Skip to main content

Advertisement

Log in

Improvement of cognitive function in mice by Citrus reticulata var. kinnow via modulation of central cholinergic system and oxidative stress

  • Original Article
  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

Memory disorders are a result of a number of factors, of which elevated brain oxidative stress and acetylcholinesterase (AChE) activity are significant hallmarks. A number of Citrus species have cognition-enhancing capacity mediated by their antioxidant and anti-cholinesterase activities. This study was designed to assess the cognitive-enhancing, antioxidant and anticholinesterase potentials of Citrus reticulata var. kinnow (CR) leaf extracts. CR extracts were examined by bioactivity guided fractionation using in-vitro DPPH and Ellman assays to determine antioxidant and AChE inhibitory capacity. The most active component was further evaluated for memory improvement effects using mouse model of scopolamine induced amnesia. Passive shock avoidance test and elevated plus maze test were employed to determine cognitive functions while brain biochemical parameters were measured to establish the neuroprotective mechanism. The methanol extract (ME) showed marked AChE inhibitory and antioxidant activities, therefore, it was fractionated. Comparative analysis of all obtained fractions revealed that ethylacetate fraction (EAF) was most active. Both ME and EAF improved cognitive dysfunction caused by scopolamine in mice by reducing TBARS levels and brain AChE activity. TLC densitometric studies showed appreciable levels of naringenin in ME (0.32 % w/w) and EAF (1.14 % w/w). The observed memory enhancement effects of ME and EAF could be attributed to their ability to inhibit AChE activity and antioxidant effects due to presence of flavonoids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  • Adham AN (2015) Comparative antimicrobrial activity of peel and juice extract of Citrus fruits growing in Kurdistan/Iraq. Am J Microbiol 3:155–159

  • Ajayi AM, Chidebe EO, Ben-Azu B, Umukoro S (2020) Chrysophyllum albidum (African star apple) fruit-supplemented diet enhances cognitive functions and attenuates lipopolysaccharide-induced memory impairment, oxidative stress, and release of proinflammatory cytokines. Nutrire 45:1–3

    Article  CAS  Google Scholar 

  • Alam MA, Subhan N, Rahman MM, Uddin SJ, Reza HliuM, Sarker SD (2014) Effect of Citrus flavonoids, naringin and naringenin, on metabolic syndrome and their mechanisms of action. Adv Nutr 5:404–417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aro AO, Dzoyem JP, Awouafack MD, Selepe MA, Eloff JN, McGaw LJ (2019) Fractions and isolated compounds from Oxyanthus speciosus subsp. stenocarpus (Rubiaceae) have promising antimycobacterial and intracellular activity. BMC Complement Altern Med 19:108

    Article  PubMed  PubMed Central  Google Scholar 

  • Baghdoyan HA, Lydic R, Fleegal MA (1998) M2 muscarinic autoreceptors modulate acetylcholine release in the medial pontine reticular formation. J Pharmacol Exp Ther 286:1446–1452

    CAS  PubMed  Google Scholar 

  • Ballinger EC, Ananth M, Talmage DA, Role LW (2016) Basal forebrain cholinergic circuits and signaling in cognition and cognitive decline. Neuron 91:1199–1218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bejar C, Wang RH, Weinstock M (1999) Effect of rivastigmine on scopolamine-induced memory impairment in rats. Eur J Pharmacol 383:231–240

    Article  CAS  PubMed  Google Scholar 

  • Ben-Azu B, Nwoke EE, Aderibigbe AO, Omogbiya IA, Ajayi AM, Olonode ET, Umukoro S, Iwalewa EO (2019) Possible neuroprotective mechanisms of action involved in the neurobehavioral property of naringin in mice. Biomed Pharmacother 109:536–546

    Article  CAS  PubMed  Google Scholar 

  • Blois MS (1958) Antioxidant determinations by the use of a stable free radical. Nature 181:1199–1200

    Article  CAS  Google Scholar 

  • Braida D, Paladini E, Griffini P, Lamperti M, Maggi A, Sala M (1996) An inverted U-shaped curve for heptylphysostigmine on radial maze performance in rats: comparison with other cholinesterase inhibitors. Eur J Pharmacol 302:13–20

    Article  CAS  PubMed  Google Scholar 

  • Cobley JN, Fiorello ML, Bailey DM (2018) 13 reasons why the brain is susceptible to oxidative stress. Redox Biol 15:490–503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ellman GL, Courtney KD, Andres V, Feather-Stone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–95

    Article  CAS  PubMed  Google Scholar 

  • Emokpae O, Ben-Azu B, Ajayi AM, Umukoro S (2020a) D‐ribose‐L‐cysteine enhances memory task, attenuates oxidative stress and acetyl‐cholinesterase activity in scopolamine amnesic mice. Drug Dev Res 1–8. https://doi.org/10.1002/ddr.21663

  • Emokpae O, Ben-Azu B, Ajayi AM, Umukoro S (2020b) D-Ribose-l-cysteine attenuates lipopolysaccharide-induced memory deficits through inhibition of oxidative stress, release of proinflammatory cytokines, and nuclear factor-kappa B expression in mice. Naunyn Schmiedebergs Arch Pharmacol 1–7. https://doi.org/10.1007/s00210-019-01805-0

  • Farnsworth NR (1966) Biological and phytochemical screening of plants. J Pharm Sci 55:225–276

    Article  CAS  PubMed  Google Scholar 

  • Ferreira SS, Silva AM, Nunes FM (2018) Citrus reticulata Blanco peels as a source of antioxidant and anti-proliferative phenolic compounds. Ind Crops Prod 111:141–148.s

    Article  CAS  Google Scholar 

  • Ferreira-Vieira T, Guimaraes I, Silva F, Ribeiro F (2016) Alzheimer’s disease: targeting the cholinergic system. Curr Neuropharmacol 14:101–115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foyet HS, Keugong Wado E, Ngatanko Abaissou HH, Assongalem EA, Eyong OK (2019) Anticholinesterase and antioxidant potential of hydromethanolic extract of Ziziphus mucronata (rhamnaceae) leaves on scopolamine-induced memory and cognitive dysfunctions in mice. Evid Based Complement Alternat Med 2019:4568401

    Article  PubMed  PubMed Central  Google Scholar 

  • Francis PT (2005) The interplay of neurotransmitters in Alzheimer’s disease. CNS spectr 10:6–9

    Article  PubMed  Google Scholar 

  • Ghumatkar PJ, Patil SP, Jain PD, Tambe RM, Sathaye S (2015) Nootropic, neuroprotective and neurotrophic effects of phloretin in scopolamine induced amnesia in mice. Pharmacol Biochem Behav 135:182–191

    Article  CAS  PubMed  Google Scholar 

  • Gilles C, Ertlé S (2000) Pharmacological models in Alzheimer’s disease research. Dialogues Clin Neurosci 2:247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haam J, Yakel JL (2017) Cholinergic modulation of the hippocampal region and memory function. J Neurochem 142:111–121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hagerman A, Harvey-Mueller I, Makkar HPS (2000) Quantification of tannins in tree foliage – a laboratory manual, 1. FAO/IAEA, Vienna, pp 4–7

    Google Scholar 

  • Hampel H, Mesulam MM, Cuello AC, Farlow MR, Giacobini E, Grossberg GT, Khachaturian AS, Vergallo A, Cavedo E, Snyder PJ, Khachaturian ZS (2018) The cholinergic system in the pathophysiology and treatment of Alzheimer’s disease. Brain 141:1917–1933

    Article  PubMed  PubMed Central  Google Scholar 

  • Heo HJ, Kim MJ, Lee JM, Choi SJ, Cho HY, Hong B, Kim HK, Kim E, Shin DH (2004) Naringenin from Citrus junos has an inhibitory effect on acetylcholinesterase and a mitigating effect on amnesia. Dement Geriatr Cogn Disord 17:151–157

    Article  CAS  PubMed  Google Scholar 

  • Itoh J, Nabeshima T, Kameyama T (1990) Utility of an elevated plus-maze for the evaluation of memory in mice: effects of nootropics, scopolamine and electroconvulsive shock. Psychopharmacology 101:27–33

    Article  CAS  PubMed  Google Scholar 

  • Jarvik ME, Kopp R (1967) An improved one-trial passive avoidance learning situation. Psychol Rep 21:221–224

    Article  CAS  PubMed  Google Scholar 

  • Kaur R, Singh V, Shri R (2017) Anti-amnesic effects of Ganoderma species: a possible cholinergic and antioxidant mechanism. Biomed Pharmacother 92:1055–1061

    Article  CAS  PubMed  Google Scholar 

  • Kaur A, Randhawa K, Singh V, Shri R (2019) Bioactivity guided isolation of acetylcholinesterase inhibitor from Ganoderma mediosinense (Agaricomycetes). Int J Med Mushrooms 21:755–763

    Article  PubMed  Google Scholar 

  • Kedare SB, Singh RP (2011) Genesis and development of DPPH method of antioxidant assay. J Food Sci Technol 48:412–422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar GP, Khanum F (2012) Neuroprotective potential of phytochemicals. Pharmacogn Rev 6:81

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lin JY, Tang CY (2007) Determination of total phenolic and flavonoid contents in selected fruits and vegetables, as well as their stimulatory effects on mouse splenocyte proliferation. Food Chem 101:140–147

    Article  CAS  Google Scholar 

  • Liu Y, Heying E, Tanumihardjo SA (2012) History, global distribution, and nutritional importance of Citrus fruits. Compr Rev Food Sci Food Saf 11:530–545

    Article  CAS  Google Scholar 

  • Luca M, Luca A, Calandra C (2015) The role of oxidative damage in the pathogenesis and progression of Alzheimer’s disease and vascular dementia. Oxid Med Cell Longev 2015:504678

    Article  PubMed  PubMed Central  Google Scholar 

  • Muhammad T, Ali T, Ikram M, Khan A, Alam SI, Kim MO (2019) Melatonin rescue oxidative stress-mediated neuroinflammation/neurodegeneration and memory impairment in scopolamine-induced amnesia mice model. J Neuroimmune Pharmacol 14:278–294

    Article  PubMed  Google Scholar 

  • Mullane K, Williams M (2019) Preclinical models of Alzheimer’s disease: Relevance and translational validity. Curr Protoc Pharmacol 84:1–28

    Article  Google Scholar 

  • Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358

    Article  CAS  PubMed  Google Scholar 

  • Pandareesh MD, Anand T, Khanum F (2016) Cognition enhancing and neuromodulatory propensity of Bacopa monniera extract against scopolamine induced cognitive impairments in rat hippocampus. Neurochem Res 41:985–999

    Article  CAS  PubMed  Google Scholar 

  • Pandey KB, Rizvi SI (2009) Plant polyphenols as dietary antioxidants in human health and disease. Oxid Med Cell Longev 2:270–278

    Article  PubMed  PubMed Central  Google Scholar 

  • Pimenta FC, Tavares ND, Neto GC, Alves M, Pimenta MF, Diniz JM, de Medeiros AC, Diniz MD (2017) Pharmacological actions of Citrus species. J Citrus Pathol 12:197–211

    Google Scholar 

  • Rahimzadegan M, Soodi M (2018) Comparison of memory impairment and oxidative stress following single or repeated doses administration of scopolamine in rat hippocampus. Basic Clin Neurosci 9:5–14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salim S (2017) Oxidative stress and the central nervous system. J Pharmacol Exp 360:201–205

    Article  CAS  Google Scholar 

  • Sanofer AA (2014) Role of Citrus fruits in health. J Pharm Sci Res 6:121–123

    Google Scholar 

  • Seelinger M, Popescu R, Seephonkai P, Singhuber J, Giessrigl B, Unger C, Bauer S, Wagner KH, Fritzer-Szekeres M, Szekeres T, Diaz R (2011) Fractionation of an extract of Pluchea odorata separates a property indicative for the induction of cell plasticity from one that inhibits a neoplastic phenotype. Evid Based Complement Alternat Med 2012:1–12

    Article  Google Scholar 

  • Sharma K (2019) Cholinesterase inhibitors as Alzheimer’s therapeutics. Mol Med Rep 20:1479–1487

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma K, Mahato N, Lee YR (2019) Extraction, characterization and biological activity of citrus flavonoids. Rev Chem Eng 35:265–284

    Article  CAS  Google Scholar 

  • Singh T, Goel RK (2015) Neuroprotective effect of Allium cepa L. in aluminium chloride induced neurotoxicity. Neurotoxicology 49:1–7

    Article  CAS  PubMed  Google Scholar 

  • Singh V, Kahol A, Singh IP, Saraf I, Shri R (2016) Evaluation of anti-amnesic effect of extracts of selected Ocimum species using in-vitro and in-vivo models. J Ethnopharmacol 193:490–499

    Article  PubMed  Google Scholar 

  • Singh T, Bagga N, Kaur A, Kaur N, Gawande DY, Goel RK (2017) Agmatine for combined treatment of epilepsy, depression and cognitive impairment in chronic epileptic animals. Biomed Pharmacother 92:720–725

    Article  CAS  PubMed  Google Scholar 

  • Sohi S, Shri R (2018) Neuropharmacological potential of the genus Citrus: A review. J Pharmacogn Phytochem 7:1538–1548

    CAS  Google Scholar 

  • Svensson AL, Zhang X, Nordberg A (1996) Biphasic effect of tacrine on acetylcholine release in rat brain via M1 and M2 receptors. Brain Res 726:207–212

    Article  CAS  PubMed  Google Scholar 

  • Swerdlow RH (2007) Pathogenesis of Alzheimer’s disease. Clin Interv Aging 2:347

    CAS  PubMed  PubMed Central  Google Scholar 

  • Umukoro S, Kalejaye HA, Ben-Azu B, Ajayi AM (2018) Naringenin attenuates behavioral derangements induced by social defeat stress in mice via inhibition of acetylcholinesterase activity, oxidative stress and release of pro-inflammatory cytokines. Biomed Pharmacother 105:714–723

    Article  CAS  PubMed  Google Scholar 

  • Uttara B, Singh AV, Zamboni P, Mahajan RT (2009) Oxidative stress and neurodegenerative diseases: a review of upstream and downstream antioxidant therapeutic options. Curr Neuropharmacol 7:65–74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vauzour D, Vafeiadou K, Rodriguez-Mateos A, Rendeiro C, Spencer JP (2008) The neuroprotective potential of flavonoids: a multiplicity of effects. Genes Nutr 3:115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang S, Yang C, Tu H, Zhou J, Liu X, Cheng Y, Luo J, Deng X, Zhang H, Xu J (2017) Characterization and metabolic diversity of flavonoids in citrus species. Sci Rep 7:1–10

    PubMed  PubMed Central  CAS  Google Scholar 

  • Yoshida S, Suzuki N (1993) Antiamnesic and cholinomimetic side-effects of the cholinesterase inhibitors, physostigmine, tacrine and NIK-247 in rats. Eur J Pharmacol 250:117–124

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are highly thankful to the Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, India for providing all the necessary facilities to carry out this research.

Author information

Authors and Affiliations

Authors

Contributions

Simran Pruthi performed the experiments, collected data and provided helpful feedback. Karanpreet Kaur and Varinder Singh performed analysis of data and drafted the manuscript. Richa Shri provided the initial conception, designed the study and drafted the manuscript.

Corresponding authors

Correspondence to Varinder Singh or Richa Shri.

Ethics declarations

Ethics approval

The approval of animal experiments was duly taken from Institutional Animal Ethics Committee (IAEC), Punjabi University, Patiala, Punjab, India (approval no. 107/GO/ReBi/99/CPCSEA/2019-10). 

Consent for publication

All authors have read and give their consent to publish this manuscript. 

Conflict of interest

The authors report no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pruthi, S., Kaur, K., Singh, V. et al. Improvement of cognitive function in mice by Citrus reticulata var. kinnow via modulation of central cholinergic system and oxidative stress. Metab Brain Dis 36, 901–910 (2021). https://doi.org/10.1007/s11011-021-00687-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11011-021-00687-7

Keywords

Navigation