Bee venom acupuncture therapy ameliorates neuroinflammatory alterations in a pilocarpine-induced epilepticus model

Abstract

Bee venom (BV) is applied in different traditional medicinal therapies and is used worldwide to prevent and treat many acute and chronic diseases. Epilepsy has various neurological effects, e.g., epileptogenic insults; thus, it is considered a life-threatening condition. Seizures and their effects add to the burden of epilepsy because they can have health effects including residual disability and even premature mortality. The use of antiinflammatory drugs to treat epilepsy is controversial; therefore, the alternative nonchemical apitherapy benefits of BV were evaluated in the present study by assessing neuroinflammatory changes in a pilocarpine-induced epilepticus model. Levels of electrolytes, neurotransmitters, and mRNA expression for some gate channels were determined. Moreover, ELISA assays were conducted to detect pro- and anti-inflammatory cytokines, whereas RT-PCR was performed to assess mRNA expression of Foxp3 and CTLA-4. BV ameliorated the interruption in electrolytes and ions through voltage- and ligand-gated ion channels, and it limited neuronal excitability via rapid repolarization of action potentials. In addition, BV inhibited the high expression of proinflammatory cytokines. Acupuncture with BV was effective in preventing some of the deleterious consequences of epileptogenesis associated with high levels of glutamate and DOPA in the hippocampus. BV ameliorates changes in the expression of voltage-gated channels, rebalances blood electrolytes and neurotransmitters, and modulates the levels of pro- and anti-inflammatory cytokines. Thus, BV could reduce the progression of epileptogenesis as a cotherapy with other antiepileptic drugs.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Data availability

All results, tables and figures are attached at the end of the present manuscript.

References

  1. Abd El-Hameed AM, Mahmoud HS (2020) Cypermethrin induced apoptosis and testicular toxicity by upregulation of p53 in the brain and testis of male rats is alleviated by Sesame oil. J Taibah Univ Sci 14(1):1342–1349

    Article  Google Scholar 

  2. Abd El-Hameed AM, Eskandrani AA, Elroby FA (2020) Assessment of the ameliorative effect of Hypericum perforatum on olanzapine-induced hepatic oxidative stress and metabolic abnormalities in experimental male albino rats. J Taibah Univ Sci 14(1):1496–1502

    Article  Google Scholar 

  3. Abdel-Reheim ES (2009) Physiological and biochemical studies on the melatonin effect on the fertility of epileptic rats. J Egyp Ger Soci Zool 58:1–25

    Google Scholar 

  4. Adelman JP, Maylie J, Sah P (2012) Small-conductance Ca2+-activated K + channels: form and function. Annu Rev Physiol 74:245–269, ISSN 0066–4278

  5. Aust W, Wichmann G, Dietz A (2010) Therapy control of specific hymenoptera venom allergy. Laryngorhinootologie 89(12):725–728, ISSN 0935–8943

  6. Baek H, Lee C-j, Choi DB, Kim N-s, Kim Y-S, Ye YJ et al (2018) Bee venom phospholipase A2 ameliorates Alzheimer’s disease pathology in Aβ vaccination treatment without inducing neuro-inflammation in a 3xTg-AD mouse model. Sci Rep 8(1):1–11, ISSN 2045–2322

  7. Beghi E, Giussani G, Nichols E, Abd-Allah F, Abdela J, Abdelalim A et al (2019) Global, regional, and national burden of epilepsy, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol 18(4):357–375, ISSN 1474–4422

  8. Bhat R, Axtell R, Mitra A, Miranda M, Lock C, Tsien RW et al (2010) Inhibitory role for GABA in autoimmune inflammation. Proc Natl Acad Sci 107(6):2580–2585. Disponível em: https://www.pnas.org/content/pnas/107/6/2580.full.pdf

  9. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:1–2

    Article  Google Scholar 

  10. Cacheaux LP, Ivens S, David Y, Lakhter AJ, Bar-Klein G, Shapira M et al (2009) Transcriptome profiling reveals TGF-β signaling involvement in epileptogenesis. J Neurosci 29:8927–8935

    CAS  Article  Google Scholar 

  11. Castilla-Guerra L, Fernández‐Moreno MdC, López‐Chozas JM, Fernández‐Bolaños R (2006) Electrolytes disturbances and seizures. Epilepsia 47(12):1990–1998

    CAS  Article  Google Scholar 

  12. Chen J, Guan S-M (2017) Bee venom and pain. Toxins and drug discovery, toxinology. In: Gopalakrishnakone P et al (eds). p 253-295. https://doi.org/10.1007/978-94-007-6452-1$41

  13. Chung ES, Kim H, Lee G, Park S, Kim H, Bae H (2012) Neuro-protective effects of bee venom by suppression of neuroinflammatory responses in a mouse model of Parkinson’s disease: role of regulatory T cells. Brain Behav Immun 26(8):1322–1330, ISSN 0889–1591

  14. Cipollini V, Anrather J, Orzi F, Iadecola C (2019) Th17 and cognitive impairment: possible mechanisms of action. Front Neuroanat 13(95), ISSN 1662–5129. Disponível em https://www.frontiersin.org/article/, https://doi.org/10.3389/fnana.2019.00095

  15. Clynen E, Swijsen A, Raijmakers M, Hoogland G, Rigo J-M (2014) Neuropeptides as targets for the development of anticonvulsant drugs. Mol Neurobiol 50(2):626–646, ISSN 0893–7648

  16. Cruciani RA, Barker JL, Zasloff M, Chen H-C, Colamonici O (1991) Antibiotic magainins exert cytolytic activity against transformed cell lines through channel formation. Proc Natl Acad Sci 88(9):3792–3796, ISSN 0027-8424

  17. De Simoni MG, Perego C, Ravizza T, Moneta D, Conti M, Marchesi F et al (2000) Inflammatory cytokines and related genes are induced in the rat hippocampus by limbic status epilepticus. Eur J Neurosci 12:2623–2633 (ISSN 0953-816X)

    Article  Google Scholar 

  18. Dolga AM, Culmsee C (2012) Protective roles for potassium SK/KCa2 channels in microglia and neurons. Front Pharmacol 3:196

    Article  Google Scholar 

  19. Du Y-R, Xiao Y, Lu Z-M, Ding J, Xie F, Fu H et al (2011) Melittin activates TRPV1 receptors in primary nociceptive sensory neurons via the phospholipase A2 cascade pathways. Biochem Biophys Res Commun 408(1):32–37, ISSN 0006-291X

  20. Engelhardt B, Ransohoff RM (2012) Capture, crawl, cross: the T cell code to breach the blood–brain barriers. Trends Immunol 33(12):579–589, ISSN 1471–4906

  21. Faber EL, Sah P (2007) Functions of SK channels in central neurons. Proc Austral Physiol Soc 38:25–34

  22. Farrant M, Kaila K (2007) The cellular, molecular and ionic basis of GABAA receptor signalling. Prog Brain Res 160:59–87, ISSN 0079–6123

  23. Gu H, Han SM, Park K-K (2020) Therapeutic effects of apamin as a bee venom component for non-neoplastic disease. Toxins 12(3):195

    CAS  Article  Google Scholar 

  24. Hossen, M. S.; Gan, S. H.; Khalil, M. I. (2017): Melittin, a potential natural toxin of crude bee venom: probable future arsenal in the treatment of diabetes mellitus. J Chem 2017:4035626, ISSN 2090–9063. Disponível em:https://doi.org/10.1155/2017/4035626

  25. Khalil WK, Assaf N, ElShebiney SA, Salem NA (2015) Neuroprotective effects of bee venom acupuncture therapy against rotenone-induced oxidative stress and apoptosis. Neurochem Int 80:79–86, ISSN 0197 – 0186

  26. Kim C (1997) Potentiating health and the crisis of the immune system. Chapter 24; apitherapy (Bee Venom Therapy) literature review. In: Mizrahi et al (eds) Apitherapy Bee Venom Therapy. Plenum Press, New York, pp 243–269

  27. Kim S-J, Park J-H, Kim K-H, Lee W-R, An H-J, Min B-K et al (2012) Apamin inhibits THP-1-derived macrophage apoptosis via mitochondria-related apoptotic pathway. Exp Mol Pathol 93(1):129–134, ISSN 0014–4800

  28. Kim W-H, An H-J, Kim J-Y, Gwon M-G, Gu H, Lee S-J et al (2017) Apamin inhibits TNF-α-and IFN-γ-induced inflammatory cytokines and chemokines via suppressions of NF-κB signaling pathway and STAT in human keratinocytes. Pharmacol Rep 69(5):1030–1035

    CAS  Article  Google Scholar 

  29. Kim H, Hong JY, Jeon W-J, Baek SH, Ha I-H (2020) Bee venom melittin protects against cisplatin-induced acute kidney injury in mice via the regulation of M2 macrophage activation. Toxins 12:574

    CAS  Article  Google Scholar 

  30. Kobow K, Auvin S, Jensen F, Löscher W, Mody I, Potschka H et al (2012) Finding a better drug for epilepsy: antiepileptogenesis targets. Epilepsia 53(11):1868–1876, ISSN 0013–9580

  31. Koyama N, Hirata K, Hori K, Dan K, Yokota T (2000) Computer-assisted infrared thermographic study of axon reflex induced by intradermal melittin. PAIN® 84:2–3

    Article  Google Scholar 

  32. Krell R (1996) Value-added products from beekeeping. FAO Agricultural Services Bulletin No. 124, M. 24

  33. Krishna M, Ewan P, Diwakar L, Durham S, Frew A, Leech S et al (2011) Diagnosis and management of hymenoptera venom allergy: British Society for Allergy and Clinical Immunology (BSACI) guidelines. Clin Exp Allergy 41(9):1201–1220, ISSN 0954–7894

  34. Kwon YB, Kim HW, Ham TW, Yoon SY, Roh DH, Han HJ et al (2003) The anti-inflammatory effect of bee venom stimulation in a mouse air pouch model is mediated by adrenal medullary activity. J Neuroendocrinol 15(1):93–96

    CAS  Article  Google Scholar 

  35. Lai HC, Jan LY (2006) The distribution and targeting of neuronal voltage-gated ion channels. Nat Rev Neurosci 7:548–562. https://doi.org/10.1038/nrn1938

    CAS  Article  PubMed  Google Scholar 

  36. Lambe EK, Aghajanian GK (2001) The role of Kv1. 2-containing potassium channels in serotonin-induced glutamate release from thalamocortical terminals in rat frontal cortex. J Neurosci 21:9955–9963

    CAS  Article  Google Scholar 

  37. Lee G, Bae H (2016) Anti-inflammatory applications of melittin, a major component of bee venom: Detailed mechanism of action and adverse effects. Molecules 21(5):616

    Article  Google Scholar 

  38. Lee YB, Nagai A, Kim SU (2002) Cytokines, chemokines, and cytokine receptors in human microglia. J Neurosci Res 69(1):94–103, ISSN 0360–4012

  39. Lorincz A, Nusser Z (2010) Molecular identity of dendritic voltage-gated sodium channels. Science 328(5980):906–909, Disponível em:https://science.sciencemag.org/content/sci/328/5980/906.full.pdf

  40. Löscher W, Brandt C (2010) Prevention or modification of epileptogenesis after brain insults: experimental approaches and translational research. Pharmacol Rev 62(4):668–700, ISSN 0031–6997

  41. Luján R, Maylie J, Adelman JP (2009) New sites of action for GIRK and SK channels. Nat Rev Neurosci 10:475–480

    Article  Google Scholar 

  42. Magee JC, Johnston D (1995) Characterization of single voltage-gated Na + and Ca2 + channels in apical dendrites of rat CA1 pyramidal neurons. J Physiol 487(1):67–90, ISSN 0022–3751

  43. Mao LY, Ding J, Peng WF, Ma Y, Zhang YH, Fan W et al (2013) Interictal interleukin-17A levels are elevated and correlate with seizure severity of epilepsy patients. Epilepsia 54(9):e142-5, ISSN 1528 – 1167 (Electronic)

  44. Marx SJ (2000) Hyperparathyroid and hypoparathyroid disorders. New Engl J Med 343:1863–1875

    CAS  Article  Google Scholar 

  45. Meng F, Yao L (2020) The role of inflammation in epileptogenesis. Acta Epileptologica 2(1):1–19

    Article  Google Scholar 

  46. Miller RJ (2001) Rocking and rolling with Ca2 + channels. Trends Neurosci 24(8):445–449, ISSN 0166–2236

  47. Modzelewska B, Kostrzewska A, Sipowicz M, Kleszczewski T, Batra S (2003) Apamin inhibits NO-induced relaxation of the spontaneous contractile activity of the myometrium from non-pregnant women. Reprod Biol Endocrinol 1(1):1477–7827

    Article  Google Scholar 

  48. Monge-Fuentes V, Gomes FMM, Campos GAA, de Castro Silva J, Biolchi AM, dos Anjos LC et al (2015) Neuroactive compounds obtained from arthropod venoms as new therapeutic platforms for the treatment of neurological disorders. J Venom Anim Incl Trop Dis 21(1):1–9

    Article  Google Scholar 

  49. Mrowka M, Knabe S, Klinge H, Oden P, Rosenow F (2004) Hypocalcemic generalized seizures as manifestation of iatrogenic hypoparathyroidism months to years after thyroid surgery. Epileptic Disord 6:85–87

    PubMed  Google Scholar 

  50. Nair X, Nettleton D, Clever D, Tramposch K, Ghosh S, Franson R (1993) Swine as a model of skin inflammation. Inflammation 17(2):205–215, ISSN 0360–3997

  51. Nawaz A, Khan MA, Naz R, Zeb S (2019) Extraction of venom from honey bee in district swat, Khyber Pakhtunkhwa, Pakistan. Int J Zool Stud 4(6):27–30

    Google Scholar 

  52. NCBI (2020) Standardized bee venom preparation. PubChem Patent Summary for US-8691283-B2: National Center for Biotechnology Information. Retrieved December 31, 2020

  53. Newton CR, Garcia HH (2012) Epilepsy in poor regions of the world. Lancet 380(9848):1193–1201, ISSN 0140–6736

  54. Oguni H (2004) Diagnosis and treatment of epilepsy. Epilepsia 45:13–16

    Article  Google Scholar 

  55. Park KM, Kim SE, Lee BI (2019) Antiepileptic drug therapy in patients with drug-resistant epilepsy. J Epilepsy Res 9(1):14

    Article  Google Scholar 

  56. Park J, Jang KM, Park K-K (2020) Apamin suppresses LPS-induced neuroinflammatory responses by regulating SK CHANNELS and TLR4-mediated signaling pathways. Int J Mol Sci 21:4319

    CAS  Article  Google Scholar 

  57. Pernhorst K, Herms S, Hoffmann P, Cichon S, Schulz H, Sander T et al (2013) TLR4, ATF-3 and IL8 inflammation mediator expression correlates with seizure frequency in human epileptic brain tissue. Seizure 22:675–678

    Article  Google Scholar 

  58. Reyes-García MG, Hernández-Hernández F, Hernández-Téllez B, García-Tamayo F (2007) GABA (A) receptor subunits RNA expression in mice peritoneal macrophages modulate their IL-6/IL-12 production. J Neuroimmunol 188:1–2

    Article  Google Scholar 

  59. Riggs JE (2002) Neurologic manifestations of electrolyte disturbances. Neurol Clin 20(1):227–239, ISSN 0733–8619

  60. Rozengurt E, Gelehrte TD, Legg A, Pettican P (1981) Melittin stimulates Na entry, Na-K pump activity and DNA synthesis in quiescent cultures of mouse cells. Cell 23(3):781–788. https://doi.org/10.1016/0092-8674(81)90442-6

    CAS  Article  PubMed  Google Scholar 

  61. Schlichter LC, Kaushal V, Moxon-Emre I, Sivagnanam V, Vincent C (2010) The Ca 2 + activated SK3 channel is expressed in microglia in the rat striatum and contributes to microglia-mediated neurotoxicity in vitro. J Neuroinflammation 7(1):1–15

    Article  Google Scholar 

  62. Seleem AA (2016) The protective effect of bee venom against verapamil embryotoxicity during prenatal liver and kidney development of mice Mus musculus. J Basic Appl Zool 75:13–27 (ISSN 2090–9896)

    CAS  Article  Google Scholar 

  63. Shin M, McNamara C, James M O (1994) Mechanism of epilepsy. Annu Rev Med 45(1):379–389, ISSN 0066-4219

  64. Shin SH, Ye MK, Choi SY, Park KK (2018) Anti-inflammatory effect of bee venom in an allergic chronic rhinosinusitis mouse model. Mol Med Rep 17(5):6632–6638, ISSN 1791–2997

  65. Silva J, Monge-Fuentes V, Gomes F, Lopes K, Anjos LD, Campos G et al (2015) Pharmacological alternatives for the treatment of neurodegenerative disorders: Wasp and bee venoms and their components as new neuroactive tools. Toxins 7(8):3179–3209

  66. Sinha S, Patil S, Jayalekshmy V, Satishchandra P (2008) Do cytokines have any role in epilepsy? Epilepsy Res 82(2-3):171–176, ISSN 0920–1211

  67. Son DJ, Lee JW, Lee YH, Song HS, Lee CK, Hong JT (2007) Therapeutic application of anti-arthritis, pain-releasing, and anti-cancer effects of bee venom and its constituent compounds. Pharmacol Ther 115(2):246–270, ISSN 0163–7258

  68. Sonmez FM, Serin HM, Alver A, Aliyazicioglu R, Cansu A, Can G et al (2013) Blood levels of cytokines in children with idiopathic partial and generalized epilepsy. Seizure 22:517–521

    Article  Google Scholar 

  69. Stocker M (2004) Ca 2+-activated K + channels: molecular determinants and function of the SK family. Nat Rev Neurosci 5(10):758–770, ISSN 1471–0048

  70. Stuhlmeier KM (2007) Apis mellifera venom and melittin block neither NF-κB-p50-DNA interactions nor the activation of NF-κB, instead they activate the transcription of proinflammatory genes and the release of reactive oxygen intermediates. J Immunol 179(1):655–664

    CAS  Article  Google Scholar 

  71. Syrbe S, Hedrich UB, Riesch E, Djémié T, Müller S, Møller RS et al (2015) De novo loss-or gain-of-function mutations in KCNA2 cause epileptic encephalopathy. Nat Genet 47(4):393–399, ISSN 1546–1718

  72. Tian J, Chau C, Hales TG, Kaufman DL (1999) GABAA receptors mediate inhibition of T cell responses. J Neuroimmunol 96(1):21–28, ISSN 0165–5728

  73. Traub RD, Miles R, Jefferys J (1993) Synaptic and intrinsic conductances shape picrotoxin-induced synchronized after‐discharges in the guinea‐pig hippocampal slice. J Physiol 461(1):525–547

    CAS  Article  Google Scholar 

  74. Trimmer JS, Rhodes KJ (2004) Localization of voltage-gated ion channels in mammalian brain. Annu Rev Physiol 66:477–519

    CAS  Article  Google Scholar 

  75. Trumbeckaite S, Dauksiene J, Bernatoniene J, Janulis V (2015) Knowledge, attitudes, and usage of apitherapy for disease prevention and treatment among undergraduate pharmacy students in Lithuania. Evid Based Complement Alternat Med 2015, ISSN 1741-427X

  76. Turski L, Ikonomidou C, Turski WA, Bortolotto ZA, Cavalheiro EA (1989) Cholinergic mechanisms and epileptogenesis. The seizures induced by pilocarpine: a novel experimental model of intractable epilepsy. Synapse 3(2):154–171, ISSN 0887–4476

  77. Verma N, Karmakar M, Singh K, Smita S (2013) Structural and dynamic insights into S100B protein activity inhibition by melittin for the treatment of epilepsy. Int J Comp App NSAAILS 1:55–60

  78. Vezzani A, French J, Bartfai T, Baram TZ (2011) The role of inflammation in epilepsy. Nat Rev Neurol 7(1):1759–4766

    Article  Google Scholar 

  79. Vezzani A, Friedman A, Dingledine RJ (2013) The role of inflammation in epileptogenesis. Neuropharmacology 69:16–24

    CAS  Article  Google Scholar 

  80. Wang H, Kunkel D, Schwartzkroin PA, Tempel BL (1994) Localization of Kv1. 1 and Kv1. 2, two K channel proteins, to synaptic terminals, somata, and dendrites in the mouse brain. J Neurosci 14:4588–4599

    CAS  Article  Google Scholar 

  81. Wang Y, Wang D, Guo D (2015) Interictal cytokine levels were correlated to seizure severity of epileptic patients: a retrospective study on 1218 epileptic patients. J Transl Med 13:1479–5876 (Electronic)

    Google Scholar 

  82. Wehbe R, Frangieh J, Rima M, El Obeid D, Sabatier J-M, Fajloun Z (2019) Bee venom: Overview of main compounds and bioactivities for therapeutic interests. Molecules 24:2997

    CAS  Article  Google Scholar 

  83. Wei F, Yan L-M, Su T, He N, Lin Z-J, Wang J et al (2017) Ion channel genes and epilepsy: functional alteration, pathogenic potential, and mechanism of epilepsy. Neurosci Bull 33(4):455–477, ISSN 1673–7067

  84. WHO (2020) https://www.who.int/health-topics/epilepsy#tab=tab_1

  85. Winocur G, Roder J, Lobaugh N (2001) Learning and memory in S100-β transgenic mice: an analysis of impaired and preserved function. Neurobiol Learn Mem 75(2):230–243, ISSN 1074–7427

Download references

Author information

Affiliations

Authors

Contributions

Conceptualization: Abulesaad, A.S. and Khalil, A.

Data curation: Abulesaad, A.S. and Abd El-Hameed, A.M.

Formal analysis and Investigation: Abulesaad, A.S. and Abd El-Hameed, A.M.

Resources: Abulesaad, A.S; Abd El-Hameed, A.M. and Khalil, A.

Supervision and Validation: Abulesaad, A.S; Abd El-Hameed, A.M. and Khalil, A.

Writing: original draft, review & final editing: Abulesaad, A.S; Abd El-Hameed, A.M. and Khalil, A.

Corresponding author

Correspondence to Abdelaziz S. A. Abuelsaad.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest with any groups and didn’t receive any fund to cover the present study.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Abd El-Hameed, A.M., Abuelsaad, A.S.A. & Khalil, A. Bee venom acupuncture therapy ameliorates neuroinflammatory alterations in a pilocarpine-induced epilepticus model. Metab Brain Dis (2021). https://doi.org/10.1007/s11011-021-00766-9

Download citation

Keywords

  • Epilepsy
  • Pilocarpine
  • Bee venom - inflammation
  • Cytokines
  • Neurotransmitters
  • Oxidative stress