Skip to main content
Log in

High fat diet deteriorates the memory impairment induced by arsenic in mice: a sub chronic in vivo study

  • Original Article
  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

Both arsenic (As) and obesity are associated with brain disorders. However, long term studies to evaluate their concomitant adverse effects on the brain functions are lacking. Present study was conducted to evaluate the long term co-exposure of As and high fat diet (HFD) on memory and brain mitochondrial function in mice. Male mice were randomly divided into 7 groups fed with HFD or ordinary diet (OD) and instantaneously exposed to As (25 or 50 ppm) in drinking water for, 4, 8, 12, 16 or 20 weeks. Step-down passive avoidance method was used for memory assessment and post exposure various parameters including mitochondrial damage, level of reactive oxygen species (ROS), malondialdeid (MDA) and glutathione (GSH) were determined. Results indicated that the retention latency decreased in As (25 and 50 ppm) and HFD received mice after 12 and 16 weeks respectively. Same results were observed at significantly shorter duration (8th week) when As was administered along with HFD as compared to control group. In the HFD alone fed mice increased the mitochondrial membrane damage, levels of ROS and MDA were observed while GSH contents decreased significantly. Concomitant administration of HFD and As amplified those mentioned toxic effects (p < 0.001). In conclusion, our findings demonstrated that the simultaneous HFD and As impaired memory at least three times more than exposing each one alone. These toxic effects could be due to the mitochondria originated oxidative stress along with the depleted antioxidant capacity of the brain of mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abbott NJ, Ronnback L, Hansson E (2006) Astrocyte-endothelial interactions at the blood-brain barrier. Nat Rev Neurosci 7:41–53. https://doi.org/10.1038/nrn1824

    Article  CAS  PubMed  Google Scholar 

  • Alzoubi K, Abdul-Razzak K, Khabour O, Al-Tuweiq G, Alzubi M, Alkadhi KA (2013) Caffeine prevents cognitive impairment induced by chronic psychosocial stress and/or high fat–high carbohydrate diet. Behav Brain Res 237:7–14

    CAS  PubMed  Google Scholar 

  • Baracca A, Sgarbi G, Solaini G, Lenaz G (2003) Rhodamine 123 as a probe of mitochondrial membrane potential: evaluation of proton flux through F 0 during ATP synthesis. Biochim Biophys Acta (BBA) Bio 1606:137–146

    CAS  Google Scholar 

  • Bechara RG, Lyne R, Kelly ÁM (2014) BDNF-stimulated intracellular signalling mechanisms underlie exercise-induced improvement in spatial memory in the male. Wistar rat Behavioural brain research 275:297–306

    CAS  PubMed  Google Scholar 

  • Bharath S, Hsu M, Kaur D, Rajagopalan S, Andersen JK (2002) Glutathione, iron and Parkinson’s disease. Biochem Pharmacol 64:1037–1048

    CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    CAS  PubMed  Google Scholar 

  • Bustamante J, Nutt L, Orrenius S, Gogvadze V (2005) Arsenic stimulates release of cytochrome c from isolated mitochondria via induction of mitochondrial permeability transition. Toxicol Appl Pharmacol 207:110–116

    PubMed  Google Scholar 

  • Calderon J et al (2001) Exposure to arsenic and lead and neuropsychological development in Mexican children. Environ Res 85:69–76

    CAS  PubMed  Google Scholar 

  • Chaudhuri AN, Basu S, Chattopadhyay S, Das Gupta S (1999) Effect of high arsenic content in drinking water on rat brain. Indian J Biochem Biophys 36:51–54

    CAS  PubMed  Google Scholar 

  • Chin-Chan M, Navarro-Yepes J, Quintanilla-Vega B (2015) Environmental pollutants as risk factors for neurodegenerative disorders: Alzheimer and Parkinson diseases

  • Chinen I, Shimabukuro M, Yamakawa K, Higa N, Matsuzaki T, Noguchi K, Ueda S, Sakanashi M, Takasu N (2007) Vascular lipotoxicity: endothelial dysfunction via fatty-acid-induced reactive oxygen species overproduction in obese Zucker diabetic fatty rats. Endocrinology 148:160–165

    CAS  PubMed  Google Scholar 

  • Cole GM, Lim GP, Yang F, Teter B, Begum A, Ma Q, Harris-White ME, Frautschy SA (2005) Prevention of Alzheimer's disease: Omega-3 fatty acid and phenolic anti-oxidant interventions. Neurobiol Aging 26:133–136

    PubMed  Google Scholar 

  • Cordner ZA, Tamashiro KL (2015) Effects of high-fat diet exposure on learning & memory. Physiol Behav 152:363–371. https://doi.org/10.1016/j.physbeh.2015.06.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coyle JT, Puttfarcken P (1993) Oxidative stress, glutamate, and neurodegenerative disorders. Science 262:689–695

    CAS  PubMed  Google Scholar 

  • Davidson TL, Monnot A, Neal AU, Martin AA, Horton JJ, Zheng W (2012) The effects of a high-energy diet on hippocampal-dependent discrimination performance and blood–brain barrier integrity differ for diet-induced obese and diet-resistant rats. Physiol Behav 107:26–33

    CAS  PubMed  PubMed Central  Google Scholar 

  • Davidson TL, Hargrave SL, Swithers SE, Sample CH, Fu X, Kinzig KP, Zheng W (2013) Inter-relationships among diet, obesity and hippocampal-dependent cognitive function. Neuroscience 253:110–122

    CAS  PubMed  Google Scholar 

  • Dewji NN, Do C, Bayney RM (1995) Transcriptional activation of Alzheimer's β-amyloid precursor protein gene by stress. Mol Brain Res 33:245–253

    CAS  PubMed  Google Scholar 

  • Ding Y, Dai X, Jiang Y, Zhang Z, Bao L, Li Y, Zhang F, Ma X, Cai X, Jing L, Gu J, Li Y (2013) Grape seed proanthocyanidin extracts alleviate oxidative stress and ER stress in skeletal muscle of low-dose streptozotocin-and high-carbohydrate/high-fat diet-induced diabetic rats. Mol Nutr Food Res 57:365–369

    CAS  PubMed  Google Scholar 

  • Ek M, Engblom D, Saha S, Blomqvist A, Jakobsson PJ, Ericsson-Dahlstrand A (2001) Inflammatory response: pathway across the blood-brain barrier. Nature 410:430–431. https://doi.org/10.1038/35068632

    Article  CAS  PubMed  Google Scholar 

  • Elias PK, Elias MF, D’agostino RB, Sullivan LM, Wolf PA (2005) Serum cholesterol and cognitive performance in the Framingham heart study. Psychosom Med 67:24–30

    PubMed  Google Scholar 

  • Goldbart A, Row B, Kheirandish-Gozal L, Cheng Y, Brittian K, Gozal D (2006) High fat/refined carbohydrate diet enhances the susceptibility to spatial learning deficits in rats exposed to intermittent hypoxia. Brain Res 1090:190–196

    CAS  PubMed  Google Scholar 

  • Gong G, O'Bryant SE (2010) The arsenic exposure hypothesis for Alzheimer disease. Alzheimer Dis Assoc Disord 24:311–316

    CAS  PubMed  Google Scholar 

  • Gora RH, Kerketta P, Baxla SL, Toppo R, Prasad R, Patra PH, Roy BK (2014) Ameliorative effect of Tephrosia purpurea in arsenic-induced nephrotoxicity in rats. Toxicol Int 21:78

    PubMed  PubMed Central  Google Scholar 

  • Greenwood CE, Winocur G (2005) High-fat diets, insulin resistance and declining cognitive function. Neurobiol Aging 26:42–45

    PubMed  Google Scholar 

  • Guan H, Li S, Guo Y, Liu X, Yang Y, Guo J, Li S, Zhang C, Shang L, Piao F (2016) Subchronic exposure to arsenic represses the TH/TRβ1-CaMK IV signaling pathway in mouse cerebellum. Int J Mol Sci 17:157

    PubMed Central  Google Scholar 

  • Hassani S, Yaghoubi H, Khosrokhavar R, Jafarian I, Mashayekhi V, Hosseini M-J, Shahraki J (2015) Mechanistic view for toxic effects of arsenic on isolated rat kidney and brain mitochondria. Biologia 70:683–689

    CAS  Google Scholar 

  • Hei TK, Liu SX, Waldren C (1998) Mutagenicity of arsenic in mammalian cells: role of reactive oxygen species. Proc Natl Acad Sci 95:8103–8107. https://doi.org/10.1073/pnas.95.14.8103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hsu TM, Kanoski SE (2014) Blood-brain barrier disruption: mechanistic links between Western diet consumption and dementia. Front Aging Neurosci 6:88

    PubMed  PubMed Central  Google Scholar 

  • Huo T-G et al (2015) Excitotoxicity induced by realgar in the rat hippocampus: the involvement of learning memory injury, dysfunction of glutamate metabolism and NMDA receptors. Mol Neurobiol 51:980–994

    CAS  PubMed  Google Scholar 

  • Jafari-Sabet M (2011) Involvement of dorsal hippocampal muscarinic cholinergic receptors on muscimol state-dependent memory of passive avoidance in mice. Life Sci 88:1136–1141

    CAS  PubMed  Google Scholar 

  • Jiang S, Su J, Yao S, Zhang Y, Cao F, Wang F, Wang H, Li J, Xi S (2014) Fluoride and arsenic exposure impairs learning and memory and decreases mGluR5 expression in the hippocampus and cortex in rats. PLoS One 9:e96041

    PubMed  PubMed Central  Google Scholar 

  • Jiménez-Capdeville M, Giordano M (2003) The effects of arsenic exposure on the nervous system. Toxicol Lett 145:1–18

    PubMed  Google Scholar 

  • Jing J, Zheng G, Liu M, Shen X, Zhao F, Wang J, Zhang J, Huang G, Dai P, Chen Y, Chen J, Luo W (2012) Changes in the synaptic structure of hippocampal neurons and impairment of spatial memory in a rat model caused by chronic arsenite exposure. Neurotoxicology 33:1230–1238

    CAS  PubMed  Google Scholar 

  • Jomova K, Jenisova Z, Feszterova M, Baros S, Liska J, Hudecova D, Rhodes CJ, Valko M (2011) Arsenic: toxicity, oxidative stress and human disease. J Appl Toxicol 31:95–107

    CAS  PubMed  Google Scholar 

  • Kalmijn S, Launer LJ, Ott A, Witteman J, Hofman A, Breteler M (1997) Dietary fat intake and the risk of incident dementia in the Rotterdam study. Ann Neurol 42:776–782

    CAS  PubMed  Google Scholar 

  • Kalyanaraman B et al. (2012) Measuring reactive oxygen and nitrogen species with fluorescent probes: challenges and limitations

  • Karim MM (2000) Arsenic in groundwater and health problems in Bangladesh. Water Res 34:304–310. https://doi.org/10.1016/S0043-1354(99)00128-1

    Article  CAS  Google Scholar 

  • Keshtzar E, Khodayar MJ, Javadipour M, Ghaffari MA, Bolduc DL, Rezaei M (2016) Ellagic acid protects against arsenic toxicity in isolated rat mitochondria possibly through the maintaining of complex II. Hum Exp Toxicol 35:1060–1072. https://doi.org/10.1177/0960327115618247

    Article  CAS  PubMed  Google Scholar 

  • Knopman D, Boland LL, Mosley T, Howard G, Liao D, Szklo M, McGovern P, Folsom AR (2001) Cardiovascular risk factors and cognitive decline in middle-aged adults. Neurology 56:42–48

    CAS  PubMed  Google Scholar 

  • LeBel CP, Ischiropoulos H, Bondy SC (1992) Evaluation of the probe 2′,7′-dichlorofluorescin as an indicator of reactive oxygen species formation and oxidative stress. Chem Res Toxicol 5:227–231. https://doi.org/10.1021/tx00026a012

    Article  CAS  PubMed  Google Scholar 

  • Li D et al (2007) [changes of heart rate variability and impairment of learning and memory induced by cerebral ischemia/reperfusion in rats] sheng li xue bao. Acta physiologica Sinica 59:35–41

    PubMed  Google Scholar 

  • Liu J, Head E, Gharib AM, Yuan W, Ingersoll RT, Hagen TM, Cotman CW, Ames BN (2002) Memory loss in old rats is associated with brain mitochondrial decay and RNA/DNA oxidation: partial reversal by feeding acetyl-L-carnitine and/or R-α-lipoic acid. Proc Natl Acad Sci 99:2356–2361

    CAS  PubMed  PubMed Central  Google Scholar 

  • Luchsinger JA, Tang M-X, Shea S, Mayeux R (2002) Caloric intake and the risk of Alzheimer disease. Arch Neurol 59:1258–1263

    PubMed  Google Scholar 

  • Luo J-h, Z-q Q, W-q S, Y-y Z, Zhang L, J-a C (2009) Effects of arsenic exposure from drinking water on spatial memory, ultra-structures and NMDAR gene expression of hippocampus in rats. Toxicol Lett 184:121–125

    CAS  PubMed  Google Scholar 

  • Lynn S, Shiung J-N, Gurr J-R, Jan K (1998) Arsenite stimulates poly (ADP-ribosylation) by generation of nitric oxide. Free Radic Biol Med 24:442–449

    CAS  PubMed  Google Scholar 

  • Marí M, Morales A, Colell A, García-Ruiz C, Kaplowitz N, Fernández-Checa JC (2013) Mitochondrial glutathione: features, regulation and role in disease. Biochim Biophys Acta 1830:3317–3328. https://doi.org/10.1016/j.bbagen.2012.10.018

    Article  CAS  PubMed  Google Scholar 

  • Markham A, Bains R, Franklin P, Spedding M (2014) Changes in mitochondrial function are pivotal in neurodegenerative and psychiatric disorders: how important is BDNF? Br J Pharmacol 171:2206–2229

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mattson MP (2008) Glutamate and neurotrophic factors in neuronal plasticity and disease. Ann N Y Acad Sci 1144:97–112

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mattson MP, Gleichmann M, Cheng A (2008) Mitochondria in neuroplasticity and neurological disorders. Neuron 60:748–766

    CAS  PubMed  PubMed Central  Google Scholar 

  • Morris R (1984) Developments of a water-maze procedure for studying spatial learning in the rat. J Neurosci Methods 11:47–60

    CAS  PubMed  Google Scholar 

  • Morris R, Garrud P, Rawlins J, O'Keefe J (1982) Place navigation impaired in rats with hippocampal lesions. Nature 297:681–683

    CAS  PubMed  Google Scholar 

  • Mukherjee A et al (2006) Groundwater arsenic contamination: a global perspective with special emphasis to Asian scenario. J Health Popul Nutr 24:142–163

    PubMed  Google Scholar 

  • Nagaraja T, Desiraju T (1994) Effects on operant learning and brain acetylcholine esterase activity in rats following chronic inorganic arsenic intake. Human & experimental toxicology 13:353–356

    CAS  Google Scholar 

  • Naserzadeh P, Hosseini M-J, Arbabi S, Pourahmad J (2015) A comparison of toxicity mechanisms of cigarette smoke on isolated mitochondria obtained from rat liver and skin. Iranian Journal of Pharmaceutical Research 14:271–277

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ng JC, Wang J, Shraim A (2003) A global health problem caused by arsenic from natural sources. Chemosphere 52:1353–1359

    CAS  PubMed  Google Scholar 

  • Nootarki ZS, Kesmati M, Borujeni MP (2015) Effect of Magnesium Oxide Nanoparticles on Atropine-Induced Memory Impairment in Adult Male Mice Avicenna J Neuro Psych Physio 2:1–6

  • Paradies G, Petrosillo G, Paradies V, Ruggiero FM (2011) Mitochondrial dysfunction in brain aging: role of oxidative stress and cardiolipin. Neurochem Int 58:447–457

    CAS  PubMed  Google Scholar 

  • Park HR, Park M, Choi J, Park K-Y, Chung HY, Lee J (2010) A high-fat diet impairs neurogenesis: involvement of lipid peroxidation and brain-derived neurotrophic factor. Neurosci Lett 482:235–239

    CAS  PubMed  Google Scholar 

  • Pathan AR, Gaikwad AB, Viswanad B, Ramarao P (2008) Rosiglitazone attenuates the cognitive deficits induced by high fat diet feeding in rats. Eur J Pharmacol 589:176–179

    CAS  PubMed  Google Scholar 

  • Paul DS, Walton FS, Saunders RJ, Stýblo M (2011) Characterization of the impaired glucose homeostasis produced in C57BL/6 mice by chronic exposure to arsenic and high-fat diet. Environ Health Perspect 119:1104–1109

    CAS  PubMed  PubMed Central  Google Scholar 

  • Petres J, Baron D, Hagedorn M (1977) Effects of arsenic cell metabolism and cell proliferation: cytogenetic and biochemical studies. Environ Health Perspect 19:223–227

    CAS  PubMed  PubMed Central  Google Scholar 

  • Prakash C, Soni M, Kumar V (2015) Biochemical and molecular alterations following arsenic-induced oxidative stress and mitochondrial dysfunction in rat brain. Biol Trace Elem Res 167:121–129

    CAS  PubMed  Google Scholar 

  • Rezaei M, Salimi A, Taghidust M, Naserzadeh P, Goudarzi G, Seydi E, Pourahmad J (2014) A comparison of toxicity mechanisms of dust storm particles collected in the southwest of Iran on lung and skin using isolated mitochondria. Toxicol Environ Chem 96:814–830

    CAS  Google Scholar 

  • Rezaei M, Keshtzar E, Khodayar MJ, Javadipour M (2018) SirT3 regulates diabetogenic effects caused by arsenic: an implication for mitochondrial complex II modification

  • Ribas V, García-Ruiz C, Fernández-Checa JC (2014) Glutathione and mitochondria. Front Pharmacol 5:151–151. https://doi.org/10.3389/fphar.2014.00151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ribeiro MCP, NBdV B, de Almeida TM, Parcianello LM, Perottoni J, de Avila DS, JBT R (2009) High-fat diet and hydrochlorothiazide increase oxidative stress in brain of rats. Cell Biochem Funct 27:473–478

    CAS  PubMed  Google Scholar 

  • Rodrıguez V, Carrizales L, Jimenez-Capdeville M, Dufour L, Giordano M (2001) The effects of sodium arsenite exposure on behavioral parameters in the rat. Brain Res Bull 55:301–308

    PubMed  Google Scholar 

  • Rodrıguez V, Carrizales L, Mendoza M, Fajardo O, Giordano M (2002) Effects of sodium arsenite exposure on development and behavior in the rat. Neurotoxicol Teratol 24:743–750

    PubMed  Google Scholar 

  • Rosado JL, Ronquillo D, Kordas K, Rojas O, Alatorre J, Lopez P, Garcia-Vargas G, del Carmen Caamaño M, Cebrián ME, Stoltzfus RJ (2007) Arsenic exposure and cognitive performance in Mexican schoolchildren. Environ Health Perspect 115:1371–1375

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sadegh CSR (2003) The spectroscopic determination of aqueous sulfite using Ellman's reagent. MIT Undergradu Res J 8:39–43

    Google Scholar 

  • Samuel S, Kathirvel R, Jayavelu T, Chinnakkannu P (2005) Protein oxidative damage in arsenic induced rat brain: influence of DL-α-lipoic acid. Toxicol Lett 155:27–34

    CAS  PubMed  Google Scholar 

  • Serrano F, Kolluri NS, Wientjes FB, Card JP, Klann E (2003) NADPH oxidase immunoreactivity in the mouse brain. Brain Res 988:193–198

    CAS  PubMed  Google Scholar 

  • Shi X et al (2013) Metabolomic analysis of the effects of chronic arsenic exposure in a mouse model of diet-induced fatty liver disease. J Proteome Res 13:547–554

    PubMed  PubMed Central  Google Scholar 

  • Siegers CP, Riemann D, Thies E, Younes M (1988) Glutathione and GSH-dependent enzymes in the gastrointestinal mucosa of the rat. Cancer Lett 40:71–76. https://doi.org/10.1016/0304-3835(88)90263-7

    Article  CAS  PubMed  Google Scholar 

  • Solfrizzi V, Panza F, Frisardi V, Seripa D, Logroscino G, Imbimbo BP, Pilotto A (2011) Diet and Alzheimer’s disease risk factors or prevention: the current evidence. Expert Rev Neurother 11:677–708

    CAS  PubMed  Google Scholar 

  • Sumedha NC, Miltonprabu S (2015) Cardiac mitochondrial oxidative stress and dysfunction induced by arsenic and its amelioration by diallyl trisulphide. Toxicol Res 4:291–301. https://doi.org/10.1039/C4TX00097H

    Article  CAS  Google Scholar 

  • Sun BF, Wang QQ, Yu ZJ, Yu Y, Xiao CL, Kang CS, Ge G, Linghu Y, Zhu JD, Li YM, Li QM, Luo SP, Yang D, Li L, Zhang WY, Tian G (2015) Exercise prevents memory impairment induced by arsenic exposure in mice: implication of hippocampal BDNF and CREB. PLoS One 10:e0137810. https://doi.org/10.1371/journal.pone.0137810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kalmijn Sv, Van Boxtel M, Ocke M, Verschuren W, Kromhout D, Launer L (2004) Dietary intake of fatty acids and fish in relation to cognitive performance at middle age. Neurology 62(2):275–280

    CAS  PubMed  Google Scholar 

  • Tadanobu I, Yi Fei Zhang, Shigeo M, Hiroko S, Hiromichi N, Hiroki M, Yuichi S, Eiichi A (1990) The effect of arsenic trioxide on brain monoamine metabolism and locomotor activity of mice. Toxicol Lett 54:345–353. https://doi.org/10.1016/0378-4274(90)90202-W

    Article  Google Scholar 

  • Thirumangalakudi L, Prakasam A, Zhang R, Bimonte-Nelson H, Sambamurti K, Kindy MS, Bhat NR (2008) High cholesterol-induced neuroinflammation and amyloid precursor protein processing correlate with loss of working memory in mice. J Neurochem 106:475–485

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tolins M, Ruchirawat M, Landrigan P (2014) The developmental neurotoxicity of arsenic: cognitive and behavioral consequences of early life exposure. Ann Glob Health 80:303–314

    PubMed  Google Scholar 

  • Tsai S-Y, Chou H-Y, The H-W, Chen C-M, Chen C-J (2003) The effects of chronic arsenic exposure from drinking water on the neurobehavioral development in adolescence. Neurotoxicology 24:747–753

    CAS  PubMed  Google Scholar 

  • Tyler CR, Allan AM (2014) The effects of arsenic exposure on neurological and cognitive dysfunction in human and rodent studies: a review. Current environmental health reports 1:132–147

    PubMed  PubMed Central  Google Scholar 

  • Valko M, Jomova K, Rhodes CJ, Kuca K, Musilek K (2016) Redox- and non-redox-metal-induced formation of free radicals and their role in human disease. Arch Toxicol 90:1–37

    PubMed  Google Scholar 

  • Wasserman GA, Liu X, Parvez F, Ahsan H, Factor-Litvak P, van Geen A, Slavkovich V, Lolacono NJ, Cheng Z, Hussain I, Momotaj H, Graziano JH (2004) Water arsenic exposure and children's intellectual function in Araihazar. Bangladesh Environmental health perspectives 112:1329–1333

    CAS  PubMed  Google Scholar 

  • White CL, Pistell PJ, Purpera MN, Gupta S, Fernandez-Kim SO, Hise TL, Keller JN, Ingram DK, Morrison CD, Bruce-Keller AJ (2009) Effects of high fat diet on Morris maze performance, oxidative stress, and inflammation in rats: contributions of maternal diet. Neurobiol Dis 35:3–13

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wu A, Molteni R, Ying Z, Gomez-Pinilla F (2003) A saturated-fat diet aggravates the outcome of traumatic brain injury on hippocampal plasticity and cognitive function by reducing brain-derived neurotrophic factor. Neuroscience 119:365–375

    CAS  PubMed  Google Scholar 

  • Xi S, Sun W, Wang F, Jin Y, Sun G (2009) Transplacental and early life exposure to inorganic arsenic affected development and behavior in offspring rats. Arch Toxicol 83:549–556

    CAS  PubMed  Google Scholar 

  • Yadav RS, Chandravanshi LP, Shukla RK, Sankhwar ML, Ansari RW, Shukla PK, Pant AB, Khanna VK (2011) Neuroprotective efficacy of curcumin in arsenic induced cholinergic dysfunctions in rats. Neurotoxicology 32:760–768

    CAS  PubMed  Google Scholar 

  • Yang YW (2018)et al. Risk of Alzheimer's disease with metal concentrations in whole blood and urine: A case-control study using propensity score matching. Toxicol Appl Pharmacol. 1;356:8–14

    CAS  PubMed  Google Scholar 

  • Yen Y-P, Tsai K-S, Chen Y-W, Huang C-F, Yang R-S, Liu S-H (2012) Arsenic induces apoptosis in myoblasts through a reactive oxygen species-induced endoplasmic reticulum stress and mitochondrial dysfunction pathway. Arch Toxicol 86:923–933. https://doi.org/10.1007/s00204-012-0864-9

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Hebert JR, Muldoon MF (2005a) Dietary fat intake is associated with psychosocial and cognitive functioning of school-aged children in the United States. J Nutr 135:1967–1973

    CAS  PubMed  Google Scholar 

  • Zhang X, Dong F, Ren J, Driscoll MJ, Culver B (2005b) High dietary fat induces NADPH oxidase-associated oxidative stress and inflammation in rat cerebral cortex. Exp Neurol 191:318–325

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This work was supported by a grant (D-9414) from the Health Research Institute, Diabetes Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohsen Rezaei.

Ethics declarations

Conflict of interest

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alboghobeish, S., Pashmforosh, M., Zeidooni, L. et al. High fat diet deteriorates the memory impairment induced by arsenic in mice: a sub chronic in vivo study. Metab Brain Dis 34, 1595–1606 (2019). https://doi.org/10.1007/s11011-019-00467-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11011-019-00467-4

Keywords

Navigation