Skip to main content

Advertisement

Log in

Exercise training ameliorates cognitive dysfunction in amyloid beta-injected rat model: possible mechanisms of Angiostatin/VEGF signaling

  • Original Article
  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

Vascular endothelial growth factor (VEGF) regulates angio/neurogenesis and also tightly links to the pathogenesis of Alzheimer’s disease (AD). Although exercise has a beneficial effect on neurovascular function and cognitive function, the direct effect of exercise on VEGF-related signaling and cognitive deficit in AD is incompletely understood. Therefore, the purpose of this study was to investigate the protective effect of exercise on angiostatin/VEGF cascade and cognitive function in AD model rats. Wistar male rats were randomly divided into five groups: control (CON), injection of DMSO (Sham-CON), CON-exercise (sham-EX), intrahippocampal injection of Aβ (Aβ), and Aβ-exercise (Aβ-EX). Rats in EX groups underwent treadmill exercise for 4 weeks, then the cognitive function was measured by the Morris Water Maze (MWM) test. mRNA levels of hypoxia-induced factor-1α (HIF-1α), vascular endothelial growth factor (VEGF), vascular endothelial growth factor receptor 2 (VEGFR2), and angiostatin were determined in hippocampus by RT-PCR. We found that spatial learning and memory were impaired in Aβ-injected rats, but exercise training improved it. Moreover, exercise training increased the reduced mRNA expression level of VEGF signaling, including HIF1α, VEGF, and VEGFR2 in the hippocampus from Aβ-injected rats. Also, the mRNA expression level of angiostatin was elevated in the hippocampus from Aβ-injected rats, and exercise training abrogated its expression. Our findings suggest that exercise training improves cognitive function in Aβ-injected rats, possibly through enhancing VEGF signaling and reducing angiostatin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Alfini AJ, Weiss LR, Nielson KA, Verber MD, Smith JC (2019) Resting cerebral blood flow after exercise training in mild cognitive impairment. J Alzheimers Dis 67(2):671–684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Azimi M, Gharakhanlou R, Naghdi N, Khodadadi D, Heysieattalab S (2018) Moderate treadmill exercise ameliorates amyloid-β-induced learning and memory impairment, possibly via increasing AMPK activity and up-regulation of the PGC-1α/FNDC5/BDNF pathway. Peptides 102:78–88

    Article  CAS  PubMed  Google Scholar 

  • Ballard HJ (2017) Exercise makes your brain bigger: Skeletal muscle VEGF and hippocampal neurogenesis. J Physiol 595(17):5721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bell RD, Zlokovic BV (2009) Neurovascular mechanisms and blood–brain barrier disorder in Alzheimer’s disease. Acta Neuropathol 118(1):103–113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bürger S, Noack M, Kirazov LP, Kirazov EP, Naydenov CL, Kouznetsova E, Schliebs R (2009) Vascular endothelial growth factor (VEGF) affects processing of amyloid precursor protein and β-amyloidogenesis in brain slice cultures derived from transgenic Tg2576 mouse brain. Int J Dev Neurosci 27(6):517–523

    Article  PubMed  Google Scholar 

  • Cao L, Jiao X, Zuzga DS, Liu Y, Fong DM, Young D, During MJ (2004) VEGF links hippocampal activity with neurogenesis, learning and memory. Nat Genet 36(8):827

    Article  CAS  PubMed  Google Scholar 

  • Chiappelli M, Borroni B, Archetti S, Calabrese E, Corsi MM, Franceschi M, Licastro F (2006) VEGF gene and phenotype relation with Alzheimer’s disease and mild cognitive impairment. Rejuvenation Res 9(4):485–493

    Article  CAS  PubMed  Google Scholar 

  • Cho S-J, Park MH, Han C, Yoon K, Koh YH (2017) VEGFR2 alteration in Alzheimer’s disease. Sci Rep 7(1):1–11

    Article  Google Scholar 

  • Chung AW, Hsiang YN, Matzke LA, McManus BM, van Breemen C, Okon EB (2006) Reduced expression of vascular endothelial growth factor paralleled with the increased angiostatin expression resulting from the upregulated activities of matrix metalloproteinase-2 and-9 in human type 2 diabetic arterial vasculature. Circ Res 99(2):140–148

    Article  CAS  PubMed  Google Scholar 

  • Dao AT, Zagaar MA, Levine AT, Salim S, Eriksen JL, Alkadhi KA (2013) Treadmill exercise prevents learning and memory impairment in Alzheimer’s disease-like pathology. Curr Alzheimer Res 10(5):507–515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ding Y-H, Li J, Zhou Y, Rafols JA, Clark JC, Ding Y (2006) Cerebral angiogenesis and expression of angiogenic factors in aging rats after exercise. Curr Neurovasc Res 3(1):15–23

    Article  CAS  PubMed  Google Scholar 

  • Dornbos D III, Zwagerman N, Guo M, Ding JY, Peng C, Esmail F, Ding Y (2013) Preischemic exercise reduces brain damage by ameliorating metabolic disorder in ischemia/reperfusion injury. J Neurosci Res 91(6):818–827

    Article  CAS  PubMed  Google Scholar 

  • Echeverria V, Barreto EG, Ávila-Rodriguezc MV, Tarasov V, Aliev G (2017) Is VEGF a key target of cotinine and other potential therapies against Alzheimer disease? Curr Alzheimer Res 14(11):1155–1163

    Article  CAS  PubMed  Google Scholar 

  • Eriksson K, Magnusson P, Dixelius J, Claesson-Welsh L, Cross MJ (2003) Angiostatin and endostatin inhibit endothelial cell migration in response to FGF and VEGF without interfering with specific intracellular signal transduction pathways. FEBS Lett 536(1–3):19–24

    Article  CAS  PubMed  Google Scholar 

  • Gomes-Osman J, Cabral DF, Hinchman C, Jannati A, Morris TP, Pascual-Leone A (2017) The effects of exercise on cognitive function and brain plasticity–a feasibility trial. Restor Neurol Neurosci 35(5):547–556

    PubMed  PubMed Central  Google Scholar 

  • Guo H, Xia D, Liao S, Niu B, Tang J, Hu H, Cao B (2019) Vascular endothelial growth factor improves the cognitive decline of Alzheimer’s disease via concurrently inducing the expression of ADAM10 and reducing the expression of β-site APP cleaving enzyme 1 in Tg2576 mice. Neurosci Res 142:49–57

    Article  CAS  PubMed  Google Scholar 

  • Hong J, Hong S-G, Lee J, Park J-Y, Eriksen JL, Rooney BV, Park Y (2020) Exercise training ameliorates cerebrovascular dysfunction in a murine model of Alzheimer’s disease: role of the P2Y2 receptor and endoplasmic reticulum stress. Am J Physiol-Heart Circ Physiol 318(6):H1559–H1569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khodadadi D, Gharakhanlou R, Naghdi N, Salimi M, Azimi SM, Shahed A (2018) The effect of 4 weeks of exercise preconditioning on soluble amyloid beta level and memory impairment in rats with Alzheimer’s disease induced by Aβ1-42 injection. Razi J Med Sci 24(165):74–84

    Google Scholar 

  • Kim B-K, Shin M-S, Kim C-J, Baek S-B, Ko Y-C, Kim Y-P (2014) Treadmill exercise improves short-term memory by enhancing neurogenesis in amyloid beta-induced Alzheimer disease rats. J Exerc Rehab 10(1):2

    Article  Google Scholar 

  • Liang Y-Z, Zeng Z-L, Hua L-L, Li J-F, Wang Y-L, Bi X-Z (2016) Expression and significance of angiostatin, vascular endothelial growth factor and matrix metalloproteinase-9 in brain tissue of diabetic rats with ischemia reperfusion. Asian Pac J Trop Med 9(6):587–591

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Liu F, Iqbal K, Grundke-Iqbal I, Gong C-X (2008) Decreased glucose transporters correlate to abnormal hyperphosphorylation of tau in Alzheimer disease. FEBS Lett 582(2):359–364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lou S-J, Liu J-Y, Chang H, Chen P-J (2008) Hippocampal neurogenesis and gene expression depend on exercise intensity in juvenile rats. Brain Res 1210:48–55

    Article  CAS  PubMed  Google Scholar 

  • Mahoney ER, Dumitrescu L, Moore AM, Cambronero FE, De Jager PL, Koran MEI, Schneider JA (2019) Brain expression of the vascular endothelial growth factor gene family in cognitive aging and alzheimer’s disease. Mol Psychiatry 1–9

  • Mechlovich D, Amit T, Bar-Am O, Mandel SBH, Youdim M, Weinreb O (2014) The novel multi-target iron chelator, M30 modulates HIF-1α-related glycolytic genes and insulin signaling pathway in the frontal cortex of APP/PS1 Alzheimer’s disease mice. Curr Alzheimer Res 11(2):119–127

  • Mohammadpour JD, Hosseinmardi N, Janahmadi M, Fathollahi Y, Motamedi F, Rohampour K (2015) Non-selective NSAIDs improve the amyloid-β-mediated suppression of memory and synaptic plasticity. Pharmacol Biochem Behav 132:33–41

    Article  Google Scholar 

  • Morris JK, Vidoni ED, Johnson DK, Van Sciver A, Mahnken JD, Honea RA, Swerdlow RH (2017) Aerobic exercise for Alzheimer’s disease: A randomized controlled pilot trial. PLoS One 12(2):e0170547

    Article  PubMed  PubMed Central  Google Scholar 

  • Muangritdech N, Hamlin MJ, Sawanyawisuth K, Prajumwongs P, Saengjan W, Wonnabussapawich P, Manimmanakorn A (2020) Hypoxic training improves blood pressure, nitric oxide and hypoxia-inducible factor-1 alpha in hypertensive patients. Eur J Appl Physiol 120(8):1815–1826

    Article  CAS  PubMed  Google Scholar 

  • Muche A, Bigl M, Arendt T, Schliebs R (2015) Expression of vascular endothelial growth factor (VEGF) mRNA, VEGF receptor 2 (Flk-1) mRNA, and of VEGF co-receptor neuropilin (Nrp)-1 mRNA in brain tissue of aging Tg2576 mice by in situ hybridization. Int J Dev Neurosci 43:25–34

    Article  CAS  PubMed  Google Scholar 

  • Narenji SA, Naghdi N, Azadmanesh K, Edalat R (2015) 3α-diol administration decreases hippocampal PKA (II) mRNA expression and impairs Morris water maze performance in adult male rats. Behav Brain Res 280:149–159

    Article  CAS  PubMed  Google Scholar 

  • Ogunshola O, Antoniou X (2009) Contribution of hypoxia to Alzheimer’s disease: is HIF-1α a mediator of neurodegeneration? Cell Mol Life Sci 66(22):3555–3563

    Article  CAS  PubMed  Google Scholar 

  • Ohno H, Shirato K, Sakurai T, Ogasawara J, Sumitani Y, Sato S, Kizaki T (2012) Effect of exercise on HIF-1 and VEGF signaling. J Phys Fitness Sports Med 1(1):5–16

    Article  Google Scholar 

  • Otsuka S, Sakakima H, Terashi T, Takada S, Nakanishi K, Kikuchi K (2019) Preconditioning exercise reduces brain damage and neuronal apoptosis through enhanced endogenous 14-3-3γ after focal brain ischemia in rats. Brain Struct Funct 224(2):727–738

    Article  CAS  PubMed  Google Scholar 

  • Patel NS, Mathura VS, Bachmeier C, Beaulieu-Abdelahad D, Laporte V, Weeks O, Paris D (2010) Alzheimer’s β-amyloid peptide blocks vascular endothelial growth factor mediated signaling via direct interaction with VEGFR-2. J Neurochem 112(1):66–76

    Article  CAS  PubMed  Google Scholar 

  • Pedrinolla A, Venturelli M, Fonte C, Tamburin S, Di Baldassarre A, Naro F, Muti E (2020) Exercise training improves vascular function in patients with Alzheimer’s disease. Eur J Appl Physiol 1–13

  • Provias J, Jeynes B (2014) Reduction in vascular endothelial growth factor expression in the superior temporal, hippocampal, and brainstem regions in Alzheimer’s disease. Curr Neurovasc Res 11(3):202–209

    Article  CAS  PubMed  Google Scholar 

  • Ranjbar K, Rahmani-Nia F, Shahabpour E (2016) Aerobic training and l-arginine supplementation promotes rat heart and hindleg muscles arteriogenesis after myocardial infarction. J Physiol Biochem 72(3):393–404

    Article  CAS  PubMed  Google Scholar 

  • Religa P, Cao R, Religa D, Xue Y, Bogdanovic N, Westaway D, Cao Y (2013) VEGF significantly restores impaired memory behavior in Alzheimer’s mice by improvement of vascular survival. Sci Rep 3:2053

    Article  PubMed  PubMed Central  Google Scholar 

  • Rosa E, Fahnestock M (2014) Amyloid-Beta, BDNF, and the mechanism of neurodegeneration in Alzheimer’s disease handbook of neurotoxicity. Springer, pp 1597–1620

  • Schubert D, Soucek T, Blouw B (2009) The induction of HIF-1 reduces astrocyte activation by amyloid beta peptide. Eur J Neurosci 29(7):1323–1334

    Article  PubMed  PubMed Central  Google Scholar 

  • Sharma S, Verma S, Kapoor M, Saini A, Nehru B (2016) Alzheimer’s disease like pathology induced six weeks after aggregated amyloid-beta injection in rats: increased oxidative stress and impaired long-term memory with anxiety-like behavior. Neurol Res 38(9):838–850

    Article  CAS  PubMed  Google Scholar 

  • Sima J, Zhang SX, Shao C, Fant J, Ma J-X (2004) The effect of angiostatin on vascular leakage and VEGF expression in rat retina. FEBS Lett 564(1–2):19–23

    Article  CAS  PubMed  Google Scholar 

  • Smeyne M, Sladen P, Jiao Y, Dragatsis I, Smeyne RJ (2015) HIF1α is necessary for exercise-induced neuroprotection while HIF2α is needed for dopaminergic neuron survival in the substantia nigra pars compacta. Neuroscience 295:23–38

    Article  CAS  PubMed  Google Scholar 

  • Soucek T, Cumming R, Dargusch R, Maher P, Schubert D (2003) The regulation of glucose metabolism by HIF-1 mediates a neuroprotective response to amyloid beta peptide. Neuron 39(1):43–56

    Article  CAS  PubMed  Google Scholar 

  • Tian X, Zhou N, Yuan J, Lu L, Zhang Q, Wei M, Yuan L (2020) Heat shock transcription factor 1 regulates exercise-induced myocardial angiogenesis after pressure overload via HIF-1α/VEGF pathway. J Cell Mol Med 24(3):2178–2188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waltenberger J, Claesson-Welsh L, Siegbahn A, Shibuya M, Heldin C-H (1994) Different signal transduction properties of KDR and Flt1, two receptors for vascular endothelial growth factor. J Biol Chem 269(43):26988–26995

    Article  CAS  PubMed  Google Scholar 

  • Wang P, Xie Z-H, Guo Y-J, Zhao C-P, Jiang H, Song Y, Bi J-Z (2011) VEGF-induced angiogenesis ameliorates the memory impairment in APP transgenic mouse model of Alzheimer’s disease. Biochem Biophys Res Commun 411(3):620–626

    Article  CAS  PubMed  Google Scholar 

  • Wang X-Q, Wang G-W (2016) Effects of treadmill exercise intensity on spatial working memory and long-term memory in rats. Life Sci 149:96–103

    Article  CAS  PubMed  Google Scholar 

  • Wu L, Feng X, Li T, Sun B, Khan MZ, He L (2017) Risperidone ameliorated Aβ1-42-induced cognitive and hippocampal synaptic impairments in mice. Behav Brain Res 322:145–156

    Article  CAS  PubMed  Google Scholar 

  • Yang F, Lim GP, Begum AN, Ubeda OJ, Simmons MR, Ambegaokar SS, Frautschy SA (2005) Curcumin inhibits formation of amyloid β oligomers and fibrils, binds plaques, and reduces amyloid in vivo. J Biol Chem 280(7):5892–5901

    Article  CAS  PubMed  Google Scholar 

  • Yuan JS, Reed A, Chen F, Stewart CN (2006) Statistical analysis of real-time PCR data. BMC Bioinf 7(1):85

    Article  Google Scholar 

  • Zhang L, Qu Y, Yang C, Tang J, Zhang X, Mao M, Ferriero D (2009) Signaling pathway involved in hypoxia-inducible factor-1α regulation in hypoxic-ischemic cortical neurons in vitro. Neurosci Lett 461(1):1–6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng H, Fridkin M, Youdim M (2015) New approaches to treating Alzheimer's disease. Perspect Med Chem 7:PMC. S13210

  • Zlokovic BV (2011) Neurovascular pathways to neurodegeneration in Alzheimer’s disease and other disorders. Nat Rev Neurosci 12(12):723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We express our gratitude to the Kharazmi University of Tehran for financial support. The authors would also like to thank the Trabiat Modarres University for the use of experimental equipment.

Author information

Authors and Affiliations

Authors

Contributions

AZ, JH, YP, and HR designed the study, collected and analyzed data. RG and NN involved behavioral study. AZ and MA performed animal experiment. AZ and JH wrote the manuscript. YP, JL, and HR edited the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Yoonjung Park.

Ethics declarations

Ethical approval

The animal experiments were carried out in accordance with the National Institutes of Health (NIH) Guideline for the Care and Use of Laboratory Animals and were approved by the Ethics Committee on the use of animals at Tarbiat Modares University, Tehran, Iran.

Conflict of interest

All the authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Aliasghar Zarezadehmehrizi and Junyoung Hong have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zarezadehmehrizi, A., Hong, J., Lee, J. et al. Exercise training ameliorates cognitive dysfunction in amyloid beta-injected rat model: possible mechanisms of Angiostatin/VEGF signaling. Metab Brain Dis 36, 2263–2271 (2021). https://doi.org/10.1007/s11011-021-00751-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11011-021-00751-2

Keywords

Navigation