Skip to main content

FOXRED1 silencing in mice: a possible animal model for Leigh syndrome

Abstract

Leigh syndrome (LS) is one of the most puzzling mitochondrial disorders, which is also known as subacute necrotizing encephalopathy. It has an incidence of 1 in 77,000 live births worldwide with poor prognosis. Currently, there is a poor understanding of the underlying pathophysiological mechanisms of the disease without any available effective treatment. Hence, the inevitability for developing suitable animal and cellular models needed for the development of successful new therapeutic modalities. In this short report, we blocked FOXRED1 gene with small interfering RNA (siRNA) using C57bl/6 mice. Results showed neurobehavioral changes in the injected mice along with parallel degeneration in corpus striatum and sparing of the substantia nigra similar to what happen in Leigh syndrome cases. FOXRED1 blockage could serve as a new animal model for Leigh syndrome due to defective CI, which echoes damage to corpus striatum and affection of the central dopaminergic system in this disease. Further preclinical studies are required to validate this model.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. Andrews B, Carroll J, Ding S, Fearnley IM, Walker JE (2013) Assembly factors for the membrane arm of human complex I. Proc Natl Acad Sci U S A 110(47):18934–18939

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  2. Arii J, Tanabe Y (2000) Leigh syndrome: serial MR imaging and clinical follow-up. Am J Neuroradiol 21(8):1502–1509

    CAS  PubMed  Google Scholar 

  3. Ascherio A, Schwarzschild MA (2016) The epidemiology of Parkinson's disease: risk factors and prevention. Lancet Neurol 15(12):1257–1272

    PubMed  Article  Google Scholar 

  4. Blandini F, Cova L, Armentero M, Zennaro E, Levandis G, Bossolasco P, Calzarossa C, Mellone M, Giuseppe B, Deliliers G, Polli E, Nappi G, Silani V (2010) Transplantation of undifferentiated human mesenchymal stem cells protects against 6-hydroxy dopamine neurotoxicity in the rat. Cell Transplant 19(2):203–217

    PubMed  Article  Google Scholar 

  5. Brenner-Lavie H, Klein E, Ben-Shachar D (2009) Mitochondrial complex I as a novel target for intraneuronal DA: modulation of respiration in intact cells. Biochem Pharmacol 78(1):85–95

    CAS  PubMed  Article  Google Scholar 

  6. Calvo SE, Tucker EJ, Compton AG, Kirby DM, Crawford G, Burtt NP, Rivas M, Guiducci C, Bruno DL, Goldberger OA, Redman MC, Wiltshire E, Wilson CJ, Altshuler D, Gabriel SB, Daly MJ, Thorburn DR, Mootha VK (2010) High-throughput, pooled sequencing identifies mutations in NUBPL and FOXRED1 in human complex I deficiency. Nat Genet 42(10):851–858

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  7. Carlsson T, Winkler C, Lundblad M, Cenci MA, Bjorklund A, Kirik D (2006) Graft placement and uneven pattern of reinnervation in the striatum is important for the development of graft-induced dyskinesias. Neurobiol Dis 21:657–668

    CAS  PubMed  Article  Google Scholar 

  8. Chen B, Hui J, Montgomery KS, Gella A, Bolea I, Sanz E, Palmiter RD, Quintana A (2017) Loss of mitochondrial Ndufs4 in striatal medium spiny neurons mediates progressive motor impairment in a mouse model of Leigh syndrome. Front Mol Neurosci 10:265

    PubMed  PubMed Central  Article  Google Scholar 

  9. Choi WS, Kim HW, Tronche F, Palmiter RD, Storm DR, Xia Z (2017) Conditional deletion of Ndufs4 in dopaminergic neurons promotes Parkinson's disease-like non-motor symptoms without loss of dopamine neurons. Sci Rep 7:44989

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  10. Devi L, Raghavendran V, Prabhu BM, Avadhani NG, Anandatheerthavarada HK (2008) Mitochondrial import and accumulation of α-synuclein impair complex I in human dopaminergic neuronal cultures and Parkinson disease brain. J Biol Chem 283(14):9089–9100

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  11. DiMauro S, Schon EA, Carelli V, Hirano M (2013) The clinical maze of mitochondrial neurology. Nat Rev Neurol 9(8):429–444

  12. Fassone E, Duncan AJ, Taanman JW, Pagnamenta AT, Sadowski MI, Holand T et al (2015) FOXRED1, encoding a FAD-dependent oxidoreductase complex-I-specific molecular chaperone, is mutated in infantile-onset mitochondrial encephalopathy. Hum Mol Genet 19(24):4837–4847

    Article  Google Scholar 

  13. Finn RD, Bateman A, Clements J, Coggill P, Eberhardt RY, Eddy SR et al (2013) Pfam: the protein families database. Nucleic Acids Res 42(D1):D222–D230

    PubMed  PubMed Central  Article  Google Scholar 

  14. Formosa LE, Mimaki M, Frazier AE, McKenzie M, Stait TL, Thorburn DR, Stroud DA, Ryan MT (2015) Characterization of mitochondrial FOXRED1 in the assembly of respiratory chain complex I. Hum Mol Genet 24(10):2952–2965

    CAS  PubMed  Article  Google Scholar 

  15. Franklin KBJ, PG (1997) The mouse brain in stereotaxic coordinates, 2nd edn. Academic Press, San Diego, CA

    Google Scholar 

  16. Giachin G, Bouverot R, Acajjaoui S, Pantalone S, Soler-Lopez M (2016) Dynamics of human mitochondrial complex I assembly: implications for neurodegenerative diseases. Front Mol Biosci 3:43

    PubMed  PubMed Central  Article  Google Scholar 

  17. Haelterman NA, Yoon WH, Sandoval H, Jaiswal M, Shulman JM, Bellen HJ (2014) A mitocentric view of Parkinson's disease. Annu Rev Neurosci 37:137–159

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  18. Kruse SE, Watt WC, Marcinek DJ, Kapur RP, Schenkman KA, Palmiter RD (2008) Mice with mitochondrial complex I deficiency develop a fatal encephalomyopathy. Cell Metab 7:312–320

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  19. Lake NJ, Compton AG, Rahman S, Thorburn DR (2016) Leigh syndrome: One disorder, more than 75 monogenic causes. Ann Neurol 79:190–203

    PubMed  Article  Google Scholar 

  20. Lazarou M, Thorburn DR, Ryan MT, McKenzie M (2009) Assembly of mitochondrial complex I and defects in disease. Biochimica et Biophysica Acta (BBA)-Molecular. Cell Res 1793(1):78–88

    CAS  Google Scholar 

  21. Lebre AS, Rio M, Faivre d'Arcier L, Vernerey D, Landrieu P, Slama A, Jardel C, Laforet P, Rodriguez D, Dorison N, Galanaud D, Chabrol B, Paquis-Flucklinger V, Grevent D, Edvardson S, Steffann J, Funalot B, Villeneuve N, Valayannopoulos V, de Lonlay P, Desguerre I, Brunelle F, Bonnefont JP, Rotig A, Munnich A, Boddaert N (2011) A common pattern of brain MRI imaging in mitochondrial diseases with complex I deficiency. J Med Genet 48(1):16–23

    CAS  PubMed  Article  Google Scholar 

  22. Lemire BD (2015a) A structural model for FOXRED1, an FAD-dependent oxidoreductase necessary for NADH: Ubiquinone oxidoreductase (complex I) assembly. Mitochondrion 22:9–16

    CAS  PubMed  Article  Google Scholar 

  23. Lemire BD (2015b) Evolution of FOXRED1, an FAD-dependent oxidoreductase necessary for NADH: ubiquinone oxidoreductase (Complex I) assembly. Biochim Biophys Acta 1847:451–457

    CAS  PubMed  Article  Google Scholar 

  24. Lienhart WD, Gudipati V, MacHeroux P (2013) The human flavoproteome. Arch Biochem Biophys 535(2):150–162

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  25. Martikainen MH, Kytövuori L, Majamaa K (2013) Juvenile parkinsonism, hypogonadism and Leigh-like MRI changes in a patient with m.4296G>a mutation in mitochondrial DNA. Mitochondrion 13(2):83–86

    CAS  PubMed  Article  Google Scholar 

  26. Mimaki M, Wang X, McKenzie M, Thorburn DR, Ryan MT (2012) Understanding mitochondrial complex I assembly in health and disease. Biochim Biophys Acta 1817(6):851–862

    CAS  PubMed  Article  Google Scholar 

  27. Miyauchi A, Osaka H, Nagashima M, Kuwajima M, Monden Y, Kohda M et al (2018) Leigh syndrome with spinal cord involvement due to a hemizygous NDUFA1 mutation. Brain Dev 40(6):498–502

    PubMed  Article  Google Scholar 

  28. Nouws J, Nijtmans LG, Smeitink JA, Vogel RO (2011) Assembly factors as a new class of disease genes for mitochondrial complex I deficiency: cause, pathology and treatment options. Brain 135(1):12–22

    PubMed  Article  Google Scholar 

  29. Pagliarini DJ, Calvo SE, Chang B, Sheth SA, Vafai SB, Ong SE, Walford GA, Sugiana C, Boneh A, Chen WK, Hill DE, Vidal M, Evans JG, Thorburn DR, Carr SA, Mootha VK (2008) A mitochondrial protein compendium elucidates complex I disease biology. Cell 134(1):112–123

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  30. Quintana A, Kruse SE, Kapur RP, Sanz E, Palmiter RD (2010) Complex I deficiency due to loss of Ndufs4 in the brain results in progressive encephalopathy resembling Leigh syndrome. Proc Natl Acad Sci U S A 107(24):10996–11001

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  31. Quintana A, Zanella S, Koch H, Kruse SE, Lee D, Ramirez JM, Palmiter RD (2012) Fatal breathing dysfunction in a mouse model of Leigh syndrome. J Clin Invest 122(7):2359–2368

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  32. Ruhoy IS, Saneto RP (2014) The genetics of Leigh syndrome and its implications for clinical practice and risk management. Appl Clin Genet 7:221–234

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Salama M, Arias-Carrio’n O (2011) Natural toxins implicated in the development of Parkinson’s disease. Ther Adv Neurol Disord 4(6):361–373

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  34. Wallace DC (2005) A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine. Annu Rev Genet 39:359–407

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  35. Wirtz S, Schuelke M (2011) Region-specific expression of mitochondrial complex I genes during murine brain development. PLoS One 6(4):e18897

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  36. Wittig I, Carrozzo R, Santorelli FM, Schägger H (2006) Supercomplexes and subcomplexes of mitochondrial oxidative phosphorylation. Biochim Biophys Acta 1757(9):1066–1072

    CAS  PubMed  Article  Google Scholar 

  37. Xu H, Rosler TW, Carlsson T, de Andrade A, Fiala O, Hollerhage M, Oertel WH, Goedert M, Aigner A, Hoglinger GU (2014) Tau silencing by siRNA in the P301S mouse model of tauopathy. Curr Gene Ther 14(5):343–351

    CAS  PubMed  Article  Google Scholar 

  38. Zurita Rendón O, Antonicka H, Horvath R, Shoubridge EA (2016) A mutation in the Flavin adenine dinucleotide-dependent oxidoreductase FOXRED1 results in cell-type-specific assembly defects in oxidative phosphorylation complexes I and II. Mol Cell Biol 36(16):2132–2140

    PubMed  PubMed Central  Article  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the Egyptian Science and Technology Development Fund (STDF) through Basic and Applied Research Grants (BARG) program, grant number (13892) [MS].

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mohamed Salama.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Salama, M., El-Desouky, S., Alsayed, A. et al. FOXRED1 silencing in mice: a possible animal model for Leigh syndrome. Metab Brain Dis 34, 367–372 (2019). https://doi.org/10.1007/s11011-018-0334-z

Download citation

Keywords

  • FOXRED1
  • Neurodegenerative diseases
  • Leigh syndrome
  • Gene silencing