Skip to main content

Advertisement

Log in

Grafted human chorionic stem cells restore motor function and preclude cerebellar neurodegeneration in rat model of cerebellar ataxia

  • Original Article
  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

Cerebellar ataxia (CA) is a form of ataxia that adversely affects the cerebellum. Cell replacement therapy (CRT) has been considered as a potential treatment for neurological disorders. In this report, we investigated the neuro-restorative effects of human chorionic stem cells (HCSCs) transplantation on rat model of CA induced by 3-acetylpyridine (3-AP). In this regard, HCSCs were isolated and phenotypically determined. Next, a single injection of 3-AP was administered for ataxia induction, and bilateral HCSCs implantation was conducted 3 days after 3-AP injection, followed by expression analysis of a number of apoptotic, autophagic and inflammatory genes as well as vascular endothelial growth factor (VEGF) level, along with assessment of cerebellar neurodegeneration, motor coordination and muscle activity. The findings revealed that grafting of HCSCs in 3-AP model of ataxia decreased the expression levels of several inflammatory, autophagic and apoptotic genes and provoked the up-regulation of VEGF in the cerebellar region, prevented the degeneration of Purkinje cells caused by 3-AP toxicity and ameliorated motor coordination and muscle function. In conclusion, these data indicate in vivo efficacy of HCSCs in the reestablishment of motor skills and reversal of CA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ahmadi H et al (2018) Sertoli cells avert neuroinflammation-induced cell death and improve motor function and striatal atrophy in rat model of Huntington disease. J Mol Neurosci 65:17–27

    PubMed  CAS  Google Scholar 

  • Aliaghaei A, Boroujeni ME, Ahmadi H, Bayat AH, Tavirani MR, Abdollahifar MA, Pooyafar MH, Mansouri V (2019a) Dental pulp stem cell transplantation ameliorates motor function and prevents cerebellar atrophy in rat model of cerebellar ataxia. Cell Tissue Res 376(2):179–187

    PubMed  Google Scholar 

  • Aliaghaei A, Meymand AZ, Boroujeni ME, Khodagoli F, Meftahi GH, Hadipour MM, Abdollahifar MA, Mesgar S, Ahmadi H, Danyali S, Hasani S (2019b) Neuro-restorative effect of sertoli cell transplants in a rat model of amyloid beta toxicity. Behav Brain Res 367:158–165

    PubMed  CAS  Google Scholar 

  • Alizadeh R, Mehrabi S, Hadjighassem M (2013) Cell therapy in Parkinson’s disease. Arch Neurosci 1:43–50

    Google Scholar 

  • Alizadeh R, Hassanzadeh G, Soleimani M, Taghi Joghataei M, Siavashi V, Khorgami Z, Hadjighassem M (2015) Gender and age related changes in number of dopaminergic neurons in adult human olfactory bulb. J Chem Neuroanat 69:1–6

    PubMed  CAS  Google Scholar 

  • Alizadeh R et al (2017) In vitro differentiation of neural stem cells derived from human olfactory bulb into dopaminergic-like neurons. Eur J Neurosci 45:773–784

    PubMed  Google Scholar 

  • Alizadeh R et al (2019a) Human olfactory stem cells: as a promising source of dopaminergic neuron-like cells for treatment of Parkinson's disease. Neurosci Lett 696:52–59

    PubMed  CAS  Google Scholar 

  • Alizadeh R, Ramezanpour F, Mohammadi A, Eftekharzadeh M, Simorgh S, Kazemiha M, Moradi F (2019b) Differentiation of human olfactory system‐derived stem cells into dopaminergic neuron‐like cells: A comparison between olfactory bulb and mucosa as two sources of stem cells. J Cell Biochem 120(12):19712–19720

    PubMed  CAS  Google Scholar 

  • Anzalone R, Iacono ML, Loria T, Di Stefano A, Giannuzzi P, Farina F, La Rocca G (2011) Wharton’s jelly mesenchymal stem cells as candidates for beta cells regeneration: extending the differentiative and immunomodulatory benefits of adult mesenchymal stem cells for the treatment of type 1 diabetes. Stem Cell Rev 7:342–363

    Google Scholar 

  • Aoki H, Sugihara I (2012) Morphology of single olivocerebellar axons in the denervation–reinnervation model produced by subtotal lesion of the rat inferior olive. Brain Res 1449:24–37

    PubMed  CAS  Google Scholar 

  • Bagher Z et al (2018) Differentiation of neural crest stem cells from nasal mucosa into motor neuron-like cells chemical. J Neuroanat 92:35–40. https://doi.org/10.1016/j.jchemneu.2018.05.003

    Article  CAS  Google Scholar 

  • Bagher Z, Atoufi Z, Alizadeh R, Farhadi M, Zarrintaj P, Moroni L, Setayeshmehr M, Komeili A, Kamrava SK (2019) Conductive hydrogel based on chitosananiline pentamer/gelatin/agarose significantly promoted motor neuron-like cells differentiation of human olfactory ecto-mesenchymal stem cells. Mater Sci Eng C 101:243–253

    CAS  Google Scholar 

  • Battula VL, Treml S, Abele H, Bühring H-J (2008) Prospective isolation and characterization of mesenchymal stem cells from human placenta using a frizzled-9-specific monoclonal antibody. Differentiation 76:326–336

    PubMed  CAS  Google Scholar 

  • Benirschke K, Driscoll SG (1967) The pathology of the human placenta. In: InPlacenta. Springer, Berlin, Heidelberg, pp 97–571

    Google Scholar 

  • Boroujeni ME, Gardaneh M (2017) Umbilical cord: an unlimited source of cells differentiable towards dopaminergic neurons. Neural Regen Res 12:1186

    PubMed  PubMed Central  Google Scholar 

  • Boroujeni ME, Gardaneh M, Shahriari MH, Aliaghaei A, Hasani S (2017) Synergy between choroid plexus epithelial cell-conditioned medium and knockout serum replacement converts human adipose-derived stem cells to dopamine-secreting neurons. Rejuvenation Res 20(4):309–319

    PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72(1–2):248–54

  • Castrechini N et al (2010) Mesenchymal stem cells in human placental chorionic villi reside in a vascular niche. Placenta 31:203–212

    PubMed  CAS  Google Scholar 

  • Cendelín J, Voller J, Vožeh F (2010) Ataxic gait analysis in a mouse model of the olivocerebellar degeneration. Behav Brain Res 210(1):8–15

    PubMed  Google Scholar 

  • Duffy AM, Bouchier-Hayes DJ, Harmey JH (2004) Vascular Endothelial Growth Factor (VEGF). Vegf and Cancer 133

  • Dulamea A (2015) Mesenchymal stem cells in multiple sclerosis-translation to clinical trials. J Med Life 8:24

    PubMed  PubMed Central  CAS  Google Scholar 

  • Ebrahimi MJ et al (2018) Human umbilical cord matrix stem cells reverse oxidative stress-induced cell death and ameliorate motor function and striatal atrophy in rat model of Huntington disease. Neurotox Res 34:273–284

    PubMed  CAS  Google Scholar 

  • Eskandarian Boroujeni M, Peirouvi T, Shaerzadeh F, Ahmadiani A, Abdollahifar MA, Aliaghaei A (2020) Differential gene expression and stereological analyses of the cerebellum following methamphetamine exposure. Addict Biol 25(1):e12707

    PubMed  Google Scholar 

  • Fernandez A, De La Vega AG, Torres-Aleman I (1998) Insulin-like growth factor I restores motor coordination in a rat model of cerebellar ataxia. Proc Natl Acad Sci 95:1253–1258

    PubMed  CAS  Google Scholar 

  • Gugliandolo A, Bramanti P, Mazzon E (2017) Mesenchymal stem cell therapy in Parkinson's disease animal models. Curr Res Transl Med 65:51–60

    PubMed  CAS  Google Scholar 

  • Hasani S, Boroujeni ME, Aliaghaei A, Baghai K, Rostami A (2018) Dopaminergic induction of human adipose-derived mesenchymal stem cells is accompanied by transcriptional activation of autophagy. Cell Biol Int 42:1688–1694

    PubMed  CAS  Google Scholar 

  • Hoban D, Howard L, Dowd E (2015) GDNF-secreting mesenchymal stem cells provide localized neuroprotection in an inflammation-driven rat model of Parkinson’s disease. Neuroscience 303:402–411

    PubMed  CAS  Google Scholar 

  • Kurozumi K, Nakamura K, Tamiya T, Kawano Y, Ishii K, Kobune M, Hirai S, Uchida H, Sasaki K, Ito Y, Kato K, Honmou O, Houkin K, Date I, Hamada H (2005) Mesenchymal stem cells that produce neurotrophic factors reduce ischemic damage in the rat middle cerebral artery occlusion model. Mol Ther 11:96–104

    PubMed  CAS  Google Scholar 

  • Kwon A et al (2016) Tissue-specific differentiation potency of mesenchymal stromal cells from perinatal tissues. Sci Rep 6:23544

    PubMed  PubMed Central  CAS  Google Scholar 

  • Lastres-Becker I, Rüb U, Auburger G (2008) Spinocerebellar ataxia 2 (SCA2). Cerebellum 7:115–124

    PubMed  CAS  Google Scholar 

  • Lindvall O, Kokaia Z, Martinez-Serrano A (2004) Stem cell therapy for human neurodegenerative disorders–how to make it work. Nat Med 10:S42

    PubMed  Google Scholar 

  • Liu L et al (2010) Mesenchymal stem cells inhibition of chronic ethanol-induced oxidative damage via upregulation of phosphatidylinositol-3-kinase/Akt and modulation of extracellular signal-regulated kinase 1/2 activation in PC12 cells and neurons. neuroscience 167:1115–1124

    PubMed  CAS  Google Scholar 

  • Mahmoudi M, Bayat AH, Boroujeni ME, Abdollahifar MA, Ebrahimi V, Danyali S, Heidari MH, Aliaghaei A (2019) Curcumin protects purkinje neurons, ameliorates motor function and reduces cerebellar atrophy in rat model of cerebellar ataxia induced by 3-AP. J Chem Neuroanat 102:101706

    PubMed  Google Scholar 

  • Manochantr S, Marupanthorn K, Tantrawatpan C, Kheolamai P (2015) The expression of neurogenic markers after neuronal induction of chorion-derived mesenchymal stromal cells. Neurol Res 37:545–552

    PubMed  CAS  Google Scholar 

  • Manto M, Marmolino D (2009) Cerebellar ataxias. Curr Opin Neurol 22:419–429

    PubMed  Google Scholar 

  • Marmolino D, Manto M (2010) Past, present and future therapeutics for cerebellar ataxias. Curr Neuropharmacol 8:41–61

    PubMed  PubMed Central  CAS  Google Scholar 

  • Maucksch C, Vazey EM, Gordon RJ, Connor B (2013) Stem cell-based therapy for Huntington's disease. J Cell Biochem 114:754–763

    PubMed  CAS  Google Scholar 

  • Moayeri A, Bojnordi MN, Haratizadeh S, Esmaeilnejad-Moghadam A, Alizadeh R, Hamidabadi HG (2017) Transdifferentiation of human dental pulp stem cells into oligoprogenitor cells Basic and clinical. neuroscience 8:387

    CAS  Google Scholar 

  • Mohammadi A et al (2019) Transplantation of human chorion-derived cholinergic progenitor cells: a novel treatment for neurological disorders. Mol Neurobiol 56:307–318

    PubMed  CAS  Google Scholar 

  • Namjoo Z et al (2018a) Combined effects of rat Schwann cells and 17β-estradiol in a spinal cord injury model. Metab Brain Dis 33:1229–1242

    PubMed  CAS  Google Scholar 

  • Namjoo Z, Mortezaee K, Joghataei MT, Moradi F, Piryaei A, Abbasi Y, Hosseini A, Majidpoor J (2018b) Targeting axonal degeneration and demyelination using combination administration of 17β-estradiol and Schwann cells in the rat model of spinal cord injury. J Cell Biochem 119:10195–10203

    PubMed  CAS  Google Scholar 

  • Nazarov I et al (2012) Multipotent stromal stem cells from human placenta demonstrate high therapeutic potential. Stem Cells Transl Med 1:359–372

    PubMed  PubMed Central  CAS  Google Scholar 

  • Nur Fariha M-M, Chua K-H, Tan G-C, Tan A-E, Hayati A-R (2011) Human chorion-derived stem cells: changes in stem cell properties during serial passage. Cytotherapy 13:582–593

    CAS  Google Scholar 

  • Parolini O et al (2008) Concise review: isolation and characterization of cells from human term placenta: outcome of the first international workshop on placenta derived stem cells stem. Cells 26:300–311

    Google Scholar 

  • Qu J, Zhang H (2017) Roles of mesenchymal stem cells in spinal cord injury. Stem Cells Int 2017

  • Salehi M et al (2019) Alginate/chitosan hydrogel containing olfactory ectomesenchymal stem cells for sciatic nerve tissue engineering. J Cell Physiol. https://doi.org/10.1002/jcp.28183

  • Simorgh S et al (2019) Olfactory mucosa stem cells: an available candidate for the treatment of the Parkinson's disease. J Cell Physiol. https://doi.org/10.1002/jcp.28944

  • Tatullo M, Marrelli M, Paduano F (2015) The regenerative medicine in oral and maxillofacial surgery: the most important innovations in the clinical application of mesenchymal stem cells. Int J Med Sci 12:72

    PubMed  PubMed Central  CAS  Google Scholar 

  • Wecker L, Marrero-Rosado B, Engberg M, Johns B, Philpot R (2017) 3-Acetylpyridine neurotoxicity in mice. Neurotoxicology 58:143–152

    PubMed  CAS  Google Scholar 

  • Zhang M-J, Sun JJ, Qian L, Liu Z, Zhang Z, Cao W, Li W, Xu Y (2011) Human umbilical mesenchymal stem cells enhance the expression of neurotrophic factors and protect ataxic mice. Brain Res 1402:122–131

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Clinical Research Development Unit (CRDU) of Loghman Hakim Hospital and Shahid Beheshti University of Medical Sciences, Tehran, Iran for their support, cooperation and assistance throughout the period of study (grant number 14231).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mahdi Eskandarian Boroujeni or Abbas Aliaghaei.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Ethical approval

All experiments were done in accordance with the National Institutes of Health Guide for the Care and Use of Laboratory Animals (NIH Publication No. 80–23, revised 1996) and were approved by the Research and Ethics Committee of Shahid Beheshti University of Medical Sciences, Tehran, Iran, under approval NO. IR. SBMU. REC. 1397.007.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 35 kb)

ESM 2

(XLSX 9 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akhlaghpasand, M., Tizro, M., Raoofi, A. et al. Grafted human chorionic stem cells restore motor function and preclude cerebellar neurodegeneration in rat model of cerebellar ataxia. Metab Brain Dis 35, 615–625 (2020). https://doi.org/10.1007/s11011-020-00543-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11011-020-00543-0

Keywords

Navigation