Skip to main content

Advertisement

Log in

Anxiolytic actions of Nardostachys jatamansi via GABA benzodiazepine channel complex mechanism and its biodistribution studies

  • Original Article
  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

Nardostachys jatamansi has profound applications against pharmacological interventions and is categorized as a hypno-sedative drug according to Ayurveda. In the present study probable mechanism of anxiolytic action of Nardostachys jatamansi extract (NJE) was studied using behavioral anxiolytic tests (Elevated plus maze, Open field test, Light dark box test, and Vogel’s conflict test) in mice. Mice were treated orally with NJE (250 mg/kg) for 3, 7 and 14 days or diazepam (1 mg/kg) followed by behavioral assessment and estimation of monoamine neurotransmitters, GABA, and antioxidant enzymes. Treatment of mice for 7 days caused an increase in time spent in open arms in elevated plus maze, number of line crossings in open field test, increased time spent in lit compartment of light-dark box test, an increase in number of licks made and shocks accepted in Vogel’s conflict test, with results comparable to diazepam and this treatment also caused a significant increase in monoamine neurotransmitters and GABA in brain and tissue antioxidant parameters. Co-treatment of NJE with flumazenil (GABA-benzodiazepine antagonist; 0.5 mg/kg i.p) or picrotoxin (GABAA gated chloride channel blocker; 1 mg/kg i.p) caused a blockage/antagonised anxiolytic actions of NJE by causing a significant reduction in time spent in open arms of elevated plus maze, an decrease in number of line crossing in open field test and also number of shocks and licks accepted in Vogel’s conflict test. Further, NJE was radiolabelled with technetium99m at their hydroxyl groups following which purity as well as in vivo and in vitro stability of radiolabelled formulations was evaluated. The blood kinetics and in vivo bio-distribution studies were carried out in rabbits and mice respectively. Labeled formulation was found to be stable in vitro (96 to 93% stability) and in vivo (96 to 92% stability). The labeled compound was cleared rapidly from blood (within 24 h) and accumulated majorly in kidneys (11.65 ± 1.33), liver (6.07 ± 0.94), and blood (4.03 ± 0.63) after 1 h. However, a small amount was observed in brain (0.1 ± 0.02) probably because of its inability to cross blood-brain barrier. These results highlight biodistribution pattern of NJE, and also indicated that a 7-day treatment with NJE produced significant anxiolytic effects in mice and also a significant increase in brain monoamine and GABA neurotransmitter levels and suggests that anxiolytic effects of NJE are primarily and plausibly mediated by activating GABAergic receptor complex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Ahmad M, Yousuf S, Khan MB, Hoda MN, Ahmad AS, Ansari MA, Islam F (2006) Attenuation by Nardostachys jatamansi of 6-hydroxydopamine-induced parkinsonism in rats: behavioral, neurochemical, and immunohistochemical studies. Pharmacol Biochem Behav 83(1):150–160

    Article  CAS  PubMed  Google Scholar 

  • Alburges ME, Narang N, Wamsley JK (1993) A sensitive and rapid HPLC-ECD method for the simultaneous analysis of norepinephrine, dopamine, serotonin and their primary metabolites in brain tissue. Biomed Chromatogr 7(6):306–310

    Article  CAS  PubMed  Google Scholar 

  • Ali S, Ansari KA, Jafry MA, Kabeer H, Diwakar G (2000) Nardostachys jatamansi protects against liver damage induced by thioacetamide in rats. J Ethnopharmacol 71(3):359–363

    Article  CAS  PubMed  Google Scholar 

  • Anuradha H, Srikumar BN, Rao BS, Lakshmana M (2008) Euphorbia hirta reverses chronic stress-induced anxiety and mediates its action through the GABAA receptor benzodiazepine receptor-Cl channel complex. J Neural Transm 115(1):35–42

    Article  CAS  PubMed  Google Scholar 

  • Balendiran GK, Dabur R, Fraser D (2004) The role of glutathione in cancer. Cell Biochem Funct 22(6):343–352

    Article  CAS  PubMed  Google Scholar 

  • Barchas JD, Altemus M (1999) Biochemical hypotheses of mood and anxiety disorders. In: Siegel GJ, Agranoff BW, Albers RW, Fischer SK, Uhler MD (eds) Basic neurochemistry: molecular, cellular and medical aspects. Lipincott-Raven Publishers, Philadelphia, pp 1073–1093

    Google Scholar 

  • Belzung C, Griebel G (2001) Measuring normal and pathological anxiety-like behaviour in mice: a review. Behav Brain Res 125(1):141–149

    Article  CAS  PubMed  Google Scholar 

  • Bonetti EP, Pieri L, Cumin R, Schaffner R, Pieri M, Gamzu ER, Müller RKM, Haefely W (1982) Benzodiazepine antagonist Ro 15-1788: neurological and behavioral effects. Psychopharmacology 78(1):8–18

    Article  CAS  PubMed  Google Scholar 

  • Bourin M, Hascoët M (2003) The mouse light/dark box test. Eur J Pharmacol 463(1):55–65

    Article  CAS  PubMed  Google Scholar 

  • Buccafusco JJ (ed) (2000) Methods of behavior analysis in neuroscience. CRC Press

  • Carro-Juárez M, Rodríguez-Landa JF, de Lourdes Rodríguez-Peña M, de Jesús Rovirosa-Hernández M, García-Orduña F (2012) The aqueous crude extract of Montanoa frutescens produces anxiolytic-like effects similarly to diazepam in Wistar rats: involvement of GABAA receptor. J Ethnopharmacol 143(2):592–598

    Article  CAS  PubMed  Google Scholar 

  • Cavadas C, Araujo I, Cotrim MD, Amaral T, Cunha AP, Macedo T, Ribeiro CF (1995) In vitro study on the interaction of Valeriana officinalis L. extracts and their amino acids on GABAA receptor in rat brain. Arzneimittelforschung 45(7):753–755

    CAS  PubMed  Google Scholar 

  • Chouinard G (2004) Issues in the clinical use of benzodiazepines: potency, withdrawal, and rebound. J Clin Psychiatry 65:7–12

    CAS  PubMed  Google Scholar 

  • Crawley J, Goodwin FK (1980) Preliminary report of a simple animal behavior model for the anxiolytic effects of benzodiazepines. Pharmacol Biochem Behav 13(2):167–170

    Article  CAS  PubMed  Google Scholar 

  • Dhingra D, Goyal PK (2008) Inhibition of MAO and GABA: probable mechanisms for antidepressant-like activity of Nardostachys jatamansi DC. in mice. Indian J Exp Biol 46(4):212–218

    PubMed  Google Scholar 

  • Ellman GL (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82(1):70–77

    Article  CAS  PubMed  Google Scholar 

  • Ellman GL, Courtney KD, Andres V, Featherstone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7(2):88–95

    Article  CAS  PubMed  Google Scholar 

  • Ferguson JM (2001) SSRI antidepressant medications: adverse effects and tolerability. Prim Care Companion J Clin Psychiatry 3(1):22–27

    Article  PubMed  PubMed Central  Google Scholar 

  • Fernández-Guasti A, Ferreira A, Picazo O (2001) Diazepam, but not buspirone, induces similar anxiolytic-like actions in lactating and ovariectomized Wistar rats. Pharmacol Biochem Behav 70(1):85–93

    Article  PubMed  Google Scholar 

  • File SE (1980) The use of social interaction as a method for detecting anxiolytic activity of chlordiazepoxide-like drugs. J Neurosci Methods 2(3):219–238

    Article  CAS  PubMed  Google Scholar 

  • File SE, Pellow S (1984) The anxiogenic action of Ro 15-1788 is reversed by chronic, but not by acute, treatment with chlordiazepoxide. Brain Res 310(1):154–156

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez LE, File SE (1997) A five minute experience in the elevated plus-maze alters the state of the benzodiazepine receptor in the dorsal raphe nucleus. J Neurosci 17(4):1505–1511

    Article  CAS  PubMed  Google Scholar 

  • Gould TD, Dao DT, Kovacsics CE (2009) The open field test. In: Gould TD (ed) Mood and anxiety related phenotypes in mice. Humana Press, New York, pp 1–20

    Chapter  Google Scholar 

  • Gupta D, Radhakrishnan M, Kurhe Y (2014) Anxiolytic-like effects of alverine citrate in experimental mouse models of anxiety. Eur J Pharmacol 742:94–101

    Article  CAS  PubMed  Google Scholar 

  • Habig WH, Pabst MJ, Jakoby WB (1974) Glutathione S-transferases the first enzymatic step in mercapturic acid formation. J Biol Chem 249(22):7130–7139

    CAS  PubMed  Google Scholar 

  • Haefely W (1982) Antagonists of benzodiazepines: functional aspects. Adv Biochem Psychopharmacol 38:73–93

    Google Scholar 

  • Houghton PJ (1999) The scientific basis for the reputed activity of valerian. J Pharm Pharmacol 51(5):505–512

    Article  CAS  PubMed  Google Scholar 

  • Hunkeler W, Möhler H, Pieri L, Polc P, Bonetti EP, Cumin R, Schaffner R, Haefely W (1981) Selective antagonists of benzodiazepines. Nature 290:514–516

    Article  CAS  PubMed  Google Scholar 

  • Jadhav VM, Thorat RM, Kadam VJ, Kamble SS (2009) Herbal anxiolyte: Nardostachys jatamansi. J Pharm Res 2(8):1208–1211

    Google Scholar 

  • Jardim MC, Aguiar DC, Moreira FA, Guimarães FS (2005) Role of glutamate ionotropic and benzodiazepine receptors in the ventromedial hypothalamic nucleus on anxiety. Pharmacol Biochem Behav 82(1):182–189

    Article  CAS  PubMed  Google Scholar 

  • Jayashree GV, Kumar KH, Krupashree K, Rachitha P, Khanum F (2015) LC–ESI–MS/MS analysis of Asparagus racemosus Willd. roots and its protective effects against t-BHP induced oxidative stress in rats. Ind Crop Prod 78:102–109

    Article  CAS  Google Scholar 

  • Jindal A, Mahesh R, Kumar B (2013) Anxiolytic-like effect of linezolid in experimental mouse models of anxiety. Prog Neuro-Psychopharmacol Biol Psychiatry 40:47–53

    Article  CAS  Google Scholar 

  • Johnston GA, Hanrahan JR, Chebib M, Duke RK, Mewett KN (2006) Modulation of ionotropic GABA receptors by natural products of plant origin. Adv Pharmacol 54:285

    Article  CAS  PubMed  Google Scholar 

  • Joshi H, Parle M (2006) Nardostachys jatamansi improves learning and memory in mice. J Med Food 9(1):113–118

    Article  PubMed  Google Scholar 

  • Jung JW, Yoon BH, Oh HR, Ahn J, Kim SY, Park S, Ryu JH (2006) Anxiolytic-like effects of Gastrodia elata and its phenolic constituents in mice. Biol Pharm Bull 29(2):261–265

    Article  CAS  PubMed  Google Scholar 

  • Kandikattu HK, Venuprasad MP, Pal A, Khanum F (2014) Phytochemical analysis and exercise enhancing effects of hydroalcoholic extract of Celastrus paniculatus Willd. Ind Crop Prod 55:217–224

    Article  CAS  Google Scholar 

  • Kandikattu HK, Deep SN, Razack S, Amruta N, Prasad D, Khanum F (2017) Hypoxia induced cognitive impairment modulating activity of Cyperus rotundus. Physiol Behav 175:56–65

    Article  CAS  PubMed  Google Scholar 

  • Krishnamoorthy G, Shabi MM, Ravindhran D, Uthrapathy S, Rajamanickam VG, Dubey GP (2009) Nardostachys jatamansi: cardioprotective and hypolipidemic herb. J Pharm Res 2(4):574–578

    Google Scholar 

  • Krupashree K, Kumar KH, Rachitha P, Jayashree GV, Khanum F (2014) Chemical composition, antioxidant and macromolecule damage protective effects of Picrorhiza kurroa Royle ex Benth. S Afr J Bot 94:249–254

    Article  CAS  Google Scholar 

  • Kulkarni SK (2005) Handbook of experimental pharmacology, 3rd edn. Vallabh Prakashan, New Delhi

    Google Scholar 

  • Kumar KH, Razack S, Nallamuthu I, Khanum F (2014) Phytochemical analysis and biological properties of Cyperus rotundus L. Ind Crop Prod 52:815–826

    Article  CAS  Google Scholar 

  • Kumari SN, Madhu LN (2014) Dietary supplementation of natural and synthetic products reduces anxiety in mice against electron beam radiation induced oxidative stress. Nitte University Journal of Health Science 4(3):28

  • Lin JH, Lu AY (1997) Role of pharmacokinetics and metabolism in drug discovery and development. Pharmacol Rev 49(4):403–449

    CAS  PubMed  Google Scholar 

  • Lister RG (1987) The effects of repeated doses of ethanol on exploration and its habituation. Psychopharmacol 92(1):78–83

    Article  CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193(1):265–275

    CAS  PubMed  Google Scholar 

  • Luck H (1965) Catalase. Methods of enzymatic analysis 885–888

    Chapter  Google Scholar 

  • Lyle N, Gomes A, Sur T, Munshi S, Paul S, Chatterjee S, Bhattacharyya D (2009) The role of antioxidant properties of Nardostachys jatamansi in alleviation of the symptoms of the chronic fatigue syndrome. Behav Brain Res 202(2):285–290

    Article  PubMed  Google Scholar 

  • Mansouri MT, Soltani M, Naghizadeh B, Farbood Y, Mashak A, Sarkaki A (2014) A possible mechanism for the anxiolytic-like effect of gallic acid in the rat elevated plus maze. Pharmacol Biochem Behav 117:40–46

    Article  CAS  PubMed  Google Scholar 

  • Mishra D, Chaturvedi RV, Tripathi SC (1995) The fungitoxic effect of the essential oil of the herb Nardostachys jatamansi DC. Trop Agric 72(1):48–52

    CAS  Google Scholar 

  • Nutt DJ, Malizia AL (2001) New insights into the role of the GABAA-benzodiazepine receptor in psychiatric disorder. Br J Psychiatry 179(5):390–396

    Article  CAS  PubMed  Google Scholar 

  • Paglia DE, Valentine WN (1967) Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J Lab Clin Med 70(1):158–169

    CAS  PubMed  Google Scholar 

  • Pellow S, Chopin P, File SE, Briley M (1985) Validation of open: closed arm entries in an elevated plus-maze as a measure of anxiety in the rat. J Neurosci Methods 14(3):149–167

    Article  CAS  PubMed  Google Scholar 

  • Periyakoil VS, Skultety K, Sheikh J (2005) Panic, anxiety, and chronic dyspnea. J Palliat Med 8(2):453–459

    Article  PubMed  Google Scholar 

  • Prabhu V, Karanth KS, Rao A (1994) Effects of Nardostachys jatamansi on biogenic amines and inhibitory amino acids in the rat brain. Planta Med 60(2):114–117

    Article  CAS  PubMed  Google Scholar 

  • Prut L, Belzung C (2003) The open field as a paradigm to measure the effects of drugs on anxiety-like behaviors: a review. Eur J Pharmacol 463(1–3):3–33

    Article  CAS  PubMed  Google Scholar 

  • Rao VS, Rao A, Karanth KS (2005) Anticonvulsant and neurotoxicity profile of Nardostachys jatamansi in rats. J Ethnopharmacol 102(3):351–356

    Article  PubMed  Google Scholar 

  • Razack S, Khanum F (2012) Anxiolytic effects of Nardostachys jatamansi DC in mice. Ann Phytomed 1:67–73

    CAS  Google Scholar 

  • Rowley HL, Martin KF, Marsden CA (1995) Determination of in vivo amino acid neurotransmitters by high-performance liquid chromatography with o-phthalaldehyde-sulphite derivatisation. J Neurosci Methods 57(1):93–99

    Article  CAS  PubMed  Google Scholar 

  • Salim S, Ahmad M, Zafar KS, Ahmad AS, Islam F (2003) Protective effect of Nardostachys jatamansi in rat cerebral ischemia. Pharmacol Biochem Behav 74(2):481–486

    Article  CAS  PubMed  Google Scholar 

  • Santos MS, Ferreira F, Faro C, Pires E, Carvalho AP, Cunha AP, Macedo T (1994) The amount of GABA present in aqueous extracts of valerian is sufficient to account for [3H] GABA release in synaptosomes. Planta Med 60(5):475–476

    Article  CAS  PubMed  Google Scholar 

  • Sigel E, Buhr A (1997) The benzodiazepine binding site of GABAA receptors. Trends Pharmacol Sci 18(11):425–429

    Article  CAS  PubMed  Google Scholar 

  • Smith S, Sharp T (1994) Measurement of GABA in rat brain microdialysates using o-phthaldialdehyde—sulphite derivatization and high-performance liquid chromatography with electrochemical detection. J Chromatogr B Biomed Sci Appl 652(2):228–233

    Article  CAS  Google Scholar 

  • Subashini R, Yogeeta S, Gnanapragasam A, Devaki T (2006) Protective effect of Nardostachys jatamansi on oxidative injury and cellular abnormalities during doxorubicin-induced cardiac damage in rats. J Pharm Pharmacol 58(2):257–262

    Article  CAS  PubMed  Google Scholar 

  • Subashini R, Gnanapragasam A, Senthilkumar S, Yogeeta SK, Devaki T (2007) Protective efficacy of Nardostachys jatamansi (Rhizomes) on mitochondrial respiration and lysosomal hydrolases during doxorubicin induced myocardial injury in rats. J Health Sci 53(1):67–76

    Article  Google Scholar 

  • Uzun S, Kozumplik O, Jakovljević M, Sedić B (2010) Side effects of treatment with benzodiazepines. Psychiatr Danub 22(1):90–93

    PubMed  Google Scholar 

  • Venuprasad MP, Kandikattu HK, Razack S, Khanum F (2014) Phytochemical analysis of Ocimum gratissimum by LC-ESI–MS/MS and its antioxidant and anxiolytic effects. S Afr J Bot 92:151–158

    Article  CAS  Google Scholar 

  • Venuprasad MP, Kandikattu HK, Razack S, Amruta N, Khanum F (2017) Chemical composition of Ocimum sanctum by LC-ESI–MS/MS analysis and its protective effects against smoke induced lung and neuronal tissue damage in rats. Biomed Pharmacother 91:1–2

    Article  CAS  PubMed  Google Scholar 

  • Wagner JA, Katz RJ (1984) Anxiogenic action of benzodiazepine antagonists Ro 15-1788 and CGS 8216 in the rat. Neurosci Lett 48(3):317–320

    Article  CAS  PubMed  Google Scholar 

  • Walf AA, Frye CA (2011) The vogel punished drinking task as a bioassay of anxiety-like behavior of mice. In: Mood and anxiety related phenotypes in mice. Humana Press, New York, pp 143–158

    Chapter  Google Scholar 

  • Weeks BS (2009) Formulations of dietary supplements and herbal extracts for relaxation and anxiolytic action: Relarian. Med Sci Monit 15(11):256–262

    Google Scholar 

  • Wiart C (2007) Ethnopharmacology of medicinal plants Asia and the Pacific. Humana Press Inc, Totowa

    Google Scholar 

  • Williams CL, Stancel GM (1990) Antiviral agents. In: Gilman AG, Goodman LS, Rall TW, Murad F (eds) The Pharmacological Basis of Therapeutics. Macmillan Publishing Co, New York, pp 1205 

  • Wilson MA, Burghardt PR, Ford KA, Wilkinson MB, Primeaux SD (2004) Anxiolytic effects of diazepam and ethanol in two behavioral models: comparison of males and females. Pharmacol Biochem Behav 78(3):445–458

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sakina Razack or Farhath Khanum.

Electronic supplementary material

ESM 1

(DOCX 171 kb)

ESM 2

(DOCX 136 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Razack, S., Kandikattu, H.K., Venuprasad, M.P. et al. Anxiolytic actions of Nardostachys jatamansi via GABA benzodiazepine channel complex mechanism and its biodistribution studies. Metab Brain Dis 33, 1533–1549 (2018). https://doi.org/10.1007/s11011-018-0261-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11011-018-0261-z

Keywords

Navigation