Advertisement

Metabolic Brain Disease

, Volume 34, Issue 3, pp 687–704 | Cite as

From epidemiology and neurometabolism to treatment: Vitamin D in pathogenesis of glioblastoma Multiforme (GBM) and a proposal for Vitamin D + all-trans retinoic acid + Temozolomide combination in treatment of GBM

  • Ilhan Elmaci
  • Aysel Ozpinar
  • Alp Ozpinar
  • Jennifer L. Perez
  • Meric A. AltinozEmail author
Review Article

Abstract

Here we review tumoricidal efficacy of Vitamin D analogues in glioblastoma multiforme (GBM) and potential synergisms with retinoic acid and temozolomide based on epidemiological and cellular studies. Epidemiological data suggest that winter birth is associated with higher risk of GBM, and GBM debulking in the winter enhanced mortality, which may relate with lower exposure to sunlight essential to convert cholecalciferol to Vitamin D. Comparative studies on blood bank specimens revealed that higher prediagnosis levels of calcidiol are associated with lower risk of GBM in elderly men. Supplemental Vitamin D reduced mortality in GBM patients in comparison to nonusers. Expression of Vitamin D Receptor is associated with a good prognosis in GBM. Conversely, Vitamin D increases glial tumor synthesis of neutrophins NGF and NT-3, the low affinity neurotrophin receptor p75NTR, IL-6 and VEGF, which may enhance glioma growth. Antitumor synergisms between temozolomide and Vitamin D and Vitamin D with Vitamin A derivatives were observed. Hence, we hypothesize that Calcitriol + ATRA (All-Trans Retinoic Acid) + Temozolomide – CAT combination might be a safer approach to benefit from Vitamin D in the management of high-grade glial tumors. Adding acetazolomide to this protocol may reduce the risk of pseudotumor cerebri, as both Vitamin D and Vitamin A excess may cause intracranial hypertension; this approach may provide further benefit as acetazolomide also exhibits anticancer activity.

Keywords

Glioblastoma Glioma Vitamin D Vitamin a Temozolomide 

Notes

Author contributions

İ.E. and M.A.A. developed the hypothesis and evaluated final draft of the manuscript. A.O., A.O and J.L.P. reviewed the manuscript and made relevant criticisms. M.A.A. performed literature analysis and made relevant changes according to the advises of İ.E. and A.O.

Compliance with ethical standards

Conflict of interest

None.

References

  1. Ahn BY, Saldanha-Gama RF, Rahn JJ, Hao X, Zhang J, Dang NH, Alshehri M, Robbins SM, Senger DL (2016) Glioma invasion mediated by the p75 neurotrophin receptor (p75(NTR)/CD271) requires regulated interaction with PDLIM1. Oncogene 35:1411–1422CrossRefPubMedGoogle Scholar
  2. Altinoz MA, Bilir A, Ozar E, Onar FD, Sav A (2001) Medroxyprogesterone acetate alone or synergistic with chemotherapy suppresses colony formation and DNA synthesis in C6 glioma in vitro. Int J Dev Neurosci 19:541–547CrossRefPubMedGoogle Scholar
  3. Altinoz MA, Gedikoglu G, Sav A, Ozcan E, Ozdilli K, Bilir A, Del Maestro RF (2007) Medroxyprogesterone acetate induces c6 glioma chemosensitization via antidepressant-like lysosomal phospholipidosis/myelinosis in vitro. Int J Neurosci 117:1465–1480CrossRefPubMedGoogle Scholar
  4. Altinoz MA, Nalbantoglu J, Ozpinar A, Emin Ozcan M, Del Maestro RF, Elmaci I (2018) From epidemiology and neurodevelopment to antineoplasticity. Medroxyprogesterone reduces human glial tumor growth in vitro and C6 glioma in rat brain in vivo. Clin Neurol Neurosurg 173:20–30.  https://doi.org/10.1016/j.clineuro.2018.07.012 CrossRefPubMedGoogle Scholar
  5. Alvarez-Dolado M, González-Sancho JM, Navarro-Yubero C, García-Fernández LF, Muñoz A (1999) Retinoic acid and 1,25-dihydroxyvitamin D3 inhibit tenascin-C expression in rat glioma C6 cells. J Neurosci Res 58:293–300CrossRefPubMedGoogle Scholar
  6. Anic GM, Thompson RC, Nabors LB, Olson JJ, Browning JE, Madden MH, Murtagh FR, Forsyth PA, Egan KM (2012) An exploratory analysis of common genetic variants in the vitamin D pathway including genome-wide associated variants in relation to glioma risk and outcome. Cancer Causes Control 23:1443–1449CrossRefPubMedPubMedCentralGoogle Scholar
  7. Atif F, Patel NR, Yousuf S, Stein DG (2015a) The synergistic effect of combination progesterone and Temozolomide on human glioblastoma cells. PLoS One 10(6):e0131441.  https://doi.org/10.1371/journal.pone.0131441 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Atif F, Yousuf S, Stein DG (2015b) Anti-tumor effects of progesterone in human glioblastoma multiforme: role of PI3K/Akt/mTOR signaling. J Steroid Biochem Mol Biol 146:62–73CrossRefPubMedGoogle Scholar
  9. Bak DH, Kang SH, Choi DR, Gil MN, Yu KS, Jeong JH, Lee NS, Lee JH, Jeong YG, Kim DK, Kim DK, Kim JJ, Han SY (2016) Autophagy enhancement contributes to the synergistic effect of vitamin D in temozolomide-based glioblastoma chemotherapy. Exp Ther Med 11:2153–2162CrossRefPubMedPubMedCentralGoogle Scholar
  10. Baudet C, Chevalier G, Chassevent A, Canova C, Filmon R, Larra F, Brachet P, Wion D (1996a) 1,25-Dihydroxyvitamin D3 induces programmed cell death in a rat glioma cell line. J Neurosci Res 46:540–550CrossRefPubMedGoogle Scholar
  11. Baudet C, Chevalier G, Naveilhan P, Binderup L, Brachet P, Wion D (1996b) Cytotoxic effects of 1 alpha,25-dihydroxyvitamin D3 and synthetic vitamin D3 analogues on a glioma cell line. Cancer Lett 100:3–10CrossRefPubMedGoogle Scholar
  12. Baudet C, Perret E, Delpech B, Kaghad M, Brachet P, Wion D, Caput D (1998) Differentially expressed genes in C6.9 glioma cells during vitamin D-induced cell death program. Cell Death Differ 5:116–125CrossRefPubMedGoogle Scholar
  13. Berghoff J, Jaisimha AV, Duggan S, MacSharry J, McCarthy JV (2015) Gamma-secretase-independent role for cadherin-11 in neurotrophin receptor p75 (p75(NTR)) mediated glioblastoma cell migration. Mol Cell Neurosci 69:41–53CrossRefPubMedGoogle Scholar
  14. Bhatti P, Doody DR, Mckean-Cowdin R, Mueller BA (2015) Neonatal vitamin D and childhood brain tumor risk. Int J Cancer. 136(10):2481–5.  https://doi.org/10.1002/ijc.29291
  15. Brenner AV, Linet MS, Shapiro WR, Selker RG, Fine HA, Black PM, Inskip PD (2004) Season of birth and risk of brain tumors in adults. Neurology. 63:276–281CrossRefPubMedGoogle Scholar
  16. Brown MC, Staniszewska I, Lazarovici P, Tuszynski GP, Del Valle L, Marcinkiewicz C (2008) Regulatory effect of nerve growth factor in alpha9beta1 integrin-dependent progression of glioblastoma. Neuro-Oncology 10:968–980CrossRefPubMedGoogle Scholar
  17. Butowski N, Prados MD, Lamborn KR, Larson DA, Sneed PK, Wara WM, Malec M, Rabbitt J, Page M, Chang SM (2005) A phase II study of concurrent temozolomide and cis-retinoic acid with radiation for adult patients with newly diagnosed supratentorial glioblastoma. Int J Radiat Oncol Biol Phys 61:1454–1459CrossRefPubMedGoogle Scholar
  18. Canova C, Chevalier G, Remy S, Brachet P, Wion D (1998) Epigenetic control of programmed cell death: inhibition by 5-azacytidine of 1,25-dihydroxyvitamin D3-induced programmed cell death in C6.9 glioma cells. Mech Ageing Dev 101:153–166CrossRefPubMedGoogle Scholar
  19. Cheng TY, Goodman GE, Thornquist MD, Barnett MJ, Beresford SA, LaCroix AZ, Zheng Y, Neuhouser ML (2014) Estimated intake of vitamin D and its interaction with vitamin a on lung cancer risk among smokers. Int J Cancer 135:2135–2145.  https://doi.org/10.1002/ijc.28846 CrossRefPubMedGoogle Scholar
  20. Clarke JL, Iwamoto FM, Sul J, Panageas K, Lassman AB, DeAngelis LM, Hormigo A, Nolan CP, Gavrilovic I, Karimi S (2009) Abrey LE (2009) randomized phase II trial of chemoradiotherapy followed by either dose-dense or metronomic temozolomide for newly diagnosed glioblastoma. J Clin Oncol 27:3861–3867CrossRefPubMedPubMedCentralGoogle Scholar
  21. Coombs CC, DeAngelis LM, Feusner JH, Rowe JM, Tallman MS (2016) Pseudotumor Cerebri in acute Promyelocytic leukemia patients on intergroup protocol 0129: clinical description and recommendations for new diagnostic criteria. Clin Lymphoma Myeloma Leuk 16:146–151.  https://doi.org/10.1016/j.clml.2015.11.018 CrossRefPubMedGoogle Scholar
  22. Das A, Banik NL, Ray SK (2008) Modulatory effects of acetazolomide and dexamethasone on temozolomide-mediated apoptosis in human glioblastoma T98G and U87MG cells. Cancer Investig 26:352–358.  https://doi.org/10.1080/07357900701788080 CrossRefGoogle Scholar
  23. Davoust N, Wion D, Chevalier G, Garabedian M, Brachet P, Couez D (1998) Vitamin D receptor stable transfection restores the susceptibility to 1,25-dihydroxyvitamin D3 cytotoxicity in a rat glioma resistant clone. J Neurosci Res 52:210–219CrossRefPubMedGoogle Scholar
  24. Diesel B, Radermacher J, Bureik M, Bernhardt R, Seifert M, Reichrath J, Fischer U, Meese E (2005) Vitamin D(3) metabolism in human glioblastoma multiforme: functionality of CYP27B1 splice variants, metabolism of calcidiol, and effect of calcitriol. Clin Cancer Res 11:5370–5380CrossRefPubMedGoogle Scholar
  25. Efird JT (2010) Season of birth and risk for adult onset glioma. Int J Environ Res Public Health 7:1913–1936CrossRefPubMedGoogle Scholar
  26. Elmaci İ, Altinoz MA (2016) A metabolic inhibitory cocktail for grave cancers: metformin, pioglitazone and Lithium combination in treatment of pancreatic Cancer and glioblastoma Multiforme. Biochem Genet 54:573–618CrossRefPubMedGoogle Scholar
  27. Field S, Elliott F, Randerson-Moor J, Kukalizch K, Barrett JH, Bishop DT, Newton-Bishop JA (2013) Do vitamin a serum levels moderate outcome or the protective effect of vitamin D on outcome from malignant melanoma? Clin Nutr 32:1012–1016.  https://doi.org/10.1016/j.clnu.2013.04.006 CrossRefPubMedGoogle Scholar
  28. Garcion E, Wion-Barbot N, Montero-Menei CN, Berger F, Wion D (2002) New clues about vitamin D functions in the nervous system. Trends Endocrinol Metab 13:100–105CrossRefPubMedGoogle Scholar
  29. Gocek E, Marchwicka A, Baurska H, Chrobak A, Marcinkowska E (2012) Opposite regulation of vitamin D receptor by ATRA in AML cells susceptible and resistant to vitamin D-induced differentiation. J Steroid Biochem Mol Biol 132:220–226.  https://doi.org/10.1016/j.jsbmb.2012.07.001 CrossRefPubMedGoogle Scholar
  30. Grauer O, Pascher C, Hartmann C, Zeman F, Weller M, Proescholdt M, Brawanski A, Pietsch T, Wick W, Bogdahn U, Hau P (2011) Temozolomide and 13-cis retinoic acid in patients with anaplastic gliomas: a prospective single-arm monocentric phase-II study (RNOP-05). J Neurooncol. 104(3):801–9.  https://doi.org/10.1007/s11060-011-0548-y
  31. Hakko H, Räsänen P, Niemelä A, Koivukangas J, Mainio A (2009) Season of tumor surgery in relation to deaths among brain tumor patients: does sunlight and month of surgery play a role in brain tumor deaths. Acta Neurochir 151:1369–1375CrossRefPubMedGoogle Scholar
  32. Hansen K, Wagner B, Hamel W, Schweizer M, Haag F, Westphal M, Lamszus K (2007) Autophagic cell death induced by TrkA receptor activation in human glioblastoma cells. J Neurochem 103:259–275CrossRefPubMedGoogle Scholar
  33. Jaeckle KA, Hess KR, Yung WK, Greenberg H, Fine H, Schiff D, Pollack IF, Kuhn J, Fink K, Mehta M et al (2003) North American brain tumor consortium. (2003) phase II evaluation of temozolomide and 13-cis-retinoic acid for the treatment of recurrent and progressive malignant glioma: a north American brain tumor consortium study. J Clin Oncol 21:2305–2311CrossRefPubMedGoogle Scholar
  34. Jaiswal PK, Goel A, Mittal RD (2015) Survivin: a molecular biomarker in cancer. Indian J Med Res 141:389–397CrossRefPubMedPubMedCentralGoogle Scholar
  35. Janik S, Nowak U, Łaszkiewicz A, Satyr A, Majkowski M, Marchwicka A, Śnieżewski Ł, Berkowska K, Gabryś M, Cebrat M, Marcinkowska E (2017) Diverse regulation of vitamin D receptor gene expression by 1,25-Dihydroxyvitamin D and ATRA in murine and human blood cells at early stages of their differentiation. Int J Mol Sci 18:E1323.  https://doi.org/10.3390/ijms18061323 CrossRefPubMedGoogle Scholar
  36. Jawhari S, Bessette B, Hombourger S, Durand K, Lacroix A, Labrousse F, Jauberteau MO, Ratinaud MH, Verdier M (2017) Autophagy and TrkC/NT-3 signaling joined forces boost the hypoxic glioblastoma cell survival. Carcinogenesis. 38:592–603CrossRefPubMedGoogle Scholar
  37. Jenab M, Bueno-de-Mesquita HB, Ferrari P, van Duijnhoven FJ, Norat T, Pischon T, Jansen EH, Slimani N, Byrnes G, Rinaldi S, Tjønneland A, Olsen A, Overvad K, Boutron-Ruault MC, Clavel-Chapelon F, Morois S, Kaaks R, Linseisen J, Boeing H, Bergmann MM, Trichopoulou A, Misirli G, Trichopoulos D, Berrino F, Vineis P, Panico S, Palli D, Tumino R, Ros MM, van Gils CH, Peeters PH, Brustad M, Lund E, Tormo MJ, Ardanaz E, Rodríguez L, Sánchez MJ, Dorronsoro M, Gonzalez CA, Hallmans G, Palmqvist R, Roddam A, Key TJ, Khaw KT, Autier P, Hainaut P, Riboli E (2010) Association between pre-diagnostic circulating vitamin D concentration and risk of colorectal cancer in European populations:a nested case-control study. BMJ 340:b5500.  https://doi.org/10.1136/bmj.b5500 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Koch HJ, Klinkhammer-Schalke M, Hofstädter F, Bogdahn U, Hau P (2006) Seasonal patterns of birth in patients with glioblastoma. Chronobiol Int 23:1047–1052CrossRefPubMedGoogle Scholar
  39. Kouri FM, Jensen SA, Stegh AH (2012) The role of Bcl-2 family proteins in therapy responses of malignant astrocytic gliomas: Bcl2L12 and beyond. ScientificWorldJournal. 2012:838916.  https://doi.org/10.1100/2012/838916 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Lainey E, Wolfromm A, Sukkurwala AQ, Micol JB, Fenaux P, Galluzzi L, Kepp O, Kroemer G (2013) EGFR inhibitors exacerbate differentiation and cell cycle arrest induced by retinoic acid and vitamin D3 in acute myeloid leukemia cells. Cell Cycle 12:2978–2991CrossRefPubMedGoogle Scholar
  41. Lawn S, Krishna N, Pisklakova A, Qu X, Fenstermacher DA, Fournier M, Vrionis FD, Tran N, Chan JA, Kenchappa RS, Forsyth PA (2015) Neurotrophin signaling via TrkB and TrkC receptors promotes the growth of brain tumor-initiating cells. J Biol Chem 290:3814–3824CrossRefPubMedGoogle Scholar
  42. Li QY, Yang Y, Zhang Y, Zhang ZJ, Gong AH, Yuan ZC, Lu PS, Zhan LP, Wang P, Feng Y, Xu VL (2011) Nerve growth factor expression in astrocytoma and cerebrospinal fluid: a new biomarker for prognosis of astrocytoma. Chin Med J 124:2222–2227PubMedGoogle Scholar
  43. Magrassi L, Bono F, Milanesi G, Butti G (1992) Vitamin D receptor expression in human brain tumors. J Neurosurg Sci 36:27–30PubMedGoogle Scholar
  44. Magrassi L, Butti G, Pezzotta S, Infuso L, Milanesi G (1995) Effects of vitamin D and retinoic acid on human glioblastoma cell lines. Acta Neurochir 133:184–190CrossRefPubMedGoogle Scholar
  45. Magrassi L, Adorni L, Montorfano G, Rapelli S, Butti G, Berra B, Milanesi G (1998) Vitamin D metabolites activate the sphingomyelin pathway and induce death of glioblastoma cells. Acta Neurochir 140:707–713CrossRefPubMedGoogle Scholar
  46. Mainio A, Hakko H, Koivukangas J, Niemelä A, Räsänen P (2006) Winter birth in association with a risk of brain tumor among a Finnish patient population. Neuroepidemiology. 27:57–60CrossRefPubMedGoogle Scholar
  47. Maleklou N, Allameh A, Kazemi B (2016) Targeted delivery of vitamin D3-loaded nanoparticles to C6 glioma cell line increased resistance to doxorubicin, epirubicin, and docetaxel in vitro. In Vitro Cell Dev Biol Anim 52:989–1000CrossRefPubMedGoogle Scholar
  48. Marchwicka A, Cebrat M, Łaszkiewicz A, Śnieżewski Ł, Brown G, Marcinkowska E (2016) Regulation of vitamin D receptor expression by retinoic acid receptor alpha in acute myeloid leukemia cells. J Steroid Biochem Mol Biol 159:121–130.  https://doi.org/10.1016/j.jsbmb.2016.03.013 CrossRefPubMedGoogle Scholar
  49. Mulpur BH, Nabors LB, Thompson RC, Olson JJ, LaRocca RV, Thompson Z, Egan KM (2015) Complementary therapy and survival in glioblastoma. Neurooncol Pract 2:122–126PubMedPubMedCentralGoogle Scholar
  50. Naveilhan P, Berger F, Haddad K, Barbot N, Benabid AL, Brachet P, Wion D (1994) Induction of glioma cell death by 1,25(OH)2 vitamin D3: towards an endocrine therapy of brain tumors? J Neurosci Res 37:271–277CrossRefPubMedGoogle Scholar
  51. Naveilhan P, Neveu I, Baudet C, Funakoshi H, Wion D, Brachet P, Metsis M (1996a) 1,25-Dihydroxyvitamin D3 regulates the expression of the low-affinity neurotrophin receptor. Brain Res Mol Brain Res 41:259–268CrossRefPubMedGoogle Scholar
  52. Naveilhan P, Neveu I, Wion D, Brachet P (1996b) 1,25-Dihydroxyvitamin D3, an inducer of glial cell line-derived neurotrophic factor. Neuroreport. 7:2171–2175CrossRefPubMedGoogle Scholar
  53. Neveu I, Naveilhan P, Baudet C, Brachet P, Metsis M (1994a) 1,25-dihydroxyvitamin D3 regulates NT-3, NT-4 but not BDNF mRNA in astrocytes. Neuroreport. 6:124–126CrossRefPubMedGoogle Scholar
  54. Neveu I, Naveilhan P, Jehan F, Baudet C, Wion D, De Luca HF, Brachet P (1994b) 1,25-dihydroxyvitamin D3 regulates the synthesis of nerve growth factor in primary cultures of glial cells. Brain Res Mol Brain Res 24:70–76CrossRefPubMedGoogle Scholar
  55. Ng WH, Wan GQ, Peng ZN, Too HP (2009) Glial cell-line derived neurotrophic factor (GDNF) family of ligands confer chemoresistance in a ligand-specific fashion in malignant gliomas. J Clin Neurosci 16:427–436CrossRefPubMedGoogle Scholar
  56. Said HM, Hagemann C, Carta F, Katzer A, Polat B, Staab A, Scozzafava A, Anacker J, Vince GH, Flentje M, Supuran CT (2013) Hypoxia induced CA9 inhibitory targeting by two different sulfonamide derivatives including acetazolamide in human glioblastoma. Bioorg Med Chem 21:3949–3957.  https://doi.org/10.1016/j.bmc.2013.03.068 CrossRefPubMedGoogle Scholar
  57. Saito T, Sugiyama K, Takeshima Y, Amatya VJ, Yamasaki F, Takayasu T, Nosaka R, Muragaki Y, Kawamata T, Kurisu K (2017) Prognostic implications of the subcellular localization of survivin in glioblastomas treated with radiotherapy plus concomitant and adjuvant temozolomide. J Neurosurg 128:679–684.  https://doi.org/10.3171/2016.11.JNS162326 CrossRefPubMedGoogle Scholar
  58. Salomón DG, Fermento ME, Gandini NA, Ferronato MJ, Arévalo J, Blasco J, Andrés NC, Zenklusen JC, Curino AC, Facchinetti MM (2014) Vitamin D receptor expression is associated with improved overall survival in human glioblastoma multiforme. J Neuro-Oncol 118:49–60CrossRefGoogle Scholar
  59. Satake K, Takagi E, Ishii A, Kato Y, Imagawa Y, Kimura Y, Tsukuda M (2003) Anti-tumor effect of vitamin a and D on head and neck squamous cell carcinoma. Auris Nasus Larynx 30:403–412CrossRefPubMedGoogle Scholar
  60. Sha J, Pan J, Ping P, Xuan H, Li D, Bo J, Liu D, Huang Y (2013) Synergistic effect and mechanism of vitamin a and vitamin D on inducing apoptosis of prostate cancer cells. Mol Biol Rep 40:2763–2768.  https://doi.org/10.1007/s11033-012-1925-0 CrossRefPubMedGoogle Scholar
  61. Singer HS, Hansen B, Martinie D, Karp CL (1999) Mitogenesis in glioblastoma multiforme cell lines: a role for NGF and its TrkA receptors. J Neuro-Oncol 45(1):1–8CrossRefGoogle Scholar
  62. Sirachainan N, Pakakasama S, Visudithbhan A, Chiamchanya S, Tuntiyatorn L, Dhanachai M, Laothamatas J, Hongeng S (2008) Concurrent radiotherapy with temozolomide followed by adjuvant temozolomide and cis-retinoic acid in children with diffuse intrinsic pontine glioma. Neuro-Oncology 10:577–582CrossRefPubMedPubMedCentralGoogle Scholar
  63. Sun S, Lei Y, Li Q, Wu Y, Zhang L, Mu PP, Ji GQ, Tang CX, Wang YQ, Gao J, Gao J, Li L, Zhuo L, Li YQ, Gao DS (2017) Neuropilin-1 is a glial cell line-derived neurotrophic factor receptor in glioblastoma. Oncotarget. 8:74019–74035.  https://doi.org/10.18632/oncotarget.18630 CrossRefPubMedPubMedCentralGoogle Scholar
  64. Swami S, Krishnan AV, Wang JY, Jensen K, Horst R, Albertelli MA, Feldman D (2012) Dietary vitamin D3 and 1,25-dihydroxyvitamin D3 (calcitriol) exhibit equivalent anticancer activity in mouse xenograft models of breast and prostate cancer. Endocrinology. 153:2576–2587CrossRefPubMedPubMedCentralGoogle Scholar
  65. Tamura RE, de Vasconcellos JF, Sarkar D, Libermann TA, Fisher PB, Zerbini LF (2012) GADD45 proteins: central players in tumorigenesis. Curr Mol Med 12:634–651CrossRefPubMedGoogle Scholar
  66. Trouillas P, Honnorat J, Bret P, Jouvet A, Gerard JP (2001) Redifferentiation therapy in brain tumors: long-lasting complete regression of glioblastomas and an anaplastic astrocytoma under long term 1-alpha-hydroxycholecalciferol. J Neuro-Oncol 51:57–66CrossRefGoogle Scholar
  67. Vinores SA, Koestner A (1980) (1980) the effect of nerve growth factor on undifferentiated glioma cells. Cancer Lett 10:309–318CrossRefPubMedGoogle Scholar
  68. Wang Q, Yang W, Uytingco MS, Christakos S, Wieder R (2000) 1,25-Dihydroxyvitamin D3 and all-trans-retinoic acid sensitize breast cancer cells to chemotherapy-induced cell death. Cancer Res 60:2040–2048PubMedGoogle Scholar
  69. Wiesenhofer B, Stockhammer G, Kostron H, Maier H, Hinterhuber H, Humpel C (2000a) Glial cell line-derived neurotrophic factor (GDNF) and its receptor (GFR-alpha 1) are strongly expressed in human gliomas. Acta Neuropathol 99:131–137CrossRefPubMedGoogle Scholar
  70. Wiesenhofer B, Weis C, Humpel C (2000b) Glial cell line-derived neurotrophic factor (GDNF) is a proliferation factor for rat C6 glioma cells: evidence from antisense experiments. Antisense Nucleic Acid Drug Dev 10:311–321CrossRefPubMedGoogle Scholar
  71. Xu Y, He B, Pan Y, Deng Q, Sun H, Li R, Gao T, Song G, Wang S (2014) Systematic review and meta-analysis on vitamin D receptor polymorphisms and cancer risk. Tumour Biol 35:4153–4169CrossRefPubMedGoogle Scholar
  72. Yagishita T, Kushida A, Tamura H (2012) Vitamin D(3) enhances ATRA-mediated neurosteroid biosynthesis in human glioma GI-1 cells. J Biochem 152:285–292CrossRefPubMedGoogle Scholar
  73. Yamamoto K, Ichijo H, Korsmeyer SJ (1999) BCL-2 is phosphorylated and inactivated by an ASK1/Jun N-terminal protein kinase pathway normally activated at G(2)/M. Mol Cell Biol 19:8469–8478CrossRefPubMedPubMedCentralGoogle Scholar
  74. Zaki SA, Lad V, Abdagire N (2013) Vitamin D deficiency rickets presenting as pseudotumor cerebri. J Neurosci Rural Pract 4:464–466.  https://doi.org/10.4103/0976-3147.120210 CrossRefPubMedPubMedCentralGoogle Scholar
  75. Zapletalova D, André N, Deak L, Kyr M, Bajciova V, Mudry P, Dubska L, Demlova R, Pavelka Z, Zitterbart K, Skotakova J, Husek K, Martincekova A, Mazanek P, Kepak T, Doubek M, Kutnikova L, Valik D, Sterba J (2012) Metronomic chemotherapy with the COMBAT regimen in advanced pediatric malignancies: a multicenter experience. Oncology. 82:249–260CrossRefPubMedGoogle Scholar
  76. Zehnder D, Bland R, Williams MC, McNinch RW, Howie AJ, Stewart PM, Hewison M (2001) Extrarenal expression of 25-hydroxyvitamin d(3)-1 alpha-hydroxylase. J Clin Endocrinol Metab 86:888–894PubMedGoogle Scholar
  77. Zhou X, Hao Q, Liao P, Luo S, Zhang M, Hu G, Liu H, Zhang Y, Cao B, Baddoo M, Flemington EK, Zeng SX, Lu H (2016) Nerve growth factor receptor negates the tumor suppressor p53 as a feedback regulator. Elife. 5:e15099.  https://doi.org/10.7554/eLife.15099 CrossRefPubMedPubMedCentralGoogle Scholar
  78. Zigmont V, Garrett A, Peng J, Seweryn M, Rempala GA, Harris R, Holloman C, Gundersen TE, Ahlbom A, Feychting M, Johannesen TB, Grimsrud TK, Schwartzbaum J (2015) Association between Prediagnostic serum 25-Hydroxyvitamin D concentration and glioma. Nutr Cancer 67:1120–1130CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Acibadem University, Istanbul, Neuroacademy GroupIstanbulTurkey
  2. 2.Department of Medical BiochemistryAcibadem UniversityIstanbulTurkey
  3. 3.Department of Neurological SurgeryUniversity of PittsburghPittsburghUSA
  4. 4.Neurooncology Branch, Neuroacademy GroupIstanbulTurkey
  5. 5.Department of PsychiatryMaastricht UniversityMaastrichtThe Netherlands

Personalised recommendations