Skip to main content

Advertisement

Log in

MicroRNA-125b alleviates hydrogen-peroxide-induced abnormal mitochondrial dynamics in HT22 cells by inhibiting p53

  • Original Article
  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

Micro-RNA125b (miR-125b) and tumor protein p53 (p53) are involved in the regulation of mitochondrial dynamics; however, the mechanism of their possible interaction during oxidative stress remains unclear. In this study, we investigated the role and mechanism of miR-125b and p53 in oxidative stress-induced mitochondrial damage in immortalized mouse hippocampal HT22 cells. Following stimulation with H2O2, we observed downregulation of miR-125b expression, upregulation of p53 expression, mitochondria were damaged and increased cell death. Overexpression of miR-125b alleviated mitochondrial damage and inhibited p53 expression. Furthermore, confocal and electron microscopy showed that overexpression of p53 eliminated the protective effect of miR-125b on the mitochondria. Thus, miR-125b alleviates abnormal mitochondrial homeostasis in H2O2-treated HT22 cells by suppressing p53 expression. Our data reveal a new model by which miR-125b influences mitochondrial dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The data sets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Abbreviations

miR-125b:

micro-RNA 125b

p53:

tumor protein p53

GAPDH:

glyceraldehyde 3-phosphate dehydrogenase

FIS1:

mitochondrial fission 1 protein

MFN2:

mitofusin-2

OPA1:

optic atrophy 1

H2O2 :

hydrogen peroxide

References

  • Bhat AH et al (2015) Oxidative stress, mitochondrial dysfunction and neurodegenerative diseases; a mechanistic insight. Biomed Pharmacother 74:101–110

    Article  CAS  Google Scholar 

  • Boveris A, Chance B (1973) The mitochondrial generation of hydrogen peroxide. General properties and effect of hyperbaric oxygen. Biochem J 134(3):707–716

    Article  CAS  Google Scholar 

  • Chhunchha B et al (2013) Curcumin abates hypoxia-induced oxidative stress based-ER stress-mediated cell death in mouse hippocampal cells (HT22) by controlling Prdx6 and NF-κB regulation. Am J Physiol Cell Physiol 304(7):C636–C655

    Article  CAS  Google Scholar 

  • Czarny P et al (2018) The interplay between inflammation, oxidative stress, DNA damage, DNA repair and mitochondrial dysfunction in depression. Prog Neuro-Psychopharmacol Biol Psychiatry 80(Pt C):309–321

    Article  CAS  Google Scholar 

  • Dai CQ et al (2016) p53 and mitochondrial dysfunction: novel insight of neurodegenerative diseases. J Bioenerg Biomembr 48(4):337–347

    Article  CAS  Google Scholar 

  • Deng SY et al (2017) Role of interferon regulatory factor-1 in lipopolysaccharide-induced mitochondrial damage and oxidative stress responses in macrophages. Int J Mol Med 40(4):1261–1269

    Article  CAS  Google Scholar 

  • Duroux-Richard I et al (2016) miR-125b controls monocyte adaptation to inflammation through mitochondrial metabolism and dynamics. Blood 128(26):3125–3136

    Article  CAS  Google Scholar 

  • Hwang GH et al (2015) Protective effect of butylated hydroxylanisole against hydrogen peroxide-induced apoptosis in primary cultured mouse hepatocytes. J Vet Sci 16(1):17–23

    Article  Google Scholar 

  • Jackson JG, Robinson MB (2018) Regulation of mitochondrial dynamics in astrocytes: mechanisms, consequences, and unknowns. Glia 66(6):1213–1234

    Article  Google Scholar 

  • Kingsley SMK, Bhat BV (2017) Role of microRNAs in sepsis. Inflamm Res 66(7):553–569

    Article  CAS  Google Scholar 

  • Kwon SH et al (2015) 3′,4′,7-Trihydroxyflavone prevents apoptotic cell death in neuronal cells from hydrogen peroxide-induced oxidative stress. Food Chem Toxicol 80:41–51

    Article  CAS  Google Scholar 

  • Le MT et al (2009) MicroRNA-125b is a novel negative regulator of p53. Genes Dev 23(7):862–876

    Article  CAS  Google Scholar 

  • Li J et al (2010) miR-30 regulates mitochondrial fission through targeting p53 and the dynamin-related protein-1 pathway. PLoS Genet 6(1):e1000795

    Article  Google Scholar 

  • Li J et al (2014) Mitofusin 1 is negatively regulated by microRNA 140 in cardiomyocyte apoptosis. Mol Cell Biol 34(10):1788–1799

    Article  Google Scholar 

  • Li J et al (2019) Protective effect and mechanisms of exogenous neutrophil gelatinase-associated lipocalin on lipopolysaccharide-induced injury of renal tubular epithelial cell. Biochem Biophys Res Commun 515(1):104–111

    Article  CAS  Google Scholar 

  • Long B et al (2013) miR-761 regulates the mitochondrial network by targeting mitochondrial fission factor. Free Radic Biol Med 65:371–379

    Article  CAS  Google Scholar 

  • Lu TX, Rothenberg ME (2018) MicroRNA. J Allergy Clin Immunol 141(4):1202–1207

    Article  CAS  Google Scholar 

  • Ma H et al (2016) MicroRNA-125b prevents cardiac dysfunction in Polymicrobial sepsis by targeting TRAF6-mediated nuclear factor kappaB activation and p53-mediated apoptotic signaling. J Infect Dis 214(11):1773–1783

    Article  CAS  Google Scholar 

  • Mo Y et al (2019) SS-31 reduces inflammation and oxidative stress through the inhibition of Fis1 expression in lipopolysaccharide-stimulated microglia. Biochem Biophys Res Commun

  • Naoi M et al (2019) Mitochondria in neuroprotection by phytochemicals: bioactive polyphenols modulate mitochondrial apoptosis system, function and structure. Int J Mol Sci 20(10)

  • Ren J et al (2019) Tricetin protects against 6-OHDA-induced neurotoxicity in Parkinson's disease model by activating Nrf2/HO-1 signaling pathway and preventing mitochondria-dependent apoptosis pathway. Toxicol Appl Pharmacol 378:114617

    Article  CAS  Google Scholar 

  • Rossignol DA, Frye RE (2012) A review of research trends in physiological abnormalities in autism spectrum disorders: immune dysregulation, inflammation, oxidative stress, mitochondrial dysfunction and environmental toxicant exposures. Mol Psychiatry 17(4):389–401

    Article  CAS  Google Scholar 

  • Schuler M et al (2000) p53 induces apoptosis by caspase activation through mitochondrial cytochrome c release. J Biol Chem 275(10):7337–7342

    Article  CAS  Google Scholar 

  • Smith GM, Gallo G (2018) The role of mitochondria in axon development and regeneration. Dev Neurobiol 78(3):221–237

    Article  CAS  Google Scholar 

  • Song Q, Gou WL, Zhang R (2015) FAM3A protects HT22 cells against hydrogen peroxide-induced oxidative stress through activation of PI3K/Akt but not MEK/ERK pathway. Cell Physiol Biochem 37(4):1431–1441

    Article  CAS  Google Scholar 

  • Teismann P, Schulz JB (2004) Cellular pathology of Parkinson's disease: astrocytes, microglia and inflammation. Cell Tissue Res 318(1):149–161

    Article  Google Scholar 

  • Wang X et al (2014a) Oxidative stress and mitochondrial dysfunction in Alzheimer's disease. Biochim Biophys Acta 1842(8):1240–1247

    Article  CAS  Google Scholar 

  • Wang DB et al (2014b) p53 and mitochondrial function in neurons. Biochim Biophys Acta 1842(8):1186–1197

    Article  CAS  Google Scholar 

  • Wang X et al (2014c) MicroRNA-125b protects against myocardial ischaemia/reperfusion injury via targeting p53-mediated apoptotic signalling and TRAF6. Cardiovasc Res 102(3):385–395

    Article  CAS  Google Scholar 

  • Wang A et al (2019a) Tacrolimus protects hippocampal neurons of rats with status epilepticus through suppressing oxidative stress and inhibiting mitochondrial pathway of apoptosis. Brain Res 1715:176–181

    Article  CAS  Google Scholar 

  • Wang Y, Li B, Zhang X (2019b) Scutellaria barbata D. Don (SBD) protects oxygen glucose deprivation/reperfusion-induced injuries of PC12 cells by up-regulating Nrf2. Artif Cells Nanomed Biotechnol 47(1):1797–1807

    Article  CAS  Google Scholar 

  • Zampieri FG et al (2011) Sepsis-associated encephalopathy: not just delirium. Clinics (Sao Paulo) 66(10):1825–1831

    Article  Google Scholar 

  • Zhai A, Zhang Z, Kong X (2019) Paeoniflorin alleviates H(2)O(2)-induced oxidative injury through Down-regulation of MicroRNA-135a in HT-22 cells. Neurochem Res 44(12):2821–2831

    Article  CAS  Google Scholar 

  • Zhang LN et al (2014) Expression and role of neuroglobin in rats with sepsis-associated encephalopathy. Crit Care Med 42(1):e12–e21

    Article  CAS  Google Scholar 

  • Zhao ZY et al (2013) Edaravone protects HT22 neurons from H2O2-induced apoptosis by inhibiting the MAPK signaling pathway. CNS Neurosci Ther 19(3):163–169

    Article  Google Scholar 

  • Zhao D et al (2020) Plasma miR-125a and miR-125b in sepsis: correlation with disease risk, inflammation, severity, and prognosis. J Clin Lab Anal 34(2):e23036

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We express our gratitude to the Central Laboratory of Xiangya Hospital for the use of experimental equipment.

Funding

This work was supported by the National Natural Science Foundation of China (grant numbers 81873956 and 81671960).

Author information

Authors and Affiliations

Authors

Contributions

Lina Zhang, Yan Huang, and Yuhang Ai: Conceptualization, Design. Yan Huang, Songyun Deng, and Yunan Mo: Investigation. Wenchao Li and Qianyi Peng: Data curation, Formal analysis. Lina Zhang and Li Huang: Resources. Yan Huang: Writing- Original draft preparation. All authors: Writing- Reviewing and Editing.

Corresponding author

Correspondence to Lina Zhang.

Ethics declarations

Competing interests

The authors have declared that no competing interest exists.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Written informed consent for publication was obtained from all participants.

Code availability

Not applicable.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Y., Deng, S., Ai, Y. et al. MicroRNA-125b alleviates hydrogen-peroxide-induced abnormal mitochondrial dynamics in HT22 cells by inhibiting p53. Metab Brain Dis 36, 601–608 (2021). https://doi.org/10.1007/s11011-020-00666-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11011-020-00666-4

Keywords

Navigation