Skip to main content
Log in

Antidepressant-like action of agmatine in the acute and sub-acute mouse models of depression: a receptor mechanism study

  • Original Article
  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

Previous studies have shown that agmatine, a potential neuromodulator or co-transmitter, exhibited antidepressant-like action in animal models, yet its mechanism, especially the receptor mechanism, remains unclear. In the present study, using efaroxan, a preferential antagonist of I1 imidazoline receptor (I1R) and yohimbine, an antagonist of α2 adrenergic receptor (α2AR), we investigated the roles of I1R and α2AR in agmatine’s antidepressant-like effect in acute and sub-acute depression models in mice. We found that in the tail-suspension test (TST) and the forced swimming test (FST), acute administration of agmatine (20 and 40 mg/kg, p.o.) significantly shortened the immobility time. Concurrent administration of efaroxan (1 mg/kg, i.p.) completely abolished the antidepressant-like effects of agmatine (40 mg/kg, p.o.) whereas yohimbine (5 mg/kg, i.p.) failed to exert similar effects, suggesting that the acute antidepressant-like effects of agmatine was mainly mediated by I1R but not α2AR. Additionally, in the learned helplessness (LH) test, repeated administration of agmatine (20 mg/kg, p.o., q.d.) for 5 days significantly decreased the escape latency and the number of escape failure, and these effects were respectively abolished by concurrent administration of efaroxan (0.5 mg/kg,i.p., q.d.) and yohimbine (3 mg/kg, i.p., q.d.) for 5 days, suggesting that the antidepressant-like action of agmatine in the LH test was achieved via the activation of both I1R and α2AR. In summary, we found that the antidepressant-like effects of agmatine in the TST and the FST were mediated by activating I1R and in the sub-acute LH test were mediated by activating both I1R and α2AR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Anisman H, Merali Z (2001) Rodent models of depression: learned helplessness induced in mice. Curr Protoc Neurosci Chapter 8: Unit 8 10C

  • Berndt ER, Koran LM, Finkelstein SN, Gelenberg AJ, Kornstein SG, Miller IM, Thase ME, Trapp GA, Keller MB (2000) Lost human capital from early-onset chronic depression. Am J Psychiatry 157:940–947

    Article  CAS  PubMed  Google Scholar 

  • Castagne V, Moser P, Roux S, Porsolt RD (2011) Rodent models of depression: forced swim and tail suspension behavioral despair tests in rats and mice. Curr Protoc Neurosci Chapter 8: Unit 8 10A

  • Chen WQ, Zhang YZ, Yuan L, Li YF, Li J (2014) Neurobehavioral evaluation of adolescent male rats following repeated exposure to chlorpyrifos. Neurosci Lett 570:76–80

    Article  CAS  PubMed  Google Scholar 

  • Chourbaji S, Zacher C, Sanchis-Segura C, Dormann C, Vollmayr B, Gass P (2005) Learned helplessness: validity and reliability of depressive-like states in mice. Brain Res Brain Res Protoc 15:70–78

    Article  Google Scholar 

  • Dias Elpo Zomkowski A, Oscar Rosa A, Lin J, Santos AR, Calixto JB, Lucia Severo Rodrigues A (2004) Evidence for serotonin receptor subtypes involvement in agmatine antidepressant like-effect in the mouse forced swimming test. Brain Res 1023:253–263

    Article  CAS  PubMed  Google Scholar 

  • Ding Y, Zhang R, Zhang K, Lv X, Chen Y, Li A, Wang L, Zhang X, Xia Q (2013) Nischarin is differentially expressed in rat brain and regulates neuronal migration. PLoS One 8:e54563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gawali NB, Bulani VD, Gursahani MS, Deshpande PS, Kothavade PS, Juvekar AR (2017) Agmatine attenuates chronic unpredictable mild stress-induced anxiety, depression-like behaviours and cognitive impairment by modulating nitrergic signalling pathway. Brain Res 1663:66

    Article  CAS  PubMed  Google Scholar 

  • Halaris AE, Piletz JE (2003) Relevance of imidazoline receptors and agmatine to psychiatry: a decade of progress. Ann N Y Acad Sci 1009:1–20

    Article  CAS  PubMed  Google Scholar 

  • Halaris AE, Plietz JE (2007) Agmatine : metabolic pathway and spectrum of activity in brain. CNS Drugs 21:885–900

    Article  CAS  PubMed  Google Scholar 

  • Halaris AE, Zhu H, Ali J, Nasrallah A, Lindsay De Vane C, Piletz JE (2002) Down-regulation of platelet imidazoline-1-binding sites after bupropion treatment. Int J Neuropsychopharmacol 5:37–46

    Article  CAS  PubMed  Google Scholar 

  • Han X, Jing MY, Zhao TY, Wu N, Song R, Li J (2017) Role of dopamine projections from ventral tegmental area to nucleus accumbens and medial prefrontal cortex in reinforcement behaviors assessed using optogenetic manipulation. Metab Brain Dis 32:1503–1505

    Article  PubMed  Google Scholar 

  • Jiang XZ, Li YF, Zhang YZ, Chen HX, Li J, Wang NP (2008) 5-HT1A/1B receptors, alpha2-adrenoceptors and the post-receptor adenylate cyclase activation in the mice brain are involved in the antidepressant-like action of agmatine. Yao Xue Xue Bao 43:467–473

    CAS  PubMed  Google Scholar 

  • Jin ZL, Chen XF, Ran YH, Li XR, Xiong J, Zheng YY, Gao NN, Li YF (2017) Mouse strain differences in SSRI sensitivity correlate with serotonin transporter binding and function. Sci Rep 7:8631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krass M, Wegener G, Vasar E, Volke V (2008) Antidepressant-like effect of agmatine is not mediated by serotonin. Behav Brain Res 188:324–328

    Article  CAS  PubMed  Google Scholar 

  • Laube G, Bernstein HG (2017) Agmatine: multifunctional arginine metabolite and magic bullet in clinical neuroscience? Biochem J 474:2619–2640

    Article  CAS  PubMed  Google Scholar 

  • Li YF, Gong ZH, Cao JB, Wang HL, Luo ZP, Li J (2003) Antidepressant-like effect of agmatine and its possible mechanism. Eur J Pharmacol 469:81–88

    Article  CAS  PubMed  Google Scholar 

  • Maier SF, Seligman ME (1976) Learned helplessness: theory and evidence. J Exp Psychol Gen 105:3

    Article  Google Scholar 

  • Mccune SK, Voigt MM, Hill JM (1993) Expression of multiple alpha adrenergic receptor subtype messenger RNAs in the adult rat brain. Neuroscience 57:143–151

    Article  CAS  PubMed  Google Scholar 

  • Neis VB, Moretti M, Manosso LM, Lopes MW, Leal RB, Rodrigues AL (2015) Agmatine enhances antidepressant potency of MK-801 and conventional antidepressants in mice. Pharmacol Biochem Behav 130:9–14

    Article  CAS  PubMed  Google Scholar 

  • Piletz JE, Halaris AE, Chikkala D, Qu Y (1996) Platelet I1-imidazoline binding sites are decreased by two dissimilar antidepressant agents in depressed patients. J Psychiatr Res 30:169–184

    Article  CAS  PubMed  Google Scholar 

  • Piletz JE, Ordway GA, Zhu H, Duncan BJ, Halaris A (2000) Autoradiographic Comparison of [3H]-Clonidine Binding to Non-Adrenergic Sites and alpha 2-Adrenergic Receptors in Human Brain. Neuropsychopharmacology Official Publication of the American College of Neuropsychopharmacology 23:697

    Article  CAS  PubMed  Google Scholar 

  • Piletz JE, Baker R, Halaris AE (2008) Platelet imidazoline receptors as state marker of depressive symptomatology. J Psychiatr Res 42:41–49

    Article  PubMed  Google Scholar 

  • Reis DJ, Regunathan S (2000) Is agmatine a novel neurotransmitter in brain? Trends Pharmacol Sci 21:187–193

    Article  CAS  PubMed  Google Scholar 

  • Seligman ME (1975) Helplessness: On Depression, Development, and Death. A Series of books in psychology. W. H. Freeman, New York, p 250

  • Seligman ME, Beagley G (1975) Learned helplessness in the rat. J Comp Physiol Psychol 88:534–541

    Article  CAS  PubMed  Google Scholar 

  • Seligman ME, Maier SF (1967) Failure to escape traumatic shock. J Exp Psychol 74:1–9

    Article  CAS  PubMed  Google Scholar 

  • Uzbay TI (2012) The pharmacological importance of agmatine in the brain. Neurosci Biobehav Rev 36:502–519

    Article  CAS  PubMed  Google Scholar 

  • Zeidan MP, Zomkowski AD, Rosa AO, Rodrigues AL, Gabilan NH (2007) Evidence for imidazoline receptors involvement in the agmatine antidepressant-like effect in the forced swimming test. Eur J Pharmacol 565:125–131

    Article  CAS  PubMed  Google Scholar 

  • Zeng D, Lynch KR (1991) Distribution of α 2 -adrenergic receptor mRNAs in the rat CNS. Brain research. Mol Brain Res 10:219–225

    Article  CAS  PubMed  Google Scholar 

  • Zomkowski AD, Hammes L, Lin J, Calixto JB, Santos AR, Rodrigues AL (2002) Agmatine produces antidepressant-like effects in two models of depression in mice. Neuroreport 13:387–391

    Article  CAS  PubMed  Google Scholar 

  • Zomkowski AD, Santos AR, Rodrigues AL (2005) Evidence for the involvement of the opioid system in the agmatine antidepressant-like effect in the forced swimming test. Neurosci Lett 381:279–283

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The work was supported by National Natural Science Foundation of China (81373385).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ning Wu or Jin Li.

Ethics declarations

Conflicts of interest

The authors declare no conflicts of interest.

Ethical approval

All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, ZD., Chen, WQ., Wang, ZY. et al. Antidepressant-like action of agmatine in the acute and sub-acute mouse models of depression: a receptor mechanism study. Metab Brain Dis 33, 1721–1731 (2018). https://doi.org/10.1007/s11011-018-0280-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11011-018-0280-9

Keywords

Navigation