Skip to main content
Log in

N6-(2-hydroxyethyl)-adenosine from Cordyceps cicadae attenuates hydrogen peroxide induced oxidative toxicity in PC12 cells

  • Original Article
  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

N6-(2-hydroxyethyl)-adenosine (HEA), is one of the active molecule found in Cordyceps cicadae. The protective effect of HEA against H2O2 induced oxidative damage in PC12 cells and the mechanism of action was investigated. The cells were exposed to varying concentrations of HEA (5–40 μM) for a period of 24 h and further incubated with 100 μM of H2O2 for an another 12 h. Cell viability, LDH release, MMP collapse, Ca2+ overload, antioxidant parameters (reactive oxygen species generation (ROS), malondialdehyde (MDA), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), inflammatory mediators (interleukins 6 and 1β (IL-6 and IL-1β), tumor necrosis factor alpha (TNF-α) and NF-kB were evaluated. The results obtained showed that cells exposed to H2O2 toxicity showed reduced cell viability, increased LDH, ROS and Ca2+ overload. However, prior treatment of PC12 cells with HEA increased cell viability, reduced LDH release, MMP collapse, Ca2+ overload and ROS generation induced by H2O2 toxicity. Furthermore, HEA also increased the activities of antioxidant enzymes and inhibited lipid peroxidation as well as reduced IL-6, IL-1β, TNF-α and NF-kB. Thus, our results provided insight into the attenuative effect of HEA against H2O2 induced cell death through its antioxidant action by reducing ROS generation, oxidative stress and protecting mitochondrial function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Antonsson B (2004) Mitochondria and the Bcl-2 family proteins in apoptosis signaling pathways. Mol Cell Biochem 256(257):141–155

    Article  PubMed  Google Scholar 

  • Beal MF (2005) Mitochondria take center stage in aging and neurodegeneration. Ann Neurol 58:495–505

    Article  CAS  PubMed  Google Scholar 

  • Bhat AH, Dar KB, Anees S, Zargar MA, Masood A, Sofi MA, Ganie SA (2015) Oxidative stress, mitochondrial dysfunction and neurodegenerative diseases; a mechanistic insight. Biomed Pharmacother 74:101–110

    Article  CAS  PubMed  Google Scholar 

  • Chansriniyom C, Bunwatcharaphansakun P, Eaknai W, Nalinratana N, Ratanawong A, Khongkow M, Luechapudiporn R (2018) A synergistic combination of Phyllanthus emblica and Alpinia galanga against H2O2-induced oxidative stress and lipid peroxidation in human ECV304 cells. J Funct Foods 43:44–54

    Article  CAS  Google Scholar 

  • Chen HC, Kanai M, Inoue-Yamauchi A, Tu HC, Huang Y, Ren D, Kim H, Takeda S, Reyna DE, Chan PM, Ganesan YT, Liao CP, Gavathiotis E, Hsieh JJ, Cheng EH (2015) An interconnected hierarchical model of cell death regulation by the Bcl-2 family. Nat Cell Biol 17:1270–1281

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chiurchiù V, Maccarrone M (2011) Chronic inflammatory disorders and their redox control: from molecular mechanisms to therapeutic opportunities. Antioxid Redox Signal 15:2605–2641

    Article  CAS  PubMed  Google Scholar 

  • Circu ML, Aw TY (2010) Reactive oxygen species, cellular redox systems, and apoptosis. Free Radic Biol Med 48:749–762

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cobley JN, Fiorello ML, Bailey DM (2018) 13 reasons why the brain is susceptible to oxidative stress. Redox Biol 15:490–503

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Divate RD, Wang PM, Wang CC, Chou ST, Chang CT, Chung YC (2017) Protective effect of medicinal fungus Xylaria nigripes mycelia extracts against hydrogen peroxide-induced apoptosis in PC12 cells. Int J Immunopathol Pharmacol 30:105–112

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Escribano BM, Agüera E, Aguilar-Luque M, Luque E, Feijóo M, LaTorre M, Giraldo AI, Galván-Jurado A, Caballero-Villarraso J, García-Maceira FI, Santamaríag Túnez A (2018) Neuroprotective effect of S-allyl cysteine on an experimental model of multiple sclerosis: antioxidant effects. J Funct Foods 42:281–288

    Article  CAS  Google Scholar 

  • Fang M, Chai Y, Chen G, Wang H, Huang B (2016) N6-(2-hydroxyethyl)-adenosine exhibits insecticidal activity against Plutella xylostella via adenosine receptors. PLoS One 11:e0162859

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Feng C, Luo T, Zhang S, Liu K, Zhang Y, Luo Y, Ge P (2016) Lycopene protects human SHSY5Y neuroblastoma cells against hydrogen peroxide induced death via inhibition of oxidative stress and mitochondria associated apoptotic pathways. Mol Med Rep 13:4205–4214

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Finkel T (1998) Oxygen radicals and signaling. Curr Opin Cell Biol 10:248–253

    Article  CAS  PubMed  Google Scholar 

  • Furuya T, Hirotani M, Matsuzawa M (1983) N6-(2-hydroxyethyl)-adenosine, a biologically active compound from cultured mycelia of Cordyceps and Isaria species. Phytochemistry 22:2509–2512

    Article  CAS  Google Scholar 

  • Guo RB, Wang GF, Zhao AP, Gu J, Sun XL, Hu G (2012) Paeoniflorin protects against ischemia-induced brain damages in rats via inhibiting MAPKs/NF-κB-mediated inflammatory responses. PLoS One 7:e49701

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Guo XM, Chen B, Lv JM, Lei Q, Pan YJ, Yang Q (2016) Knockdown of IRF6 attenuates hydrogen dioxide-induced oxidative stress via inhibiting mitochondrial dysfunction in HT22 cells. Cell Mol Neurobiol 36:1077–1086

    Article  CAS  PubMed  Google Scholar 

  • Halliwell B (2006) Oxidative stress and neurodegeneration: where are we now? J Neurochem 97:1634–1658

    Article  CAS  PubMed  Google Scholar 

  • Halliwell B, Aruoma OI (1991) DNA damage by oxygen-derived species: its mechanism and measurement in mammalian systems. FEBS Lett 281:9–19

    Article  CAS  PubMed  Google Scholar 

  • He B, Wu F, Fan L, Li XH, Liu Y, Liu YJ, Ding WJ, Deng M, Zhou Y (2018) Carboxymethylated chitosan protects Schwann cells against hydrogen peroxide-induced apoptosis by inhibiting oxidative stress and mitochondria dependent pathway. Eur J Pharmacol 825:48–56

    Article  CAS  PubMed  Google Scholar 

  • Hermann SC, Feigl EO (1992) Adrenergic blockade blunts adenosine concentration and coronary vasodilation during hypoxia. Circ Res 70:1203–1216

    Article  Google Scholar 

  • Hseu YC, Chou CW, Senthil Kumar KJ, Fu KT, Wang HM, Hsu LS, Kuo YH, Wu CR, Chen SC, Yang HL (2012) Ellagic acid protects human keratinocyte (HaCaT) cells against UVA-induced oxidative stress and apoptosis through the up regulation of the HO-1 and Nrf-2 antioxidant genes. Food Chem Toxicol 50:1245–1255

    Article  CAS  PubMed  Google Scholar 

  • Hsieh HL, Yang CM (2013) Role of redox signaling in neuroinflammation and neurodegenerative diseases. Biomed Res Int 2013:484613

    PubMed Central  PubMed  Google Scholar 

  • Hu XL, Niu YX, Zhang Q, Tian X, Gao LY, Guo LP, Meng WH, Zhao QC (2015) Neuroprotective effects of kukoamine B against hydrogen peroxide-induced apoptosis and potential mechanisms in SH-SY5Y cells. Environ Toxicol Pharmacol 40:230–240

    Article  CAS  PubMed  Google Scholar 

  • Kaltschmidt B, Widera D, Kaltschmidt C (2005) Signaling via NF-kappaB in the nervous system. Biochim Biophys Acta 1745:287–299

    Article  CAS  PubMed  Google Scholar 

  • Kim SM, Chung MJ, Ha TJ, Choi HN, Jang SJ, Kim SO, Chun MH, Do SI, Choo YK, Park YI (2012) Neuroprotective effects of black soybean anthocyanins via inactivation of ASK1-JNK/p38 pathways and mobilization of cellular sialic acids. Life Sci 90:874–882

    Article  CAS  PubMed  Google Scholar 

  • Kwon SH, Hong SI, Ma SX, Lee SY, Jang CG (2015) 3′,4′,7-Trihydroxyflavone prevents apoptotic cell death in neuronal cells from hydrogen peroxide-induced oxidative stress. Food Chem Toxicol 80:41–51

    Article  CAS  PubMed  Google Scholar 

  • Li P, Li Z (2015) Neuroprotective effect of paeoniflorin on H2O2-induced apoptosis in PC12 cells by modulation of reactive oxygen species and the inflammatory response. Exp Ther Med 9:1768–1772

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Li PF, Dietz R, von Harsdorf R (1999) P53 regulates mitochondrial membrane potential through reactive oxygen species and induces cytochrome c independent apoptosis blocked by Bcl-2. EMBO J 18:6027–6036

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Li Y, Zhang W, Chen C, Zhang C, Duan J, Yao H, Wei Q, Meng A, Shi J (2018) Inotodiol protects PC12 cells against injury induced by oxygen and glucose deprivation/restoration through inhibiting oxidative stress and apoptosis. J Appl Biomed 16:126–132

    Article  Google Scholar 

  • Li IC, Lin S, Tsai YT, Hsu JH, Chen YL, Lin WH, Chen CC (2019) Cordyceps cicadae mycelia and its active compound HEA exert beneficial effects on blood glucose in type 2 diabetic db/db mice. J Sci Food Agric 99:606–612

    Article  CAS  PubMed  Google Scholar 

  • Liu HQ, Zhang WY, Luo XT, Ye Y, Zhu XZ (2006) Paeoniflorin attenuates neuroinflammation and dopaminergic neurodegeneration in the MPTP model of Parkinson's disease by activation of adenosine A1 receptor. Br J Pharmacol 148:314–325

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Liu Q, Kou JP, Yu BY (2011) Ginsenoside Rg1 protects against hydrogen peroxide-induced cell death in PC12 cells via inhibiting NF-κB activation. Neurochem Int 58:119–125

    Article  CAS  PubMed  Google Scholar 

  • Lu MY, Chen CC, Lee LY, Lin TW, Kuo CF (2015) N6-(2-hydroxyethyl)-adenosine in the medicinal mushroom Cordyceps cicadae attenuates lipopolysaccharide-stimulated pro-inflammatory responses by suppressing TLR4-mediated NF-κB signaling pathways. J Nat Prod 78:2452–2460

    Article  CAS  PubMed  Google Scholar 

  • Mates JM (2000) Effects of antioxidant enzymes in the molecular control of reactive oxygen species toxicology. Toxicology 153:83–104

    Article  CAS  PubMed  Google Scholar 

  • Mattson MP (2005) NF-kappa B in the survival and plasticity of neurons. Neurochem Res 30:883–893

    Article  CAS  PubMed  Google Scholar 

  • Ng TB, Wang HX (2005) Pharmacological actions of Cordyceps, a prized folk medicine. J Pharm Pharmacol 57:1509–1519

    Article  CAS  PubMed  Google Scholar 

  • Rhee SG (1999) Redox signaling: hydrogen peroxide as intracellular messenger. Exp Mol Med 31:53–59

    Article  CAS  PubMed  Google Scholar 

  • Satoh T, Enokido Y, Aoshima H, Uchiyama Y, Hatanaka H (1997) Changes in mitochondrial membrane potential during oxidative stress-induced apoptosis in PC12 cells. J Neurosci Res 50:413–420

    Article  CAS  PubMed  Google Scholar 

  • Singhrang N, Tocharus C, Thummayot S, Sutheerawattananonda M, Tocharus J (2018) Protective effects of silk lutein extract from Bombyx mori cocoons on β-amyloid peptide-induced apoptosis in PC12 cells. Biomed Pharmacother 103:582–587

    Article  CAS  PubMed  Google Scholar 

  • Song Q, Gou WL, Zhang R (2015) FAM3A protects HT22 cells against hydrogen peroxide-induced oxidative stress through activation of PI3K/Akt but not MEK/ERK pathway. Cell Physiol Biochem 37:1431–1441

    Article  CAS  PubMed  Google Scholar 

  • Stanić D, Plećaš-Solarović B, Petrović J, Bogavac-Stanojević N, Sopić M, Kotur-Stevuljević J, Ignjatović S, Pešić V (2016) Hydrogen peroxide-induced oxidative damage in peripheral blood lymphocytes from rats chronically treated with corticosterone: the protective effect of oxytocin treatment. Chem Biol Interact 256:134–141

    Article  CAS  PubMed  Google Scholar 

  • Uttara B, Singh AV, Zamboni P, Mahajan RT (2009) Oxidative stress and neurodegenerative diseases: a review of upstream and downstream antioxidant therapeutic options. Curr Neuropharmacol 7:65–74

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang DM, Liu XH, Guo H, Huang JH, Wang L (2013) Design, synthesis and biological activity evaluation of adenosine analogues. Acta Pharmacol Sin 48:881–886

    CAS  Google Scholar 

  • Wang L, Oh JY, Kim HS, Lee W, Cui Y, Lee HG, Kim YT, Ko JY, Jeon YJ (2018) Protective effect of polysaccharides from celluclast-assisted extract of Hizikia fusiforme against hydrogen peroxide induced oxidative stress in vitro in Vero cells and in vivo in zebra fish. Int J Biol Macromol 112:483–489

    Article  CAS  PubMed  Google Scholar 

  • Xiong C, Li Q, Chen C, Chen Z, Huang W (2016) Neuroprotective effect of crude polysaccharide isolated from the fruiting bodies of Morchella importuna against H2O2 induced PC12 cell cytotoxicity by reducing oxidative stress. Biomed Pharmacother 83:569–576

    Article  CAS  PubMed  Google Scholar 

  • Yu WX, Lin CQ, Zhao Q, Lin XJ, Dong XL (2017) Neuroprotection against hydrogen peroxide-induced toxicity by Dictyophora echinovolvata polysaccharide via inhibiting the mitochondria-dependent apoptotic pathway. Biomed Pharmacother 88:569–573

    Article  CAS  PubMed  Google Scholar 

  • Zhu KX, Guo X, Guo XN, Peng W, Zhou HM (2013a) Protective effects of wheat germ protein isolate hydrolysates (WGPIH) against hydrogen peroxide-induced oxidative stress in PC12 cells. Food Res Int 53:297–303

    Article  CAS  Google Scholar 

  • Zhu LN, Xue JJ, Liu YF, Zhou S, Zhang JS, Tang QJ (2013b) Isolation, purification and anti-tumor activity of N6-(2-hydroxyethyl)-adenosine from the fruiting body Cordyceps militaris cultured. Acta Edulis Fungi 20:62–65

    Google Scholar 

Download references

Acknowledgments

This work was partly supported by the National Natural Science Foundation of China (No. 81072985, 81373480, 81573529).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Opeyemi Joshua Olatunji or Zhen Ouyang.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest associated with this manuscript.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Wu, T., Olatunji, O.J. et al. N6-(2-hydroxyethyl)-adenosine from Cordyceps cicadae attenuates hydrogen peroxide induced oxidative toxicity in PC12 cells. Metab Brain Dis 34, 1325–1334 (2019). https://doi.org/10.1007/s11011-019-00440-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11011-019-00440-1

Keywords

Navigation