Skip to main content
Log in

Potential widespread denitrosylation of brain proteins following prolonged restraint: proposed links between stress and central nervous system disease

  • Original Article
  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

The biochemical pathways by which aberrant psychophysiological stress promotes neuronal damage and increases the risks for central nervous system diseases are not well understood. In light of previous findings that psychophysiological stress, modeled by animal restraint, can increase the activities and expression levels of nitric oxide synthase isoforms in multiple brain regions, we examined the effects of restraint, for up to 6 h, on levels of S-nitrosylated proteins and NOx (nitrite + nitrate), a marker for high-level nitric oxide generation, in the brains of rats. Results identify functionally-diverse protein targets of S-nitrosylation in the brain, in vivo, and demonstrate the potential for widespread loss of protein nitrosothiols following prolonged restraint despite a concomitant increase in NOx levels. Since physiological levels of protein S-nitrosylation can protect neurons by maintaining redox homeostasis, by limiting excitatory neurotransmission, and by inhibiting apoptotic and inflammatory pathways, we propose that over-activation of protein denitrosylation pathways following sustained or repeated stress may facilitate neural damage and early stages of stress-related central nervous system disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: Restraint induces an apparent biphasic change in protein S-nitrosylation.
Fig. 2: Prolonged restraint can increase NOx levels in the brain.

Similar content being viewed by others

References

  • Allen BW, Stamler JS, Piantadosi CA (2009) Hemoglobin, nitric oxide and molecular mechanisms of hypoxic vasodilation. Trends Mol Med 15:452–460

    Article  CAS  Google Scholar 

  • Beckman JS, Koppenol WH (1996) Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and the ugly. Am J Phys 271:C1424–C1437

    Article  CAS  Google Scholar 

  • Benhar M, Forrester MT, Stamler JS (2009) Protein denitrosylation: enzymatic mechanisms and cellular functions. Nat Rev Mol Cell Biol 10:721–732

    Article  CAS  Google Scholar 

  • Chen HJ, Spiers JG, Sernia C, Lavidis NA (2015) Response of the nitrergic system to activation of the neuroendocrine stress axis. Front Neurosci 9:3

    PubMed  PubMed Central  Google Scholar 

  • Chen HJ, Spiers JG, Sernia C, Lavidis NA (2016) Acute restraint stress induces specific changes in nitric oxide production and inflammatory markers in the rat hippocampus and striatum. Free Radic Biol Med 90:219–229

    Article  CAS  Google Scholar 

  • Choi YB, Tenneti L, Le DA, Ortiz J, Bai G, Chen HS, Lipton SA (2000) Molecular basis of NMDA receptor-coupled ion channel modulation by S-Nitrosylation. Nat Neurosci 3:15–21

    Article  CAS  Google Scholar 

  • Chrousos GP (2009) Stress and disorders of the stress system. Nat Rev Endocrinol 5:374–381

    Article  CAS  Google Scholar 

  • Daulatzai MA (2017) Cerebral hypoperfusion and glucose hypometabolism: key pathophysiological modulators promote neurodegeneration, cognitive impairment, and Alzheimer's disease. J Neurosci 95:943–972

    CAS  Google Scholar 

  • Fabregat A, Jupe S, Matthews L, Sidiropoulos K, Gillespie M, Garapati P, Haw R, Jassel B, Korninger F, May B, Milacic M, Roca CD, Rothfels K, Sevilla C, Shamovsky V, Shorser S, Varusai T, Viteri G, Weiser J, Wu G, Stein L, Hermjakob H, D'Eustachio P (2018) The Reactome pathwat knowledgebase. Nucleic Acids Res 46:D649–D655

    Article  CAS  Google Scholar 

  • Foley TD, Cantarella KM, Gillespie PF, Stredny ES (2014) Protein vicinal thiol oxidations in the healthy brain: not so radical links between physiological oxidative stress and neural cell activities. Neurochem Res 39:2030–2039

    Article  CAS  Google Scholar 

  • Foley TD, Cantarella KM, Gillespie PF (2016) Disulfide stress targets modulators of excitotoxicity in otherwise healthy brains. Neurochem Res 41:2763–2770

    Article  CAS  Google Scholar 

  • Forrester MT, Foster MW, Benhar M, Stamler JS (2009) Detection of protein S-nitrosylation with the biotin switch technique. Free Radic Biol Med 46:119–126

    Article  CAS  Google Scholar 

  • Garcia-Nogales P, Almeida A, Bolanos JP (2003) Peroxynitrite protects neurons against nitric oxide-mediated apoptosis. A key role for glucose-6-phosphate dehydrogenase activity in neuroprotection. J Biol Chem 278:864–874

    Article  CAS  Google Scholar 

  • Gould N, Doulias PT, Tenopoulou M, Raju K, Ischiropoulos H (2013) Regulation of protein function and signaling by reversible cysteine S-nitrosylation. J Biol Chem 288:26473–26479

    Article  CAS  Google Scholar 

  • Haendeler J, Hoffmann J, Tischler V, Berk BC, Zeiher AM, Dimmeler S (2002) Redox regulatory and anti-apoptotic functions of thioredoxin functions of thioredoxin depend on S-nitrosylation at cysteine 69. Nat Cell Biol 4:743–749

    Article  CAS  Google Scholar 

  • Hetrick EM, Schoefisch MH (2009) Analytical chemistry of nitric oxide. Annu Rev Anal Chem 2:409–433

    Article  CAS  Google Scholar 

  • Li L, Li X, Zhou W, Messina JL (2013) Acute psychological stress results in the rapid development of insulin resistance. J Endocrinol 217:175–184

    Article  CAS  Google Scholar 

  • Liu J, Wang X, Shigenaga MK, Yeo HC, Mori A, Ames BN (1996) Immobilization stress causes oxidative damage to lipid, protein, and DNA in the brains of rats. FASEB J 10:1532–1538

    Article  CAS  Google Scholar 

  • Lucassen PJ, Pruessner J, Sousa N, Almeida OF, Van Dam AM, Rajkowska G, Swaab DF, Czeh B (2014) Neuropathology of stress. Acta Neuropathol 127:109–135

    Article  CAS  Google Scholar 

  • Madrigal JL, Moro MA, Lizasoain I, Lorenzo P, Castillo A, Bosca L, Leza JC (2001) Inducible nitric oxide synthase expression in brain cortex after acute restraint stress is regulated by nuclear factor kappaB-mediated mechanisms. J Neurochem 76:532–538

    Article  CAS  Google Scholar 

  • Marshall HE, Hess DT, Stamler JS (2004) S-Nitrosylation: physiological regulation of NF-kappaB. Proc Natl Acad Sci U S A 101:8841–8842

    Article  CAS  Google Scholar 

  • Martin B, Ji S, Maudsley S, Mattson MP (2010) "control" laboratory rodents are metabolically morbid: why it matters. Proc Natl Acad Sci U S A 107:6127–6133

    Article  CAS  Google Scholar 

  • Molina y Vedia L, McDonald B, Reep B, Brune B, Di Silvio M, Billiar TR, Lapetina EG (1992) Nitric oxide-induced S-nitrosylation of glyceraldehyde-3-phosphate dehydrogenase inhibits enzymatic activity and increases endogenous ADP-ribosylation. J Biol Chem 267:24929–24932

    CAS  PubMed  Google Scholar 

  • Nakamura T, Prikhodko OA, Pirie E, Nagar S, Akhtar MW, Oh CK, McKercher SR, Ambasudhan R, Okamoto S, Lipton SA (2015) Aberrant protein S-nitrosylation contributes to the pathophysiology of neurodegenerative diseases. Neurobiol Dis 84:99–108

    Article  CAS  Google Scholar 

  • Park SK, Lin HL, Murphy S (1997) Nitric oxide regulates nitric oxide synthase-2 gene expression by inhibiting NF-kappaB binding to DNA. Biochem J 322:609–613

    Article  CAS  Google Scholar 

  • Rasler M, Wamelink MM, Kowald A, Gerisch B, Heeren G, Struys EA, Jakobs C, Breitenbach M, Lehrach H, Krobitsch S (2007) Dynamic rerouting of the carbohydrate flux is key to counteracting oxidative stress. J Biol 6:10

    Article  Google Scholar 

  • Sapolsky RM (1994) Glucocorticoids, stress and exacerbation of excitotoxic neuron death. Semin Neurosci 6:323–331

    Article  CAS  Google Scholar 

  • Shih RH, Wang CY, Yang CM (2015) NF-kappaB signaling pathways in neurological inflammation: a mini-review. Front Mol Neurosci 8:77

    Article  Google Scholar 

  • Sorrells SF, Caso JR, Munhoz CD, Sapolsky RM (2009) The stressed CNS: when glucocorticoids aggravate inflammation. Neuron 64:33–39

    Article  CAS  Google Scholar 

  • Spiers JG, Chen HJ, Lee JK, Sernia C, Lavidis NA (2016) Neuronal and inducible nitric oxide synthase upregulation in the rat medial prefrontal cortex following acute restraint stress: a dataset. Data Brief 6:582–586

    Article  Google Scholar 

  • Vyas S, Rodrigues AJ, Silva JM, Tronche F, Almeida OF, Sousa N, Sotiropoulos I (2016) Chronic stress and glucocorticoids: from neuronal plasticity to neurodegeneration. Neural Plast 2016:6391686

    Article  Google Scholar 

  • Wadham C, Parker A, Wang L, Xia P (2007) High glucose attenuates protein S-nitrosylation in endothelial cells: role of oxidative stress. Diabetes 56:2715–2721

    Article  CAS  Google Scholar 

  • Wolhuter K, Whitwell HJ, Switzer CH, Burgoyne JR, Timms JF, Eaton P (2018) Evidence against stable protein S-nitrosylation as a widespread mechanism of post-translational regulation. Mol Cell 69:438–450

    Article  CAS  Google Scholar 

  • Zhang Y, Wu K, Su W, Zhang DF, Wang P, Qiao X, Yao Q, Yuan Z, Yao YG, Liu G, Zhang C, Liu L, Chen C (2017) Increased GSNOR expression during aging impairs cognitive function and decreases S-nitrosation of CaMKIIα. J Neurosci 37:9741–9758

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the University of Scranton for providing the funding to support this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy D. Foley.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Foley, T.D., Koval, K.S., Gallagher, A.G. et al. Potential widespread denitrosylation of brain proteins following prolonged restraint: proposed links between stress and central nervous system disease. Metab Brain Dis 34, 183–189 (2019). https://doi.org/10.1007/s11011-018-0340-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11011-018-0340-1

Keywords

Navigation