Skip to main content

Advertisement

Log in

Preclinical and clinical research on the toxic and neurological effects of cassava (Manihot esculenta Crantz) consumption

  • Review Article
  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

Cassava (Manihot esculenta Crantz) is a tropical plant that is used as fresh food, processed food, or raw material for the preparation of flours with high nutritional value. However, cassava contains cyanogenic glycosides, such as linamarin and lotaustralin, that can trigger severe toxic effects and some neurological disorders, including motor impairment, cognitive deterioration, and symptoms that characterize tropical ataxic neuropathy and spastic epidemic paraparesis (Konzo). These alterations that are associated with the consumption of cassava or its derivatives have been reported in both humans and experimental animals. The present review discusses and integrates preclinical and clinical evidence that indicates the toxic and neurological effects of cassava and its derivatives by affecting metabolic processes and the central nervous system. An exhaustive review of the literature was performed using specialized databases that focused on the toxic and neurological effects of the consumption of cassava and its derivatives. We sought to provide structured information that will contribute to understanding the undesirable effects of some foods and preventing health problems in vulnerable populations who consume these vegetables. Cassava contains cyanogenic glycosides that contribute to the development of neurological disorders when they are ingested inappropriately or for prolonged periods of time. Such high consumption can affect neurochemical and neurophysiological processes in particular brain structures and affect peripheral metabolic processes that impact wellness. Although some vegetables have high nutritional value and ameliorate food deficits in vulnerable populations, they can also predispose individuals to the development of neurological diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adam Shama IY, Ahmed Wasma AA (2011) Evaluation of the toxicity of Manihot esculenta on Wistar rats after traditional Sudanese processing. J Pharmacol Toxicol 6(4):418–426

    Article  Google Scholar 

  • Adamolekun B (2010) Etiology of Konzo, epidemic spastic paraparesis associated with cyanogenic glycosides in cassava: role of thiamine deficiency? J Neurol Sci 296:30–33

    Article  CAS  PubMed  Google Scholar 

  • Adamolekun B (2011) Neurological disorders associated with cassava diet: a review of putative etiological mechanisms. Metab Brain Dis 26:79–85

    Article  CAS  PubMed  Google Scholar 

  • Aristizábal J, Sánchez T (2007) Guía para producción y análisis de almidón de yuca. FAO, Rome

    Google Scholar 

  • Banea-Mayambu JP, Tylleskar T, Gitebo N, Matadi N, Gebre-Medhin M, Rosling H (1997) Giographical and seasonal association between linamarin and cyanide exposure from cassava and the upper motor neurone disease konzo in former Zaire. Trop Med Int Health 2:1143–1151

    Article  CAS  PubMed  Google Scholar 

  • Boivin MJ, Okitundu D, Makila-Mabe B, Sombo MT, Mumba D, Sikorskii A, Mayambu B, Tshala-Katumbay D (2017) Cognitive and motor performance in Congolese children with konzo during 4 years of follow-up: a longitudinal analysis. Lancet Glob Health 5(9):e936–e947

    Article  PubMed  PubMed Central  Google Scholar 

  • Bradbury JH, Egan SV, Lynch MJ (1991) Analysis of cianyde in cassava using acid hydrolysis of cyanogenic glucosides. J Sci Food Agric 55(2):277–290

    Article  CAS  Google Scholar 

  • Brimer L, Roseling H (1993) Microdiffusion method with solid state detection of cyanogenic glycosides from cassava in human urine. Food Chem Toxicol 31:599–603

    Article  CAS  PubMed  Google Scholar 

  • Bumoko GM, Somo MT, Okitundu LD, Mumba DN, Kazadi KT, Tamfum-Muyembe JJ, Lasarev MR, Boivin MJ, Banea JP, Tshala-Katumbay DD (2014) Determinants of cognitive performance in children relying on cyanogenic cassava as staple food. Metab Brain Dis 29:359–366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carlsson L, Mlingi N, Ronquist G, Rosling H (1995) A specific and sensitive method for the determination of linamarin in urine. Nat Toxins 3:378–382

    Article  CAS  PubMed  Google Scholar 

  • Cliff J, Lundquist P, Martensson J, Rosling H, Sorbo B (1985) Association of high cyanide and low Sulphur intake in cassava-induced spastic paraparesis. Lancet 2:1211–1213

    Article  CAS  PubMed  Google Scholar 

  • Cock JH (1984) Cassava: a basic energy source in the tropics. Science 218(4575):755–762

    Google Scholar 

  • Conn EE (2009) Cyanogenic glycosides. Int Rev Biochem 27:21–43

    Google Scholar 

  • Cooke RD (1978) An enzymatic assay for the total cyanide content of cassava (Manihot esculenta Crantz). Sci Food Agric 29:345–352

    Article  CAS  Google Scholar 

  • Duarte F, Sandoval-Castro C (2002) Efecto de la metionina en una dieta integral de yuca para ovinos en la desintoxicación de ácido cianhídrico. Rev Biomed 13:116–119

    Article  Google Scholar 

  • Egan VS, Hock-Hin Y, Bradbury JH (1998) Simple picrate paper kit for determination of the cyanogenic potential of cassava flour. Sci Food Agric 76:39–48

    Article  CAS  Google Scholar 

  • Ernesto M, Cardoso A, Cliff J, Bradbury J (2000) Cyanogens in cassava flour, roots, and urinary thiocyanate concentration in Mozambique. J Food Comp Anal 13:1–12

    Article  CAS  Google Scholar 

  • Hernández T, Lundquist P, Lourdes O, Pérez Cristiá R, Rodriguez E, Rosling H (1995) Fate in humans of dietary intake of cyanogenic glycosides from roots of sweet cassava consumed in Cuba. Nat Toxins 3:114–117

    Article  PubMed  Google Scholar 

  • Howlett WP, Brubaker GR, Mlingi N, Rosling H (1990) Konzo, epidemic upper motor neuron disease studied in Tanzania. Brain 113(1):223–235

    Article  PubMed  Google Scholar 

  • Jansz ER, Uluwaduge I (1997) Biochemical aspects of cassava (Manihot esculenta Crantz) with special emphasis on cyanogenic glucosides: a review. J Nat Sci Found Sri Lanka 25(1):1–24

    Article  CAS  Google Scholar 

  • Jørgensen K, Morant AV, Morant M, Jensen NB, Olsen CE, Kannangara R, Motawia MS, Møller BL, Bak S (2011) Biosynthesis of the cyanogenic glucosides linamarin and lotaustralin in cassava: isolation, biochemical characterization, and expression pattern of CYP71E7, the oxime-metabolizing cytochrome P450 enzyme. Plant Physiol 155:282–292

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kambale KJ, Ali ER, Sadiki NH, Kayembe KP, Mvumbi LG, Yandju DL, Boivin MJ, Boss GR, Stadir DD, Lambert WE, Lasarev MR, Okitundu LA, Mumba Ngoyi D, Banea JP, Tshala-Katumbay DD (2017) Lower sulfurtransferase detoxification rates of cyanide in Konzo: a tropical spastic paralysis linked to cassava cyanogenic poisoning. Neurotoxicology 59:256–262

    Article  CAS  PubMed  Google Scholar 

  • Kashala-Abotnes E, Sombo MT, Okitundu DL, Kunyu M, Bumoko Makila-Mabe G, Tylleskär T, Sikorskii A, Banea JP, Mumba-Ngoyi D, Tshala-Katumbay D, Boivin MJ (2018) Dietary cyanogen exposure and early child neurodevelopment: an observational study from the Democratic Republic of Congo. PLoS One 13(4):e0193261

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kashala-Abotnes E, Okitundu D, Mumba D, Boivin MJ, Tylleskär T, Tshala-Katumbay D (2019) Konzo: a distinct neurological disease associated with food (cassava) cyanogenic poisoning. Brain Res Bull 145:87–91

    Article  CAS  PubMed  Google Scholar 

  • Kittirachra R (2006) Effects of cassava on thyroid gland in rats. Thai J Pharm Sci 20:57–62

    Google Scholar 

  • Leavesley HB, Li L, Prabhakaran K, Borowitz JL, Isom GE (2008) Interaction of cyanide and nitric oxide with cytochrome c oxidase: implications for acute cyanide toxicity. Toxicol Sci 101:101–111

    Article  CAS  PubMed  Google Scholar 

  • Llorens J, Soler-Martín C, Saldaña-Ruíz S, Cutillas B, Ambrosio S, Boadas-Vaello P (2011) A new unifying hypothesis for lathyrism, konzo and tropical ataxic neuropathy: nitriles are the causative agents. Food Chem Toxicol 49(3):563–570

    Article  CAS  PubMed  Google Scholar 

  • Madhusudanan M, Menon MK, Ummer K, Radhakrishnanan K (2008) Clinical and etiological profile of tropical ataxic neuropathy in Kerala, South India. Eur Neurol 60:21–26

    Article  PubMed  Google Scholar 

  • Maduagwu EN (1989) Metabolism of linamarin in rats. Food Chem Toxicol 7:451–454

    Article  Google Scholar 

  • Mathangi DC, Mohan V, Namasivayam A (1999) Effect of cassava on motor co-ordination and neurotransmitter level in the albino rat. Food Chem Toxicol 37(1):57–60

    Article  CAS  PubMed  Google Scholar 

  • Mathangi D, Deepa R, Mohan V, Govindarajan M, Namasivayam A (2000) Long-term ingestion of cassava (tapioca) does not produce diabetes or pancreatitis in the rat model. Int J Pancreatol 27(3):203–208

    Article  CAS  PubMed  Google Scholar 

  • McMahon J, White W, Sayre RT (1995) Cyanogenesis in cassava (Manihot esculenta Crantz). J Exp Bot 46:731–741

    Article  CAS  Google Scholar 

  • Mederos V (2006) Embriogénesis somática en yuca (Manihot esculenta Crantz). Doctoral Thesis, Universidad de Ciego de Ávila, Ciego de Ávila, Cuba

  • Mlingi ND, Poulter NH, Roseling H (1992) An outbreak of acute intoxications from consumption of insufficiently processed cassava in Tanzania. Nutr Res 12:677–687

    Article  Google Scholar 

  • Monekosso GL, Annan WGT (1964) Clinical epidemiological observations on an ataxic syndrome in Western Nigeria. Trop Geogr Med 16:316–323

    CAS  PubMed  Google Scholar 

  • Netto AB, Netto CM, Mahadevan A, Taly AB, Agadi JB (2016) Tropical ataxic neurophaty: a century old enigma. Neurol India 64:1151–1159

    Article  PubMed  Google Scholar 

  • Nweke FI, Bokanga M (1994) Importance of cassava processing for production in sub-Saharan Africa. Acta Hortic 375:401–412

    Article  Google Scholar 

  • Nzwalo H, Cliff J (2011) Konzo: from poverty, cassava, and cyanogen intake to toxico-nutritional neurological disease. PLoS Negl Trop Dis 5:e1051

    Article  PubMed  PubMed Central  Google Scholar 

  • Ogundele OM, Caxton-Martins EA, Ghazal OK, Jimoh OR (2010) Neurotoxicity of cassava: mode of cell death in the visual relay centres of adult Wistar rats. J Cell Anim Biol 4(8):119–124

    CAS  Google Scholar 

  • Oluwole OSA, Onabolu AO (2003) Cyanogenic compounds in cassava and exposure to cyanide. In: Preedy VR, Watson RR (eds) Reviews in food and nutrition toxicity. Taylor and Francis, London, pp 41–62

    Chapter  Google Scholar 

  • Osuntokun BO (1968) An ataxic neuropathy in Nigeria: a clinical, biochemical and electrophysiological study. Brain 91(2):215–248

    Article  CAS  PubMed  Google Scholar 

  • Padmaja G (1995) Cyanide detoxification in cassava for food and feed uses. Crit Rev Food Sci Nutr 35:299–339

    Article  CAS  PubMed  Google Scholar 

  • Pancon A, Hughes MA (1992) In situ localization of cyanogenic β-glucosidase (linamarase) gene expression in leaves of cassava Manihot esculenta Crantz using non-isotopic probes. Plant Pathol J 2:821–827

    Google Scholar 

  • Pearce LL, Lopez Manzano E, Martinez-Bosch S, Peterson J (2008) Antagonism of nitric oxide toward the inhibition of cytochrome c oxidase by carbon monoxide and cyanide. Chem Res Toxicol 21:2073–2081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rivadeneyra-Domínguez E, Rodríguez-Landa JF (2013) Cycads and their association with certain neurodegenerative diseases. Neurología 29:517–522

    Article  PubMed  Google Scholar 

  • Rivadeneyra-Domínguez E, Rodríguez-Landa JF (2016) Motor impairments induced by microinjection of linamarin in the dorsal hippocampus of Wistar rats. Neurología 31(8):516–522

    Article  PubMed  Google Scholar 

  • Rivadeneyra-Domínguez E, Rodríguez-Landa JF, Salas MD (2012) ¿Neuropatía atáxica tropical y Konzo asociadas al consumo excesivo de yuca? Arch Neurocien (Mex) 17(1):45–48

    Google Scholar 

  • Rivadeneyra-Dominguez E, Vázquez-Luna A, Rodríguez-Landa JF, Díaz-Sobac R (2013) Neurotoxic effect of linamarin in rats associated with cassava (Manihot esculenta Crantz) consumption. Food Chem Toxicol 59:230–235

    Article  CAS  PubMed  Google Scholar 

  • Rivadeneyra-Domínguez E, Vázquez-Luna A, Rodríguez-Landa JF, Díaz-Sobac R (2014) A standardized extract of Ginkgo biloba prevents locomotion impairment induced by cassava juice in Wistar rats. Front Pharmacol 5:213

    PubMed  PubMed Central  Google Scholar 

  • Rivadeneyra-Domínguez E, Martinez-Luna M, Rodríguez-Landa JF (2017a) Toxicidad de la yuca (Manihot esculenta Crantz). Estudio con Linamarina. Editorial Académica de España 54–56

  • Rivadeneyra-Domínguez E, Vázquez-Luna A, Díaz-Sobac R, Briones-Céspedes EE, Rodríguez-Landa JF (2017b) Contribution of hippocampus area CA1 to acetone cyanohydrin-induced loss of motor coordination in rats. Neurología 32(4):230–235

    Article  PubMed  Google Scholar 

  • Rivadeneyra-Dominguez E, Rosas-Jarquín CJ, Vázquez-Luna A, Díaz-Sobac R, Rodríguez-Landa JF (2019) Effects of acetone cyanohydrin, a derivative of cassava, on motor activity and kidney and liver function in Wistar rats. Neurología 34(5):300–308

    Article  CAS  PubMed  Google Scholar 

  • Rowland HAK (1963) Neuropathy in Sierra Leone. J Trop Med Hygiene 66:181–187

    CAS  Google Scholar 

  • Schaumburg HH, Spencer PS, Thomas PK (1983) Toxic neuropathy: pharmaeutical agents. In: Schaumburg HH (ed) Disorders of peripheral nerves (series title: Contempory neurology series, vol 24). FA Davis, Philadelphia, pp 119–130

    Google Scholar 

  • Schulz JD, Wilson MB, Shaw CA (2003) A murine model of ALS-PDC with behavioral and neuropathological features of parkinsonism. Ann N Y Acad Sci 991:326–329

    Article  Google Scholar 

  • Seigler DS (1975) Isolation and characterization of naturally occurring cyanogenic compounds. Phytochemstry 14:9–29

    Article  CAS  Google Scholar 

  • Soler-Martín C, Riera J, Seoane A, Cutillas B, Ambrosio S, Boadas-Vaello P, Llorens J (2010) The targets of acetone cyanohydrin neurotoxicity in the rat are not the ones expected in an animal model of Konzo. Neurotoxicol Teratol 32(2):289–294

    Article  PubMed  CAS  Google Scholar 

  • Soto-Blanco B, Górniak SL (2010) Toxic effects of prolonged administration of leaves of cassava (Manihot esculenta Crantz) to goats. Exp Toxicol Pathol 62(4):361–366

    Article  CAS  PubMed  Google Scholar 

  • Spencer PS, Palmer VS (2012) Interrelationships of undernutrition and neurotoxicity: food for thought and research attention. Neurotoxicology 33(3):605–616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spencer PS, Nunn PB, Hugon J, Ludolph AC, Ross SM, Roy DN (1987) Guam amyotrophic lateral sclerosis parkinsonism-dementia linked to a plant excitant neurotoxin. Science 237:517–522

    Article  CAS  PubMed  Google Scholar 

  • Sreeja VG, Nagahara N, Li Q, Minami M (2003) New aspects in pathogenesis of konzo: neural cell damage directly caused by linamarin contained in cassava (Manihot esculenta Crantz). Br J Nutr 90:467–472

    Article  CAS  PubMed  Google Scholar 

  • Tor-Agbidye J, Palmer VS, Lasarev MR, Craig AM, Blythe LL, Sabri MI, Spencer PS (1999) Bioactivation of cyanide to cyanate in sulfur amino acid deficiency: relevance to neurological disease in humans subsisting on cassava. Toxicol Sci 50:228–235

    Article  CAS  PubMed  Google Scholar 

  • Tshala-Katumbay D, Banea-Mayambu JP, Kazadi-Kayambe T, Nunga M, Bigkangi N, Eeg-Olofsson KE, Tylleskar T (2001) Neuroepidemiology of konzo aspastic para-tetraparesis of acute on set in a new area of the Democratic Republic of Congo. Afr J Neurol Sci 20:8–12

    Google Scholar 

  • Tshala-Katumbay DD, Ngombe NN, Okitundu D, David L, Westaway SK, Boivin MJ, Mumba ND, Banea JP (2016) Cyanide and the human brain: perspectives from a model of food (cassava) poisoning. Ann N Y Acad Sci 1378:50–57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tylleskär T, Banea M, Bikangi N, Cooke RD, Poulter NH, Hans-Rosling H (1992) Cassava cyanogens and konzo, an upper motorneuron disease found in Africa. Lancet 339(87):208-201; erratum: 339:440

    Article  Google Scholar 

  • Tylleskär T, Howlett WP, Rwiza HT, Aquilonius SM, Stalberg E, Linden B, Mandahl A, Larsen HC, Brubaker GR, Rosling H (1993) Konzo: a distinct disease entity with selective upper motor neuron damage. J Neurol Neurosurg Psychiatry 56:638–643

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Heijst AN, Maes RA, Mtanda AT, Chuwa LM, Rwiza HT, Moshi NH (1994) Chronic cyanide poisoning in relation to blindness and tropical neuropathy. J Toxicol Clin Toxicol 32(5):549–556

    Article  PubMed  Google Scholar 

  • Wajant H, Forester S (1995) Acetone cyanohydrin lyase from Manihot esculenta (cassava) is serologically distinct from other hydroxynitrile lyases. Plant Sci 108:1–11

    Article  CAS  Google Scholar 

  • Yeoh HH, Tatsuma T, Oyama N (1998) Monitoring the cyanogenic potential of cassava: the trend towards biosensor development. Trend Analyt Chem 17:234–240

    Article  CAS  Google Scholar 

  • Zaninovic V (2003) Posible asociación de algunas enfermedades neurológicas con el consumo excesivo de la yuca mal procesada y de otros vegetales neurotóxicos. Rev Colombia Med 34(2):82–91

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Rivadeneyra-Domínguez.

Ethics declarations

Conflict of interest

The authors report not conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rivadeneyra-Domínguez, E., Rodríguez-Landa, J.F. Preclinical and clinical research on the toxic and neurological effects of cassava (Manihot esculenta Crantz) consumption. Metab Brain Dis 35, 65–74 (2020). https://doi.org/10.1007/s11011-019-00522-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11011-019-00522-0

Keywords

Navigation