RN, Seibyl JP, Marek KL (2014) The phosphodiesterase 10 positron emission tomography tracer, [18F]MNI-659, as a novel biomarker for early Huntington disease. JAMA Neurol 71(12):1520–1528. https://doi.org/10.1001/jamaneurol.2014.1954

    Article  PubMed  Google Scholar 

  133. Russo CV, Salvatore E, Saccà F et al (2013) Insulin sensitivity and early-phase insulin secretion in normoglycemic Huntington’s disease patients. J Huntingtons Dis 2:501–507. https://doi.org/10.3233/JHD-130078

    CAS  Article  PubMed  Google Scholar 

  134. Saleh N, Moutereau S, Durr A et al (2009) Neuroendocrine disturbances in Huntington’s disease. PLoS ONE 4:e4962. https://doi.org/10.1371/journal.pone.0004962

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  135. Salem L, Saleh N, Désaméricq G et al (2016) Insulin-like growth factor-1 but not insulin predicts cognitive decline in Huntington’s disease. PLoS ONE 11:e0162890. https://doi.org/10.1371/journal.pone.0162890

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  136. Sassone J, Colciago C, Cislaghi G et al (2009) Huntington’s disease: the current state of research with peripheral tissues. Exp Neurol 219:385–397. https://doi.org/10.1016/j.expneurol.2009.05.012

    CAS  Article  PubMed  Google Scholar 

  137. Sathasivam K, Hobbs C, Turmaine M et al (1999) Formation of polyglutamine inclusions in non-CNS tissue. Hum Mol Genet 8:813–822. https://doi.org/10.1093/hmg/8.5.813

    CAS  Article  PubMed  Google Scholar 

  138. Schönberger SJ, Jezdic D, Faull RLM, Cooper GJS (2013) Proteomic analysis of the human brain in Huntington’s disease indicates pathogenesis by molecular processes linked to other neurodegenerative diseases and to type-2 diabetes. J Huntingtons Dis 2:89–99. https://doi.org/10.3233/JHD-120044

    CAS  Article  PubMed  Google Scholar 

  139. Schroeder AM, Wang HB, Park S et al (2016) Cardiac dysfunction in the BACHD mouse model of Huntington’s disease. PLoS ONE 11:e0147269. https://doi.org/10.1371/journal.pone.0147269

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  140. Schubotz R, Hausmann L, Kaffarnik H et al (1976) Fatty acid patterns and glucose tolerance in Huntington’s chorea (author’s transl). Res Exp Med 167:203–215. https://doi.org/10.1007/BF01851645

    CAS  Article  Google Scholar 

  141. Sciacca S, Favellato M, Madonna M et al (2017) Early enteric neuron dysfunction in mouse and human Huntington disease. Parkinsonism Relat Disord 34:73–74. https://doi.org/10.1016/j.parkreldis.2016.10.017

    Article  PubMed  Google Scholar 

  142. Sharma KR, Romano JG, Ayyar DR et al (1999) Sympathetic skin response and heart rate variability in patients with Huntington disease. Arch Neurol 56:1248–1252. https://doi.org/10.1001/archneur.56.10.1248

    CAS  Article  PubMed  Google Scholar 

  143. She P, Zhang Z, Marchionini D et al (2011) Molecular characterization of skeletal muscle atrophy in the R6/2 mouse model of Huntington’s disease. Am J Physiol Endocrinol Metab 301:E49-61. https://doi.org/10.1152/ajpendo.00630.2010

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  144. Shin H, Kim MH, Lee SJ et al (2013) Decreased metabolism in the cerebral cortex in early-stage Huntington’s disease: a possible biomarker of disease progression? J Clin Neurol 9:21–25. https://doi.org/10.3988/jcn.2013.9.1.21

    Article  PubMed  PubMed Central  Google Scholar 

  145. Silajdžić E, Björkqvist M (2018) A critical evaluation of wet biomarkers for Huntington’s disease: current status and ways forward. J Huntingtons Dis 7:109–135. https://doi.org/10.3233/JHD-170273

    Article  PubMed  PubMed Central  Google Scholar 

  146. Singh A, Agrawal N (2021) Deciphering the key mechanisms leading to alteration of lipid metabolism in Drosophila model of Huntington’s disease. Biochim Biophys Acta Mol Basis Dis 1867:166127. https://doi.org/10.1016/j.bbadis.2021.166127

    CAS  Article  PubMed  Google Scholar 

  147. Sjögren M, Duarte AI, McCourt AC et al (2017) Ghrelin rescues skeletal muscle catabolic profile in the R6/2 mouse model of Huntington’s disease. Sci Rep 7:13896. https://doi.org/10.1038/s41598-017-13713-5

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  148. Sjögren M, Soylu-Kucharz R, Dandunna U et al (2019) Leptin deficiency reverses high metabolic state and weight loss without affecting central pathology in the R6/2 mouse model of Huntington’s disease. Neurobiol Dis 132:104560. https://doi.org/10.1016/j.nbd.2019.104560

    CAS  Article  PubMed  Google Scholar 

  149. Skene DJ, Middleton B, Fraser CK et al (2017) Metabolic profiling of presymptomatic Huntington’s disease sheep reveals novel biomarkers. Sci Rep 7:43030. https://doi.org/10.1038/srep43030

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  150. Skotte NH, Andersen JV, Santos A et al (2018) Integrative characterization of the R6/2 mouse model of Huntington’s disease reveals dysfunctional astrocyte metabolism. Cell Rep 23:2211–2224. https://doi.org/10.1016/j.celrep.2018.04.052

    CAS  Article  PubMed  Google Scholar 

  151. Steffan JS, Bodai L, Pallos J et al (2001) Histone deacetylase inhibitors arrest polyglutamine-dependent neurodegeneration in Drosophila. Nature 413:739–743. https://doi.org/10.1038/35099568

    CAS  Article  PubMed  Google Scholar 

  152. Stower H (2018) A pig model of Huntington’s disease. Nat Med 24:898. https://doi.org/10.1038/s41591-018-0119-2

    CAS  Article  PubMed  Google Scholar 

  153. Strand AD, Aragaki AK, Shaw D et al (2005) Gene expression in Huntington’s disease skeletal muscle: a potential biomarker. Hum Mol Genet 14:1863–1876. https://doi.org/10.1093/hmg/ddi192

    CAS  Article  PubMed  Google Scholar 

  154. Stüwe SH, Goetze O, Lukas C et al (2013) Hepatic mitochondrial dysfunction in manifest and premanifest Huntington disease. Neurology 80:743–746. https://doi.org/10.1212/WNL.0b013e318282514e

    CAS  Article  PubMed  Google Scholar 

  155. Sugars KL, Rubinsztein DC (2003) Transcriptional abnormalities in Huntington disease. Trends Genet 19:233–238. https://doi.org/10.1016/S0168-9525(03)00074-X

    CAS  Article  PubMed  Google Scholar 

  156. Süssmuth SD, Müller VM, Geitner C, Landwehrmeyer GB, Iff S, Gemperli A, Orth M (2015) Fatfree mass and its predictors in Huntington’s disease. J Neurol 262(6):1533–1540. https://doi.org/10.1007/s00415-015-7753-0

    CAS  Article  PubMed  Google Scholar 

  157. Tabrizi SJ, Cleeter MW, Xuereb J et al (1999) Biochemical abnormalities and excitotoxicity in Huntington’s disease brain. Ann Neurol 45:25–32

    CAS  Article  Google Scholar 

  158. Tabrizi SJ, Workman J, Hart PE et al (2000) Mitochondrial dysfunction and free radical damage in the Huntington R6/2 transgenic mouse. Ann Neurol 47:80–86

    CAS  Article  Google Scholar 

  159. Tabrizi SJ, Scahill RI, Durr A et al (2011) Biological and clinical changes in premanifest and early stage Huntington’s disease in the TRACK-HD study: the 12-month longitudinal analysis. Lancet Neurol 10:31–42. https://doi.org/10.1016/S1474-4422(10)70276-3

    Article  PubMed  Google Scholar 

  160. Tabrizi SJ, Reilmann R, Roos RAC et al (2012) Potential endpoints for clinical trials in premanifest and early Huntington’s disease in the TRACK-HD study: analysis of 24 month observational data. Lancet Neurol 11:42–53. https://doi.org/10.1016/S1474-4422(11)70263-0

    Article  PubMed  Google Scholar 

  161. Tang T-S, Chen X, Liu J, Bezprozvanny I (2007) Dopaminergic signaling and striatal neurodegeneration in Huntington’s disease. J Neurosci 27:7899–7910. https://doi.org/10.1523/JNEUROSCI.1396-07.2007

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  162. Tang CC, Feigin A, Ma Y et al (2013) Metabolic network as a progression biomarker of premanifest Huntington’s disease. J Clin Investig 123:4076–4088. https://doi.org/10.1172/JCI69411

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  163. Toczek M, Kutryb-Zajac B, Zukowska P et al (2016) Changes in cardiac nucleotide metabolism in Huntington’s disease. Nucleosides Nucleotides Nucleic Acids 35:707–712. https://doi.org/10.1080/15257770.2016.1154969

    CAS  Article  PubMed  Google Scholar 

  164. Trejo A, Tarrats RM, Alonso ME et al (2004) Assessment of the nutrition status of patients with Huntington’s disease. Nutrition 20:192–196. https://doi.org/10.1016/j.nut.2003.10.007

    CAS  Article  PubMed  Google Scholar 

  165. Turner C, Cooper JM, Schapira AHV (2007) Clinical correlates of mitochondrial function in Huntington’s disease muscle. Mov Disord 22:1715–1721. https://doi.org/10.1002/mds.21540

    Article  PubMed  Google Scholar 

  166. van der Burg JMM, Björkqvist M, Brundin P (2009) Beyond the brain: widespread pathology in Huntington’s disease. Lancet Neurol 8:765–774. https://doi.org/10.1016/S1474-4422(09)70178-4

    Article  PubMed  Google Scholar 

  167. van der Burg JMM, Winqvist A, Aziz NA et al (2011) Gastrointestinal dysfunction contributes to weight loss in Huntington’s disease mice. Neurobiol Dis 44:1–8. https://doi.org/10.1016/j.nbd.2011.05.006

    Article  PubMed  Google Scholar 

  168. van der Burg JMM, Gardiner SL, Ludolph AC et al (2017) Body weight is a robust predictor of clinical progression in Huntington disease. Ann Neurol 82:479–483. https://doi.org/10.1002/ana.25007

    Article  PubMed  Google Scholar 

  169. Wang R, Ross CA, Cai H et al (2014) Metabolic and hormonal signatures in pre-manifest and manifest Huntington’s disease patients. Front Physiol 5:231. https://doi.org/10.3389/fphys.2014.00231

    Article  PubMed  PubMed Central  Google Scholar 

  170. Wasser CI, Mercieca E-C, Kong G et al (2020) Gut dysbiosis in Huntington’s disease: associations among gut microbiota, cognitive performance and clinical outcomes. Brain Commun 2:110. https://doi.org/10.1093/braincomms/fcaa110

    CAS  Article  Google Scholar 

  171. Weir DW, Sturrock A, Leavitt BR (2011) Development of biomarkers for Huntington’s disease. Lancet Neurol 10:573–590. https://doi.org/10.1016/S1474-4422(11)70070-9

    CAS  Article  PubMed  Google Scholar 

  172. Weydt P, Pineda VV, Torrence AE et al (2006) Thermoregulatory and metabolic defects in Huntington’s disease transgenic mice implicate PGC-1alpha in Huntington’s disease neurodegeneration. Cell Metab 4:349–362. https://doi.org/10.1016/j.cmet.2006.10.004

    CAS  Article  PubMed  Google Scholar 

  173. Wood NI, Goodman AOG, van der Burg JMM et al (2008) Increased thirst and drinking in Huntington’s disease and the R6/2 mouse. Brain Res Bull 76:70–79. https://doi.org/10.1016/j.brainresbull.2007.12.007

    CAS  Article  PubMed  Google Scholar 

  174. Young AB, Penney JB, Starosta-Rubinstein S et al (1986) PET scan investigations of Huntington’s disease: cerebral metabolic correlates of neurological features and functional decline. Ann Neurol 20:296–303. https://doi.org/10.1002/ana.410200305

    CAS  Article  PubMed  Google Scholar 

  175. Zielonka D, Piotrowska I, Marcinkowski JT, Mielcarek M (2014) Skeletal muscle pathology in Huntington’s disease. Front Physiol 5:380. https://doi.org/10.3389/fphys.2014.00380

    Article  PubMed  PubMed Central  Google Scholar 

  176. Zielonka D, Witkowski G, Puch EA et al (2020) Prevalence of non-psychiatric comorbidities in pre-symptomatic and symptomatic Huntington’s disease gene carriers in Poland. Front Med 7:79. https://doi.org/10.3389/fmed.2020.00079

    Article  Google Scholar 

Download references

Acknowledgements

A.S. acknowledges Council of Scientific and Industrial Research, India for financial assistance received in the form of research fellowship.

Funding

The authors did not receive support from any organization for the submitted work.

Author information

Affiliations

Authors

Contributions

NA and AS conceived the idea, AS performed literature survey, AS drafted the original manuscript, NA and AS critically revised the Drafts.

Corresponding author

Correspondence to Namita Agrawal.

Ethics declarations

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Singh, A., Agrawal, N. Metabolism in Huntington’s disease: a major contributor to pathology. Metab Brain Dis (2021). https://doi.org/10.1007/s11011-021-00844-y

Download citation

Keywords

  • Neurodegeneration
  • Huntington’s disease
  • Metabolic dysfunction
  • Peripheral tissues
  • Biomarker potential
  • Therapeutics