Skip to main content

Advertisement

Log in

Mesenchymal stem cell therapies for Alzheimer’s disease: preclinical studies

  • Review Article
  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

Alzheimer’s disease (AD) is a chronic, progressive, and fatal neurodegenerative disorder that is characterized by memory failure, cognitive impairment, as well as behavioral and psychological manifestations. Drugs can only moderately manage, but not alleviate, clinical symptoms. Results, based on animal models, have demonstrated that cell therapy is a promising strategy for treating neurodegenerative disorders. The homing effect of mesenchymal stem cells (MSCs) replaces damaged cells, while some scholars believe that the paracrine effects play a crucial role in treating diseases. In fact, these cells have rich sources, exhibit high proliferation rates, low tumorigenicity, and immunogenicity, and have no ethical concerns. Consequently, MSCs have been used across various disease aspects, such as regulating immunity, nourishing nerves, and promoting regeneration. Deterioration of public health status have exposed both Alzheimer’s patients and researchers to various difficulties during epidemics. In this review, we discuss the advances and challenges in the application of mesenchymal stem cell therapy for treatment of Alzheimer’s disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  • Abdul Wahab N, Guad R, Subramaniyan V, Fareez I, Choy K, Bonam S, Selvaraju C, Sim M, Gopinath S, Wu YJCSCR, therapy (2020) Human exfoliated deciduous teeth stem cells: features and therapeutic effects on neurogenerative and hepatobiliary-pancreatic diseases. https://doi.org/10.2174/1574888x15999200918105623

  • Ahmed N-M, Murakami M, Hirose Y, Nakashima MJSCI (2016) Therapeutic potential of dental pulp stem cell Secretome for Alzheimer's disease treatment: an in vitro study. 2016:8102478. https://doi.org/10.1155/2016/8102478

  • Alfano A, Nicola Candia A, Cuneo N, Guttlein L, Soderini A, Rotondaro C, Sganga L, Podhajcer O, Lopez MJMTO (2017) Oncolytic adenovirus-loaded menstrual blood stem cells overcome the blockade of viral activity exerted by ovarian cancer ascites. 6:31–44. https://doi.org/10.1016/j.omto.2017.06.002

  • Alipour M, Nabavi S, Arab L, Vosough M, Pakdaman H, Ehsani E, Shahpasand KJMBR (2019) Stem cell therapy in Alzheimer's disease: possible benefits and limiting drawbacks. 46(1):1425–1446. https://doi.org/10.1007/s11033-018-4499-7

  • Andrukhov O, Behm C, Blufstein A, Rausch-Fan XJWJOSC (2019) Immunomodulatory properties of dental tissue-derived mesenchymal stem cells: implication in disease and tissue regeneration. 11(9):604–617. https://doi.org/10.4252/wjsc.v11.i9.604

  • Apel C, Forlenza O, de Paula V, Talib L, Denecke B, Eduardo C, Gattaz WJJONT (2009) The neuroprotective effect of dental pulp cells in models of Alzheimer's and Parkinson's disease. 116(1):71–78. https://doi.org/10.1007/s00702-008-0135-3

  • Ayala-Cuellar A, Kang J, Jeung E, Choi KJB, therapeutics (2019) Roles of Mesenchymal stem cells in tissue regeneration and immunomodulation. 27(1):25–33. https://doi.org/10.4062/biomolther.2017.260

  • Azedi F, Kazemnejad S, Zarnani A, Soleimani M, Shojaei A, Arasteh SJMBR (2017) Comparative capability of menstrual blood versus bone marrow derived stem cells in neural differentiation. 44(1):169–182. https://doi.org/10.1007/s11033-016-4095-7

  • Bahar-Fuchs A, Martyr A, Goh A, Sabates J, Clare LJTCDOSR (2019) Cognitive training for people with mild to moderate dementia. 3:CD013069. https://doi.org/10.1002/14651858.CD013069.pub2

  • Banik A, Prabhakar S, Kalra J, Anand AJBBR (2015) Effect of human umbilical cord blood derived lineage negative stem cells transplanted in amyloid-β induced cognitive impaired mice. 291:46–59. https://doi.org/10.1016/j.bbr.2015.05.014

  • Bateman R, Xiong C, Benzinger T, Fagan A, Goate A, Fox N, Marcus D, Cairns N, Xie X, Blazey T, Holtzman D, Santacruz A, Buckles V, Oliver A, Moulder K, Aisen P, Ghetti B, Klunk W, McDade E, Martins R, Masters C, Mayeux R, Ringman J, Rossor M, Schofield P, Sperling R, Salloway S, Morris JJTNEjom (2012) Clinical and biomarker changes in dominantly inherited Alzheimer's disease. 367(9):795–804. https://doi.org/10.1056/NEJMoa1202753

  • Bi D, Wen L, Wu Z, Shen YJAS, d. t. j. o. t. A. s. Association (2020) GABAergic dysfunction in excitatory and inhibitory (E/I) imbalance drives the pathogenesis of Alzheimer's disease. 16(9):1312–1329. https://doi.org/10.1002/alz.12088

  • Brommelhoff J, Sultzer DJJOASDJ (2015) Brain structure and function related to depression in Alzheimer's disease: contributions from neuroimaging research. 45(3):689–703. https://doi.org/10.3233/jad-148007

  • Brookmeyer R, Gray S, Kawas CJAJOPH (1998) Projections of Alzheimer's disease in the United States and the public health impact of delaying disease onset. 88(9):1337–1342. https://doi.org/10.2105/ajph.88.9.1337

  • Calabrese G, Giuffrida R, Lo Furno D, Parrinello N, Forte S, Gulino R, Colarossi C, Schinocca L, Giuffrida R, Cardile V, Memeo LJIJOMS (2015) Potential effect of CD271 on human Mesenchymal stromal cell proliferation and differentiation. 16(7):15609–15624. https://doi.org/10.3390/ijms160715609

  • Cha D, Carvalho A, Rosenblat J, Ali M, McIntyre RJC, n. d. d. targets (2014) Major depressive disorder and type II diabetes mellitus: mechanisms underlying risk for Alzheimer's disease. 13(10):1740–1749. https://doi.org/10.2174/1871527313666141130204535

  • Chang K, Kim H, Joo Y, Ha S, Suh YJN-DD (2014) The therapeutic effects of human adipose-derived stem cells in Alzheimer's disease mouse models. 13:99–102. https://doi.org/10.1159/000355261

  • Chen C, Ahn E, Kang S, Liu X, Alam A, Ye KJSA (2020) Gut dysbiosis contributes to amyloid pathology, associated with C/EBPβ/AEP signaling activation in Alzheimer's disease mouse model. 6(31):eaba0466. https://doi.org/10.1126/sciadv.aba0466

  • Chi K, Fu R, Huang Y, Chen S, Hsu C, Lin S, Tu C, Chang L, Wu P, Liu SJCT (2018) Adipose-derived stem cells stimulated with n-Butylidenephthalide exhibit therapeutic effects in a mouse model of Parkinson's disease. 27(3):456–470. https://doi.org/10.1177/0963689718757408

  • Cho Y, Kim D, Song M, Bae W, Lee S, Kim EJJOE (2016) Protein interacting with never in mitosis A-1 induces Glutamatergic and GABAergic neuronal differentiation in human dental pulp stem cells. 42(7):1055–1061. https://doi.org/10.1016/j.joen.2016.04.004

  • Dalirfardouei R, Jamialahmadi K, Jafarian A, Mahdipour EJJOTE, r. medicine (2019) Promising effects of exosomes isolated from menstrual blood-derived mesenchymal stem cell on wound-healing process in diabetic mouse model. 13(4):555–568. https://doi.org/10.1002/term.2799

  • Darabi S, Tiraihi T, Nazm Bojnordi M, Ghasemi Hamidabadi H, Rezaei N, Zahiri M, Alizadeh RJB, c. neuroscience (2019) Trans-differentiation of human dental pulp stem cells into cholinergic-like neurons via nerve growth factor. 10(6):609–617. https://doi.org/10.32598/bcn.10.6.609

  • Delbeuck X, Van der Linden M, Collette FJNR (2003) Alzheimer's disease as a disconnection syndrome? 13(2):79–92. https://doi.org/10.1023/a:1023832305702

  • Dhana K, Evans D, Rajan K, Bennett D, Morris MJN (2020) Healthy lifestyle and the risk of Alzheimer dementia: findings from 2 longitudinal studies. 95(4):e374–e383. https://doi.org/10.1212/wnl.0000000000009816

  • Duncan T, Valenzuela MJSCR, therapy (2017) Alzheimer's disease, dementia, and stem cell therapy. 8(1):111. https://doi.org/10.1186/s13287-017-0567-5

  • Farina N, Rusted J, Tabet NJIP (2014) The effect of exercise interventions on cognitive outcome in Alzheimer's disease: a systematic review. 26(1):9–18. https://doi.org/10.1017/s1041610213001385

  • Fu X, Liu G, Halim A, Ju Y, Luo Q, Song AJC (2019) Mesenchymal stem cell migration and tissue repair. 8(8). https://doi.org/10.3390/cells8080784

  • Fukushima R, do Carmo E, Pedroso R, Micali P, Donadelli P, Fuzaro G, Venancio R, Viola J, Costa JJD, neuropsychologia (2016) Effects of cognitive stimulation on neuropsychiatric symptoms in elderly with Alzheimer's disease: a systematic review. 10(3):178–184. https://doi.org/10.1590/s1980-5764-2016dn1003003

  • Gauthier S, Molinuevo JJAS, d. t. j. o. t. A. s. Association (2013) Benefits of combined cholinesterase inhibitor and memantine treatment in moderate-severe Alzheimer's disease. 9(3):326–331. https://doi.org/10.1016/j.jalz.2011.11.005

  • Goorha S, Reiter LJCPIHG (2017) Culturing and neuronal differentiation of human dental pulp stem cells. 92: 21.26.21–21.26.10. https://doi.org/10.1002/cphg.28

  • Gronthos S, Mankani M, Brahim J, Robey P, Shi SJPOTNAOSOTUSOA (2000) Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. 97(25):13625–13630. https://doi.org/10.1073/pnas.240309797

  • Groot C, Hooghiemstra A, Raijmakers P, van Berckel B, Scheltens P, Scherder E, van der Flier W, Ossenkoppele RJARR (2016) The effect of physical activity on cognitive function in patients with dementia: a meta-analysis of randomized control trials. 25:13–23. https://doi.org/10.1016/j.arr.2015.11.005

  • Hida N, Nishiyama N, Miyoshi S, Kira S, Segawa K, Uyama T, Mori T, Miyado K, Ikegami Y, Cui C, Kiyono T, Kyo S, Shimizu T, Okano T, Sakamoto M, Ogawa S, Umezawa AJSC (2008) Novel cardiac precursor-like cells from human menstrual blood-derived mesenchymal cells. 26(7):1695–1704. https://doi.org/10.1634/stemcells.2007-0826

  • Hu W, Feng Z, Xu J, Jiang Z, Feng MJBR (2019) Brain-derived neurotrophic factor modified human umbilical cord mesenchymal stem cells-derived cholinergic-like neurons improve spatial learning and memory ability in Alzheimer's disease rats. 1710:61–73. https://doi.org/10.1016/j.brainres.2018.12.034

  • Ihara M, Saito S (2019) Drug repositioning for Alzheimer’s disease. Brain Nerv = Shinkei kenkyu no shinpo 71(9):961–970. https://doi.org/10.11477/mf.1416201388

    Article  CAS  Google Scholar 

  • Jia S, Wu X, Li X, Dai X, Gao Z, Lu Z, Zheng Q, Sun YJJOANPR (2016) Neuroprotective effects of liquiritin on cognitive deficits induced by soluble amyloid-β oligomers injected into the hippocampus. 18(12):1186–1199. https://doi.org/10.1080/10286020.2016.1201811

  • Jiao H, Shi K, Zhang W, Yang L, Yang L, Guan F, Yang BJOL (2016) Therapeutic potential of human amniotic membrane-derived mesenchymal stem cells in APP transgenic mice. 12(3):1877–1883. https://doi.org/10.3892/ol.2016.4857

  • Kanamaru T, Kamimura N, Yokota T, Nishimaki K, Iuchi K, Lee H, Takami S, Akashiba H, Shitaka Y, Ueda M, Katsura K, Kimura K, Ohta SJBR (2015) Intravenous transplantation of bone marrow-derived mononuclear cells prevents memory impairment in transgenic mouse models of Alzheimer's disease. 1605:49–58. https://doi.org/10.1016/j.brainres.2015.02.011

  • Kawanishi S, Takata K, Itezono S, Nagayama H, Konoya S, Chisaki Y, Toda Y, Nakata S, Yano Y, Kitamura Y, Ashihara EJJOASDJ (2018) Bone-marrow-derived microglia-like cells ameliorate brain amyloid pathology and cognitive impairment in a mouse model of Alzheimer's disease. 64(2):563–585. https://doi.org/10.3233/jad-170994

  • Khoury M, Alcayaga-Miranda F, Illanes S, Figueroa FJFII (2014) The promising potential of menstrual stem cells for antenatal diagnosis and cell therapy. 5:205. https://doi.org/10.3389/fimmu.2014.00205

  • Kim S, Chang K, Kim J, Park H, Ra J, Kim H, Suh YJPO (2012) The preventive and therapeutic effects of intravenous human adipose-derived stem cells in Alzheimer's disease mice. 7(9):e45757. https://doi.org/10.1371/journal.pone.0045757

  • Kim H, Kim P, Shin CJJOGR (2013a) A comprehensive review of the therapeutic and pharmacological effects of ginseng and ginsenosides in central nervous system. 37(1):8–29. https://doi.org/10.5142/jgr.2013.37.8

  • Kim K, Kim H, Park J, Kim H, Park M, Lee H, Lim D, Lee T, Chopp M, Moon JJNOA (2013b) Long-term immunomodulatory effect of amniotic stem cells in an Alzheimer's disease model. 34(10):2408–2420. https://doi.org/10.1016/j.neurobiolaging.2013.03.029

  • Kim D, Lim H, Lee D, Choi S, Oh W, Yang Y, Oh J, Hwang H, Jeon H (2018) Thrombospondin-1 secreted by human umbilical cord blood-derived mesenchymal stem cells rescues neurons from synaptic dysfunction in Alzheimer's disease model. Sci Rep 8(1):354. https://doi.org/10.1038/s41598-017-18542-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kishi T, Matsunaga S, Oya K, Nomura I, Ikuta T, Iwata NJJOASDJ (2017) Memantine for Alzheimer's disease: an updated systematic review and meta-analysis. 60(2):401–425. https://doi.org/10.3233/jad-170424

  • Kishita N, Backhouse T, Mioshi EJJOGP, neurology (2020) Nonpharmacological interventions to improve depression, anxiety, and quality of life (QoL) in people with dementia: an overview of systematic reviews. 33(1):28–41. https://doi.org/10.1177/0891988719856690

  • Ko H, Ahn S, Chang Y, Hwang I, Yun T, Sung D, Sung S, Park W, Ahn JJSCR, therapy (2018) Human UCB-MSCs treatment upon intraventricular hemorrhage contributes to attenuate hippocampal neuron loss and circuit damage through BDNF-CREB signaling. 9(1):326. https://doi.org/10.1186/s13287-018-1052-5

  • Kwak, K., S. Lee, J. Yang and Y. J. S. C. I. Park (2018). Current perspectives regarding stem cell-based therapy for alzheimer's disease. 2018: 6392986. https://doi.org/10.1155/2018/6392986

  • Lee J, Jin H, Endo S, Schuchman E, Carter J, Bae JJSC (2010) Intracerebral transplantation of bone marrow-derived mesenchymal stem cells reduces amyloid-beta deposition and rescues memory deficits in Alzheimer's disease mice by modulation of immune responses. 28(2):329–343. https://doi.org/10.1002/stem.277

  • Lee H, Lee J, Lee H, Carter J, Chang J, Oh W, Yang Y, Suh J, Lee B, Jin H, Bae JJNOA (2012) Human umbilical cord blood-derived mesenchymal stem cells improve neuropathology and cognitive impairment in an Alzheimer's disease mouse model through modulation of neuroinflammation. 33(3):588–602. https://doi.org/10.1016/j.neurobiolaging.2010.03.024

  • Lee J, Jeong S, Kim B, Park K, Dash AJANS (2015) Donepezil across the spectrum of Alzheimer's disease: dose optimization and clinical relevance. 131(5):259–267. https://doi.org/10.1111/ane.12386

  • Lee J, Kim E, Choi S, Kim D, Kim K, Lee I, Kim HJSR (2016) Microvesicles from brain-extract-treated mesenchymal stem cells improve neurological functions in a rat model of ischemic stroke. 6:33038. https://doi.org/10.1038/srep33038

  • Lee M, Ban J, Yang S, Im W, Kim MJBR (2018a) The exosome of adipose-derived stem cells reduces β-amyloid pathology and apoptosis of neuronal cells derived from the transgenic mouse model of Alzheimer's disease. 1691:87–93. https://doi.org/10.1016/j.brainres.2018.03.034

  • Lee N, Na D, Chang JJH, histopathology (2018b) Killing two birds with one stone: the multifunctional roles of mesenchymal stem cells in the treatment of neurodegenerative and muscle diseases. 33(7):629–638. https://doi.org/10.14670/hh-11-951

  • Li Z, Jiang C, An S, Cheng Q, Huang Y, Wang Y, Gou Y, Xiao L, Yu W, Wang JJOD (2014) Immunomodulatory properties of dental tissue-derived mesenchymal stem cells. 20(1):25–34. https://doi.org/10.1111/odi.12086

  • Li Y, Yang Y, Ren J, Xu F, Chen F, Li AJSCR, therapy (2017) Exosomes secreted by stem cells from human exfoliated deciduous teeth contribute to functional recovery after traumatic brain injury by shifting microglia M1/M2 polarization in rats. 8(1):198. https://doi.org/10.1186/s13287-017-0648-5

  • Lim H, Lee D, Choi W, Choi S, Oh W, Kim DJSCI (2020) Galectin-3 secreted by human umbilical cord blood-derived mesenchymal stem cells reduces aberrant tau phosphorylation in an Alzheimer disease model. 2020:8878412. https://doi.org/10.1155/2020/8878412

  • Liu S, Sandner B, Schackel T, Nicholson L, Chtarto A, Tenenbaum L, Puttagunta R, Müller R, Weidner N, Blesch AJAB (2017) Regulated viral BDNF delivery in combination with Schwann cells promotes axonal regeneration through capillary alginate hydrogels after spinal cord injury. 60:167–180. https://doi.org/10.1016/j.actbio.2017.07.024

  • Liu Y, Niu R, Yang F, Yan Y, Liang S, Sun Y, Shen P, Lin JJJOC, m. medicine (2018) Biological characteristics of human menstrual blood-derived endometrial stem cells. 22(3):1627–1639. https://doi.org/10.1111/jcmm.13437

  • Ma L, Cui B, Feng X, Law F, Jiang X, Yang L, Xie Q, Huang TJZEKZZCJOP (2006) Biological characteristics of human umbilical cord-derived mesenchymal stem cells and their differentiation into neurocyte-like cells. 44(7):513–517

  • Marfia G, Navone S, Hadi L, Paroni M, Berno V, Beretta M, Gualtierotti R, Ingegnoli F, Levi V, Miozzo M, Geginat J, Fassina L, Rampini P, Tremolada C, Riboni L, Campanella RJSC, development (2016) The adipose mesenchymal stem cell secretome inhibits inflammatory responses of microglia: evidence for an involvement of sphingosine-1-phosphate signalling. 25(14):1095–1107. https://doi.org/10.1089/scd.2015.0268

  • Matchynski-Franks J, Pappas C, Rossignol J, Reinke T, Fink K, Crane A, Twite A, Lowrance S, Song C, Dunbar GJCT (2016) Mesenchymal stem cells as treatment for behavioral deficits and neuropathology in the 5xFAD mouse model of Alzheimer's disease. 25(4):687–703. https://doi.org/10.3727/096368916x690818

  • Mezey E, Chandross K, Harta G, Maki R, McKercher SJS (2000) Turning blood into brain: cells bearing neuronal antigens generated in vivo from bone marrow. 290(5497):1779–1782. https://doi.org/10.1126/science.290.5497.1779

  • Misra SK, Chopra U, Saikia V, Sinha R, Sehgal M, Modi and B. J. R. m. Medhi (2016). Effect of mesenchymal stem cells and galantamine nanoparticles in rat model of Alzheimer's disease. 11(7): 629–646. https://doi.org/10.2217/rme-2016-0032

  • Mita T, Furukawa-Hibi Y, Takeuchi H, Hattori H, Yamada K, Hibi H, Ueda M, Yamamoto AJBBR (2015) Conditioned medium from the stem cells of human dental pulp improves cognitive function in a mouse model of Alzheimer's disease. 293:189–197. https://doi.org/10.1016/j.bbr.2015.07.043

  • Miura M, Gronthos S, Zhao M, Lu B, Fisher L, Robey P, Shi SJPOTNAOSOTUSOA (2003) SHED: stem cells from human exfoliated deciduous teeth. 100(10):5807–5812. https://doi.org/10.1073/pnas.0937635100

  • Naaldijk Y, Jäger C, Fabian C, Leovsky C, Blüher A, Rudolph L, Hinze A, Stolzing AJN, a. neurobiology (2017) Effect of systemic transplantation of bone marrow-derived mesenchymal stem cells on neuropathology markers in APP/PS1 Alzheimer mice. 43(4):299–314. https://doi.org/10.1111/nan.12319

  • Nakano M, Kubota K, Kobayashi E, Chikenji T, Saito Y, Konari N, Fujimiya MJSR (2020) Bone marrow-derived mesenchymal stem cells improve cognitive impairment in an Alzheimer's disease model by increasing the expression of microRNA-146a in hippocampus. 10(1):10772. https://doi.org/10.1038/s41598-020-67460-1

  • Nasiri E, Alizadeh A, Roushandeh A, Gazor R, Hashemi-Firouzi N, Golipoor ZJMBD (2019) Melatonin-pretreated adipose-derived mesenchymal stem cells efficeintly improved learning, memory, and cognition in an animal model of Alzheimer's disease. 34(4):1131–1143. https://doi.org/10.1007/s11011-019-00421-4

  • Ngandu T, Lehtisalo J, Solomon A, Levälahti E, Ahtiluoto S, Antikainen R, Bäckman L, Hänninen T, Jula A, Laatikainen T, Lindström J, Mangialasche F, Paajanen T, Pajala S, Peltonen M, Rauramaa R, Stigsdotter-Neely A, Strandberg T, Tuomilehto J, Soininen H, Kivipelto MJL (2015) A 2 year multidomain intervention of diet, exercise, cognitive training, and vascular risk monitoring versus control to prevent cognitive decline in at-risk elderly people (FINGER): a randomised controlled trial. 385(9984):2255–2263. https://doi.org/10.1016/s0140-6736(15)60461-5

  • Nicola F, Marques M, Odorcyk F, Arcego D, Petenuzzo L, Aristimunha D, Vizuete A, Sanches E, Pereira D, Maurmann N, Dalmaz C, Pranke P, Netto CJBR (2017) Neuroprotector effect of stem cells from human exfoliated deciduous teeth transplanted after traumatic spinal cord injury involves inhibition of early neuronal apoptosis. 1663:95–105. https://doi.org/10.1016/j.brainres.2017.03.015

  • Norton S, Matthews F, Barnes D, Yaffe K, Brayne CJTLN (2014) Potential for primary prevention of Alzheimer's disease: an analysis of population-based data. 13(8):788–794. https://doi.org/10.1016/s1474-4422(14)70136-x

  • Park S, Lee N, Lee J, Hwang J, Choi S, Hwang H, Hyung B, Chang J, Na DJN (2016) Distribution of human umbilical cord blood-derived mesenchymal stem cells in the Alzheimer's disease transgenic mouse after a single intravenous injection. 27(4):235–241. https://doi.org/10.1097/wnr.0000000000000526

  • Park B, Kim J, Lim T, Park S, Kim T, Yoon B, Son K, Yoon J, An YJTA, N. Z. j. o. psychiatry (2020) Therapeutic effect of mesenchymal stem cells in an animal model of Alzheimer's disease evaluated by β-amyloid positron emission tomography imaging. 54(9):883–891. https://doi.org/10.1177/0004867420917467

  • Pisciotta A, Riccio M, Carnevale G, Lu A, De Biasi S, Gibellini L, La Sala G, Bruzzesi G, Ferrari A, Huard J, De Pol AJSCR, therapy (2015) Stem cells isolated from human dental pulp and amniotic fluid improve skeletal muscle histopathology in mdx/SCID mice. 6:156. https://doi.org/10.1186/s13287-015-0141-y

  • Ruzicka J, Kulijewicz-Nawrot M, Rodrigez-Arellano J, Jendelova P, Sykova EJIJOMS (2016) Mesenchymal stem cells preserve working memory in the 3xTg-AD mouse model of Alzheimer's disease. 17(2). https://doi.org/10.3390/ijms17020152

  • Schwartz R, Reyes M, Koodie L, Jiang Y, Blackstad M, Lund T, Lenvik T, Johnson S, Hu W, Verfaillie CJTJOCI (2002) Multipotent adult progenitor cells from bone marrow differentiate into functional hepatocyte-like cells. 109(10):1291–1302. https://doi.org/10.1172/jci15182

  • Shin J, Park H, Kim H, Oh S, Bae J, Ha H, Lee PJA (2014) Mesenchymal stem cells enhance autophagy and increase β-amyloid clearance in Alzheimer disease models. 10(1):32–44. https://doi.org/10.4161/auto.26508

  • Song M, Learman C, Ahn K, Baker G, Kippe J, Field E, Dunbar GJN (2015) In vitro validation of effects of BDNF-expressing mesenchymal stem cells on neurodegeneration in primary cultured neurons of APP/PS1 mice. 307:37–50. https://doi.org/10.1016/j.neuroscience.2015.08.011

  • Sorrentino V, Romani M, Mouchiroud L, Beck J, Zhang H, D'Amico D, Moullan N, Potenza F, Schmid A, Rietsch S, Counts S, Auwerx JJN (2017) Enhancing mitochondrial proteostasis reduces amyloid-β proteotoxicity. 552(7684):187–193. https://doi.org/10.1038/nature25143

  • Sugino H, Watanabe A, Amada N, Yamamoto M, Ohgi Y, Kostic D, Sanchez RJCT (2015) Global trends in Alzheimer disease clinical development: increasing the probability of success. 37(8):1632–1642. https://doi.org/10.1016/j.clinthera.2015.07.006

  • Syed YJD (2020a) Correction to: sodium oligomannate: first approval. 80(4):445–446. https://doi.org/10.1007/s40265-020-01274-3

  • Syed YJD (2020b) Sodium oligomannate: first approval. 80(4):441–444. https://doi.org/10.1007/s40265-020-01268-1

  • Tchantchou F, Xu Y, Wu Y, Christen Y, Luo YJFJOPOTFOASFEB (2007) EGb 761 enhances adult hippocampal neurogenesis and phosphorylation of CREB in transgenic mouse model of Alzheimer's disease. 21(10):2400–2408. https://doi.org/10.1096/fj.06-7649com

  • Trounson A, McDonald CJCSC (2015) Stem cell therapies in clinical trials: progress and challenges. 17(1):11–22. https://doi.org/10.1016/j.stem.2015.06.007

  • Villemagne V, Burnham S, Bourgeat P, Brown B, Ellis K, Salvado O, Szoeke C, Macaulay S, Martins R, Maruff P, Ames D, Rowe C, Masters C, J. T. L. N. (2013) Amyloid β deposition, neurodegeneration, and cognitive decline in sporadic Alzheimer's disease: a prospective cohort study. 12(4):357–367. https://doi.org/10.1016/s1474-4422(13)70044-9

  • Volkman R, Offen DJSC (2017) Concise review: mesenchymal stem cells in neurodegenerative diseases. 35(8):1867–1880. https://doi.org/10.1002/stem.2651

  • Wang J, Ferruzzi M, Ho L, Blount J, Janle E, Gong B, Pan Y, Gowda G, Raftery D, Arrieta-Cruz I, Sharma V, Cooper B, Lobo J, Simon J, Zhang C, Cheng A, Qian X, Ono K, Teplow D, Pavlides C, Dixon R, Pasinetti GJTJONTOJOTSFN (2012) Brain-targeted proanthocyanidin metabolites for Alzheimer's disease treatment. 32(15):5144–5150. https://doi.org/10.1523/jneurosci.6437-11.2012

  • Wang F, Jia Y, Liu J, Zhai J, Cao N, Yue W, He H, Pei XJCBI (2017a) Dental pulp stem cells promote regeneration of damaged neuron cells on the cellular model of Alzheimer's disease. 41(6):639–650. https://doi.org/10.1002/cbin.10767

  • Wang X, Xiang B, Ding Y, Chen L, Zou H, Mou X, Xiang CJO (2017b) Human menstrual blood-derived mesenchymal stem cells as a cellular vehicle for malignant glioma gene therapy. 8(35):58309–58321. https://doi.org/10.18632/oncotarget.17621

  • Wu Q, Wang Q, Li Z, Li X, Zang J, Wang Z, Xu C, Gong Y, Cheng J, Li H, Shen G, Dong CJCD, disease (2018) Human menstrual blood-derived stem cells promote functional recovery in a rat spinal cord hemisection model. 9(9):882. https://doi.org/10.1038/s41419-018-0847-8

  • Xiao L, Saiki C, Okamura HJIJOMS (2019) Oxidative Stress-Tolerant Stem Cells from Human Exfoliated Deciduous Teeth Decrease Hydrogen Peroxide-Induced Damage in Organotypic Brain Slice Cultures from Adult Mice. 20(8). https://doi.org/10.3390/ijms20081858

  • Xu Y, Zhu H, Zhao D, Tan JJIJOC, e. medicine (2015) Endometrial stem cells: clinical application and pathological roles. 8(12):22039–22044

  • Xu J, Murphy S, Kockanek K, Arias EJNDB (2020) Mortality in the United States. 2018(355):1–8

  • Yamaguchi S, Shibata R, Yamamoto N, Nishikawa M, Hibi H, Tanigawa T, Ueda M, Murohara T, Yamamoto AJSR (2015) Dental pulp-derived stem cell conditioned medium reduces cardiac injury following ischemia-reperfusion. 5:16295. https://doi.org/10.1038/srep16295

  • Yamazaki H, Jin Y, Tsuchiya A, Kanno T, Nishizaki TJNL (2015) Adipose-derived stem cell-conditioned medium ameliorates antidepression-related behaviors in the mouse model of Alzheimer's disease. 609:53–57. https://doi.org/10.1016/j.neulet.2015.10.023

  • Yan Y, Ma T, Gong K, Ao Q, Zhang X, Gong YJNRR (2014) Adipose-derived mesenchymal stem cell transplantation promotes adult neurogenesis in the brains of Alzheimer's disease mice. 9(8):798–805. https://doi.org/10.4103/1673-5374.131596

  • Yaribeygi H, Panahi Y, Javadi B, Sahebkar AJC, n. d. d. targets (2018) The underlying role of oxidative stress in neurodegeneration: a mechanistic review. 17(3):207–215. https://doi.org/10.2174/1871527317666180425122557

  • Yeh D, Chan T, Harn H, Chiou T, Chen H, Lin Z, Lin SJCT (2015) Adipose tissue-derived stem cells in neural regenerative medicine. 24(3):487–492. https://doi.org/10.3727/096368915x686940

  • Yokokawa K, Iwahara N, Hisahara S, Emoto M, Saito T, Suzuki H, Manabe T, Matsumura A, Matsushita T, Suzuki S, Kawamata J, Sato-Akaba H, Fujii H, Shimohama SJJOASDJ (2019) Transplantation of mesenchymal stem cells improves amyloid-β pathology by modifying microglial function and suppressing oxidative stress. 72(3):867–884. https://doi.org/10.3233/jad-190817

  • Yue X, Mei Y, Zhang Y, Tong Z, Cui D, Yang J, Wang A, Wang R, Fei X, Ai L, Di Y, Luo H, Li H, Luo W, Lu Y, Li R, Duan C, Gao G, Yang H, Sun B, He R, Song W, Han H, Tong ZJAS, dementia (2019) New insight into Alzheimer's disease: light reverses Aβ-obstructed interstitial fluid flow and ameliorates memory decline in APP/PS1 mice. 5:671–684. https://doi.org/10.1016/j.trci.2019.09.007

  • Yun H, Kim H, Park K, Shin J, Kang A, Il Lee K, Song S, Kim Y, Han S, Chung H, Hong JJCD, disease (2013) Placenta-derived mesenchymal stem cells improve memory dysfunction in an Aβ1-42-infused mouse model of Alzheimer's disease. 4:e958. https://doi.org/10.1038/cddis.2013.490

  • Zhang H, Liu Z, Yao X, Yang Z, Xu RJC (2012) Neural differentiation ability of mesenchymal stromal cells from bone marrow and adipose tissue: a comparative study. 14(10):1203–1214. https://doi.org/10.3109/14653249.2012.711470

  • Zhang Y, Zhang W, Wang H, Yang BJGT, m. biomarkers (2018) miR-21 contributes to human amniotic membrane-derived mesenchymal stem cell growth and human amniotic membrane-derived mesenchymal stem cell-induced immunoregulation. 22(12):665–673. https://doi.org/10.1089/gtmb.2018.0116

  • Zhao Y, Chen X, Wu Y, Wang Y, Li Y, Xiang CJFIMN (2018) Transplantation of human menstrual blood-derived mesenchymal stem cells alleviates Alzheimer's disease-like pathology in APP/PS1 transgenic mice. 11:140. https://doi.org/10.3389/fnmol.2018.00140

  • Zheng H, Fridkin M, Youdim MJPIMC (2015) New approaches to treating Alzheimer's disease. 7:1–8. https://doi.org/10.4137/pmc.S13210

  • Zheng X, Wan Q, Zheng C, Zhou H, Dong X, Deng Q, Yao H, Fu Q, Gao M, Yan Z, Wang S, You Y, Lv J, Wang X, Chen K, Zhang M, Xu RJNR (2017) Amniotic mesenchymal stem cells decrease Aβ deposition and improve memory in APP/PS1 transgenic mice. 42(8):2191–2207. https://doi.org/10.1007/s11064-017-2226-8

  • Zhou F, Gao S, Wang L, Sun C, Chen L, Yuan P, Zhao H, Yi Y, Qin Y, Dong Z, Cao L, Ren H, Zhu L, Li Q, Lu B, Liang A, Xu G, Zhu H, Gao Z, Ma J, Xu J, Chen XJSCR, therapy (2015) Human adipose-derived stem cells partially rescue the stroke syndromes by promoting spatial learning and memory in mouse middle cerebral artery occlusion model. 6:92. https://doi.org/10.1186/s13287-015-0078-1

  • Zhou H, Zhang H, Yan Z, Xu RJB, b. r. communications (2016a) Transplantation of human amniotic mesenchymal stem cells promotes neurological recovery in an intracerebral hemorrhage rat model. 475(2):202–208. https://doi.org/10.1016/j.bbrc.2016.05.075

  • Zhou H, Zhang X, Zhang M, Yan Z, Xu Z, Xu RJNR (2016b) Transplantation of human amniotic mesenchymal stem cells promotes functional recovery in a rat model of traumatic spinal cord injury. 41(10):2708–2718. https://doi.org/10.1007/s11064-016-1987-9

  • Zhou H, Fang H, Luo H, Ye M, Yu G, Zhang Y, Mao G, Gao Z, Cheng Z, Zhu XJN (2020) Intravenous administration of human amniotic mesenchymal stem cells improves outcomes in rats with acute traumatic spinal cord injury. 31(10):730–736. https://doi.org/10.1097/wnr.0000000000001473

  • Zubenko G, Zubenko W, McPherson S, Spoor E, Marin D, Farlow M, Smith G, Geda Y, Cummings J, Petersen R, Sunderland TJTAJOP (2003) A collaborative study of the emergence and clinical features of the major depressive syndrome of Alzheimer's disease. 160(5):857–866. https://doi.org/10.1176/appi.ajp.160.5.857

Download references

Acknowledgments

We would like to acknowledge Freescience editorial team for editing this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

XRZ collected and analyzed the relevant literature and wrote the first draft of the paper, DDL, LZ, YHN and WZW participated in the analysis and collation of literature, BN was the director of the project, guiding the thesis writing. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Bo Niu.

Ethics declarations

Ethics approval

All applicable international guidelines for the care and use of animals were followed.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare that there are no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, X., Li, D., Zhang, L. et al. Mesenchymal stem cell therapies for Alzheimer’s disease: preclinical studies. Metab Brain Dis 36, 1687–1695 (2021). https://doi.org/10.1007/s11011-021-00777-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11011-021-00777-6

Keywords

Navigation