Skip to main content
Log in

Profiles of urine and blood metabolomics in autism spectrum disorders

Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

Early diagnosis and treatment for autism spectrum disorder (ASD) pose challenges. The current diagnostic approach for ASD is mainly clinical assessment of patient behaviors. Biomarkers-based identification of ASD would be useful for pediatricians. Currently, there is no specific treatment for ASD, and evidence for the efficacy of alternative treatments remains inconclusive. The prevalence of ASD is increasing, and it is becoming more urgent to find the pathogenesis of such disorder. Metabolomic studies have been used to deeply investigate the alteration of metabolic pathways, including those associated with ASD. Metabolomics is a promising tool for identifying potential biomarkers and possible pathogenesis of ASD. This review comprehensively summarizes and discusses the abnormal metabolic pathways in ASD children, as indicated by evidence from metabolomic studies in urine and blood. In addition, the targeted interventions that could correct the metabolomic profiles relating to the improvement of autistic behaviors in affected animals and humans have been included. The results revealed that the possible underlying pathophysiology of ASD were alterations of amino acids, reactive oxidative stress, neurotransmitters, and microbiota-gut-brain axis. The potential common pathways shared by animal and human studies related to the improvement of ASD symptoms after pharmacological interventions were mammalian-microbial co-metabolite, purine metabolism, and fatty acid oxidation. The content of this review may contribute to novel biomarkers for the early diagnosis of ASD and possible therapeutic paradigms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

References

  • Amminger GP, Berger GE, Schäfer MR et al (2007) Omega-3 fatty acids supplementation in children with autism: a double-blind randomized, placebo-controlled pilot study. Biol Psychiatry 61:551–553

    Article  CAS  PubMed  Google Scholar 

  • Anwar A, Abruzzo PM, Pasha S et al (2018) Advanced glycation endproducts, dityrosine and arginine transporter dysfunction in autism: a source of biomarkers for clinical diagnosis. Mol Autism 9:3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bae YS, Choi MK, Lee WJ (2010) Dual oxidase in mucosal immunity and host-microbe homeostasis. Trends Immunol 31:278–287

    Article  CAS  PubMed  Google Scholar 

  • Behnia F, Parets SE, Kechichian T et al (2015) Fetal DNA methylation of autism spectrum disorders candidate genes: association with spontaneous preterm birth. Am J Obstet Gynecol 212:533.e531-533.e539

    Google Scholar 

  • Beloborodova N, Bairamov I, Olenin A et al (2012) Effect of phenolic acids of microbial origin on production of reactive oxygen species in mitochondria and neutrophils. J Biomed Sci 19:89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bent S, Lawton B, Warren T et al (2018) Identification of urinary metabolites that correlate with clinical improvements in children with autism treated with sulforaphane from broccoli. Mol Autism 9:35

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bitar T, Mavel S, Emond P et al (2018) Identification of metabolic pathway disturbances using multimodal metabolomics in autistic disorders in a middle eastern population. J Pharm Biomed Anal 152:57–65

    Article  CAS  PubMed  Google Scholar 

  • Cai J, Ding L, Zhang J-S et al (2016) Elevated plasma levels of glutamate in children with autism spectrum disorders. NeuroReport 27:272

    Article  CAS  PubMed  Google Scholar 

  • Chang S, Linderholm A, Franzi L et al (2013) Dual oxidase regulates neutrophil recruitment in allergic airways. Free Radic Biol Med 65:38–46

    Article  CAS  PubMed  Google Scholar 

  • Chaste P, Leboyer M (2012) Autism risk factors: genes, environment, and gene-environment interactions. Dialogues Clin Neurosci 14:281–292

    Article  PubMed  PubMed Central  Google Scholar 

  • Chauhan A, Chauhan V (2006) Oxidative stress in autism. Pathophysiology 13:171–181

    Article  CAS  PubMed  Google Scholar 

  • Chen Q, Qiao Y, Xu XJ et al (2019) Urine organic acids as potential biomarkers for autism-spectrum disorder in Chinese children. Front Cell Neurosci 13:150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cogram P, Alkon DL, Crockford D et al (2020) Chronic bryostatin-1 rescues autistic and cognitive phenotypes in the fragile x mice. Sci Rep 10:18058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cohen BI (2002) The significance of ammonia/gamma-aminobutyric acid (gaba) ratio for normality and liver disorders. Med Hypotheses 59:757–758

    Article  CAS  PubMed  Google Scholar 

  • Cozzolino R, De Magistris L, Saggese P et al (2014) Use of solid-phase microextraction coupled to gas chromatography–mass spectrometry for determination of urinary volatile organic compounds in autistic children compared with healthy controls. Anal Bioanal Chem 406:4649–4662

    Article  CAS  PubMed  Google Scholar 

  • da Silva Montenegro EM, Costa CS, Campos G et al (2020) Meta-analyses support previous and novel autism candidate genes: outcomes of an unexplored Brazilian cohort. Autism Res 13:199–206

    Article  PubMed  Google Scholar 

  • Damodaran LPM, Arumugam G (2011) Urinary oxidative stress markers in children with autism. Redox Rep 16:216–222

    Article  CAS  PubMed  Google Scholar 

  • Delaye J-B, Patin F, Lagrue E et al (2018) Post hoc analysis of plasma amino acid profiles: towards a specific pattern in autism spectrum disorder and intellectual disability. Ann Clin Biochem 55:543–552

    Article  CAS  PubMed  Google Scholar 

  • Delwing D, Delwing D, Bavaresco CS et al (2008) Protective effect of nitric oxide synthase inhibition or antioxidants on brain oxidative damage caused by intracerebroventricular arginine administration. Brain Res 1193:120–127

    Article  CAS  PubMed  Google Scholar 

  • Diémé B, Mavel S, Blasco H et al (2015) Metabolomics study of urine in autism spectrum disorders using a multiplatform analytical methodology. J Proteome Res 14:5273–5282

    Article  PubMed  CAS  Google Scholar 

  • Dietert RR, Dietert JM, Dewitt JC (2011) Environmental risk factors for autism. Emerg Health Threats J 4:7111–7111

    Article  PubMed  Google Scholar 

  • El-Ansary A, Chirumbolo S, Bhat RS et al (2020) The role of lipidomics in autism spectrum disorder. Mol Diagn Ther 24:31–48

    Article  CAS  PubMed  Google Scholar 

  • Emberti Gialloreti L, Curatolo P (2018) Autism spectrum disorder: why do we know so little? Front Neurol 9:670–670

    Article  PubMed  PubMed Central  Google Scholar 

  • Emond P, Mavel S, Aïdoud N et al (2013) Gc-ms-based urine metabolic profiling of autism spectrum disorders. Anal Bioanal Chem 405:5291–5300

    Article  CAS  PubMed  Google Scholar 

  • Espinós C, Pineda M, Martinez Rubio MD et al (2009) Mutations in the urocanase gene uroc1 are associated with urocanic aciduria. J Med Genet 46:407–411

    Article  PubMed  CAS  Google Scholar 

  • Fattorusso A, Di Genova L, Dell’Isola GB et al (2019) Autism spectrum disorders and the gut microbiota. Nutrients 11:521

    Article  CAS  PubMed Central  Google Scholar 

  • Frye RE (2015) Metabolic and mitochondrial disorders associated with epilepsy in children with autism spectrum disorder. Epilepsy Behav 47:147–157

    Article  PubMed  Google Scholar 

  • Gevi F, Belardo A, Zolla L (2020) A metabolomics approach to investigate urine levels of neurotransmitters and related metabolites in autistic children. Biochim Biophys Acta Mol Basis Dis 1866:165859

    Article  CAS  PubMed  Google Scholar 

  • Gevi F, Zolla L, Gabriele S et al (2016) Urinary metabolomics of young Italian autistic children supports abnormal tryptophan and purine metabolism. Mol Autism 7:47

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ghezzo A, Visconti P, Abruzzo PM et al (2013) Oxidative stress and erythrocyte membrane alterations in children with autism: correlation with clinical features. PLoS ONE 8:e66418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glinton KE, Elsea SH (2019) Untargeted metabolomics for autism spectrum disorders: current status and future directions. Front Psych 10:647–647

    Article  Google Scholar 

  • Görker I, Tüzün U (2005) Autistic-like findings associated with a urea cycle disorder in a 4-year-old girl. J Psychiatry Neurosci 30:133–135

    PubMed  PubMed Central  Google Scholar 

  • Grimaldi R, Gibson GR, Vulevic J et al (2018) A prebiotic intervention study in children with autism spectrum disorders (asds). Microbiome 6:133

    Article  PubMed  PubMed Central  Google Scholar 

  • Hannon E, Schendel D, Ladd-Acosta C et al (2018) Elevated polygenic burden for autism is associated with differential DNA methylation at birth. Genome Med 10:19

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hansen SN, Schendel DE, Parner ET (2015) Explaining the increase in the prevalence of autism spectrum disorders: the proportion attributable to changes in reporting practices. JAMA Pediatr 169:56–62

    Article  PubMed  Google Scholar 

  • Hassan T, Abdelrahman H, Fattah N et al (2013) Blood and brain glutamate levels in children with autistic disorder. Res Autism Spectr Disord 7:541–548

    Article  Google Scholar 

  • Horder J, Petrinovic MM, Mendez MA et al (2018) Glutamate and gaba in autism spectrum disorder—a translational magnetic resonance spectroscopy study in man and rodent models. Transl Psychiatry 8:106

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Huerta M, Lord C (2012) Diagnostic evaluation of autism spectrum disorders. Pediatr Clin N Am 59:103–xi

    Article  Google Scholar 

  • Kałużna-Czaplińska J (2011) Noninvasive urinary organic acids test to assess biochemical and nutritional individuality in autistic children. Clin Biochem 44:686–691

    Article  PubMed  CAS  Google Scholar 

  • Kang D-W, Adams JB, Coleman DM et al (2019) Long-term benefit of microbiota transfer therapy on autism symptoms and gut microbiota. Sci Rep 9:5821

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kelly RS, Boulin A, Laranjo N et al (2019) Metabolomics and communication skills development in children; evidence from the ages and stages questionnaire. Metabolites 9:42

    Article  CAS  PubMed Central  Google Scholar 

  • Kuwabara H, Yamasue H, Koike S et al (2013) Altered metabolites in the plasma of autism spectrum disorder: a capillary electrophoresis time-of-flight mass spectroscopy study. PLoS ONE 8:e73814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ladd-Acosta C, Hansen KD, Briem E et al (2014) Common DNA methylation alterations in multiple brain regions in autism. Mol Psychiatry 19:862–871

    Article  CAS  PubMed  Google Scholar 

  • Li Q, Han Y, Dy ABC et al (2017) The gut microbiota and autism spectrum disorders. Front Cell Neurosci 11:120–120

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liang Y, Ke X, Xiao Z et al (2020a) Untargeted metabolomic profiling using UHPLC-QTOF/MS reveals metabolic alterations associated with autism. BioMed Res Int 2020:6105608

    Article  PubMed  PubMed Central  Google Scholar 

  • Liang Y, Xiao Z, Ke X et al (2020b) Urinary metabonomic profiling discriminates between children with autism and their healthy siblings. Med Sci Monit 26:e926634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu A, Zhou W, Qu L et al (2019) Altered urinary amino acids in children with autism spectrum disorders. Front Cell Neurosci 13:7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lussu M, Noto A, Masili A et al (2017) The urinary (1) h-nmr metabolomics profile of an Italian autistic children population and their unaffected siblings. Autism Res 10:1058–1066

    Article  PubMed  Google Scholar 

  • Lv QQ, You C, Zou XB et al (2018) Acyl-carnitine, c5dc, and c26 as potential biomarkers for diagnosis of autism spectrum disorder in children. Psychiatry Res 267:277–280

    Article  CAS  PubMed  Google Scholar 

  • Mavel S, Nadal-Desbarats L, Blasco H et al (2013) 1h–13c nmr-based urine metabolic profiling in autism spectrum disorders. Talanta 114:95–102

    Article  CAS  PubMed  Google Scholar 

  • Mazahery H, Stonehouse W, Delshad M et al (2017) Relationship between long chain n-3 polyunsaturated fatty acids and autism spectrum disorder: systematic review and meta-analysis of case-control and randomised controlled trials. Nutrients 9:155

    Article  PubMed Central  CAS  Google Scholar 

  • McGuinness G, Kim Y (2020) Sulforaphane treatment for autism spectrum disorder: a systematic review. EXCLI J 19:892–903

    PubMed  PubMed Central  Google Scholar 

  • Meguid NA, Dardir AA, Abdel-Raouf ER et al (2011) Evaluation of oxidative stress in autism: defective antioxidant enzymes and increased lipid peroxidation. Biol Trace Elem Res 143:58–65

    Article  CAS  PubMed  Google Scholar 

  • Melke J, Goubran Botros H, Chaste P et al (2008) Abnormal melatonin synthesis in autism spectrum disorders. Mol Psychiatry 13:90–98

    Article  CAS  PubMed  Google Scholar 

  • Ming X, Stein TP, Barnes V et al (2012) Metabolic perturbance in autism spectrum disorders: a metabolomics study. J Proteome Res 11:5856–5862

    Article  CAS  PubMed  Google Scholar 

  • Ming X, Stein TP, Brimacombe M et al (2005) Increased excretion of a lipid peroxidation biomarker in autism. Prostaglandins Leukot Essent Fatty Acids 73:379–384

    Article  CAS  PubMed  Google Scholar 

  • Mitsubuchi H, Nakamura K, Matsumoto S et al (2008) Inborn errors of proline metabolism. J Nutr 138:2016S-2020S

    Article  CAS  PubMed  Google Scholar 

  • Monné M, Vozza A, Lasorsa FM et al (2019) Mitochondrial carriers for aspartate, glutamate and other amino acids: a review. Int J Mol Sci 20:4456

    Article  PubMed Central  CAS  Google Scholar 

  • Mussap M, Noto A, Fanos V (2016) Metabolomics of autism spectrum disorders: early insights regarding mammalian-microbial cometabolites. Expert Rev Mol Diagn 16:869–881

    Article  CAS  PubMed  Google Scholar 

  • Mussap M, Siracusano M, Noto A et al (2020) The urine metabolome of young autistic children correlates with their clinical profile severity. Metabolites 10:476

    Article  CAS  PubMed Central  Google Scholar 

  • Nadal-Desbarats L, Aïdoud N, Emond P et al (2014) Combined 1h-nmr and 1h–13c hsqc-nmr to improve urinary screening in autism spectrum disorders. Analyst 139:3460–3468

    Article  CAS  PubMed  Google Scholar 

  • Nadeem A, Fayaz Ahmad S, Al-Harbi N et al (2019) Nrf2 activator, sulforaphane ameliorates autism-like symptoms through suppression of th17 related signaling and rectification of oxidant-antioxidant imbalance in periphery and brain of btbr t+tf/j mice. Behav Brain Res 364:213–224

    Article  CAS  PubMed  Google Scholar 

  • Naushad SM, Jain JM, Prasad CK et al (2013) Autistic children exhibit distinct plasma amino acid profile. Indian J Biochem Biophys 50:474–478

    CAS  PubMed  Google Scholar 

  • Naviaux JC, Schuchbauer MA, Li K et al (2014) Reversal of autism-like behaviors and metabolism in adult mice with single-dose antipurinergic therapy. Transl Psychiatry 4:e400–e400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Naviaux JC, Wang L, Li K et al (2015) Antipurinergic therapy corrects the autism-like features in the fragile x (fmr1 knockout) mouse model. Mol Autism 6:1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Naviaux RK (2014) Metabolic features of the cell danger response. Mitochondrion 16:7–17

    Article  CAS  PubMed  Google Scholar 

  • Naviaux RK, Curtis B, Li K et al (2017) Low-dose suramin in autism spectrum disordera: a small, phase i/ii, randomized clinical trial. Ann Clin Transl Neurol 4:491–505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niu X, Zheng S, Liu H et al (2018) Protective effects of taurine against inflammation, apoptosis, and oxidative stress in brain injury. Mol Med Rep 18:4516–4522

    CAS  PubMed  PubMed Central  Google Scholar 

  • Noto A, Fanos V, Barberini L et al (2014) The urinary metabolomics profile of an Italian autistic children population and their unaffected siblings. J Maternal Fetal Neonatal Med 27(Suppl 2):46–52

    Article  CAS  Google Scholar 

  • Novarino G, El-Fishawy P, Kayserili H et al (2012) Mutations in bckd-kinase lead to a potentially treatable form of autism with epilepsy. Science 338:394–397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olesova D, Galba J, Piestansky J et al (2020) A novel UHPLC-MS method targeting urinary metabolomic markers for autism spectrum disorder. Metabolites 10:443

    Article  CAS  PubMed Central  Google Scholar 

  • Orozco JS, Hertz-Picciotto I, Abbeduto L et al (2019) Metabolomics analysis of children with autism, idiopathic-developmental delays, and down syndrome. Transl Psychiatry 9:243

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Palmieri L, Papaleo V, Porcelli V et al (2010) Altered calcium homeostasis in autism-spectrum disorders: evidence from biochemical and genetic studies of the mitochondrial aspartate/glutamate carrier agc1. Mol Psychiatry 15:38–52

    Article  CAS  PubMed  Google Scholar 

  • Parletta N, Niyonsenga T, Duff J (2016) Omega-3 and omega-6 polyunsaturated fatty acid levels and correlations with symptoms in children with attention deficit hyperactivity disorder, autistic spectrum disorder and typically developing controls. PLoS ONE 11:e0156432

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rangel-Huerta OD, Gomez-Fernández A, de la Torre-Aguilar MJ et al (2019) Metabolic profiling in children with autism spectrum disorder with and without mental regression: preliminary results from a cross-sectional case–control study. Metabolomics 15:99

    Article  CAS  PubMed  Google Scholar 

  • Safiulina D, Peet N, Seppet E et al (2006) Dehydroepiandrosterone inhibits complex i of the mitochondrial respiratory chain and is neurotoxic in vitro and in vivo at high concentrations. Toxicol Sci 93:348–356

    Article  CAS  PubMed  Google Scholar 

  • Singh K, Connors SL, Macklin EA et al (2014) Sulforaphane treatment of autism spectrum disorder (ASD). Proc Natl Acad Sci USA 111:15550–15555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith AM, King JJ, West PR et al (2019) Amino acid dysregulation metabotypes: potential biomarkers for diagnosis and individualized treatment for subtypes of autism spectrum disorder. Biol Psychiatry 85:345–354

    Article  CAS  PubMed  Google Scholar 

  • Tirouvanziam R, Obukhanych TV, Laval J et al (2012) Distinct plasma profile of polar neutral amino acids, leucine, and glutamate in children with autism spectrum disorders. J Autism Dev Disord 42:827–836

    Article  PubMed  Google Scholar 

  • Toczylowska B, Zieminska E, Senator P et al (2020) Hippocampal metabolite profiles in two rat models of autism: NMR-based metabolomics studies. Mol Neurobiol 57:3089–3105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang H, Liang S, Wang M et al (2016) Potential serum biomarkers from a metabolomics study of autism. J Psychiatry Neurosci 41:27–37

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang L, Christophersen CT, Sorich MJ et al (2012) Elevated fecal short chain fatty acid and ammonia concentrations in children with autism spectrum disorder. Dig Dis Sci 57:2096–2102

    Article  CAS  PubMed  Google Scholar 

  • West PR, Amaral DG, Bais P et al (2014) Metabolomics as a tool for discovery of biomarkers of autism spectrum disorder in the blood plasma of children. PLoS ONE 9:e112445

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Willets JM, Lunec J, Williams AC et al (1993) Neurotoxicity of nicotinamide derivatives. Biochem Soc Trans 21:299S-299S

    Article  CAS  PubMed  Google Scholar 

  • Williams AC, Pall HS, Steventon GB et al (1993) N-methylation of pyridines and Parkinson’s disease. Adv Neurol 60:194–196

    CAS  PubMed  Google Scholar 

  • Wu Z, Huang S, Zou J et al (2020) Autism spectrum disorder (ASD): disturbance of the melatonin system and its implications. Biomed Pharmacother 130:110496

    Article  CAS  PubMed  Google Scholar 

  • Xiong X, Liu D, He W et al (2019) Identification of gender-related metabolic disturbances in autism spectrum disorders using urinary metabolomics. Int J Biochem Cell Biol 115:105594

    Article  CAS  PubMed  Google Scholar 

  • Xiong X, Liu D, Wang Y et al (2016) Urinary 3-(3-hydroxyphenyl)-3-hydroxypropionic acid, 3-hydroxyphenylacetic acid, and 3-hydroxyhippuric acid are elevated in children with autism spectrum disorders. Biomed Res Int 2016:9485412

    Article  PubMed  PubMed Central  Google Scholar 

  • Yap IKS, Angley M, Veselkov KA et al (2010) Urinary metabolic phenotyping differentiates children with autism from their unaffected siblings and age-matched controls. J Proteome Res 9:2996–3004

    Article  CAS  PubMed  Google Scholar 

  • Yorbik O, Sayal A, Akay C et al (2002) Investigation of antioxidant enzymes in children with autistic disorder. Prostaglandins Leukot Essent Fatty Acids 67:341–343

    Article  CAS  PubMed  Google Scholar 

  • Yui K, Koshiba M, Nakamura S et al (2012) Effects of large doses of arachidonic acid added to docosahexaenoic acid on social impairment in individuals with autism spectrum disorders: a double-blind, placebo-controlled, randomized trial. J Clin Psychopharmacol 32:200–206

    Article  CAS  PubMed  Google Scholar 

  • Yui K, Tanuma N, Yamada H et al (2017) Decreased total antioxidant capacity has a larger effect size than increased oxidant levels in urine in individuals with autism spectrum disorder. Environ Sci Pollut Res 24:9635–9644

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Senior Research Scholar grant from the National Research Council of Thailand (S.C.C.), the Thailand Science Research and Innovation MRG6280014 (C.T.), the NSTDA Research Chair grant from the National Science and Technology Development Agency Thailand (N.C.), and the Chiang Mai University Center of Excellence Award Thailand (N.C.). National Institute of General Medical Sciences of the National Institutes of Health (P20GM125503) award to I.N.

Author information

Authors and Affiliations

Authors

Contributions

NL, CT, NB, OL, and SCC developed the study concept. NL and CT drafted the manuscript. OL, IN, NC, and SCC provided critical edits and revisions. All of the authors provided revisions and approved the final version of the paper for submission.

Corresponding author

Correspondence to Siriporn C. Chattipakorn.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to disclose.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Likhitweerawong, N., Thonusin, C., Boonchooduang, N. et al. Profiles of urine and blood metabolomics in autism spectrum disorders. Metab Brain Dis 36, 1641–1671 (2021). https://doi.org/10.1007/s11011-021-00788-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11011-021-00788-3

Keywords

Navigation