Advertisement

Metabolic Brain Disease

, Volume 33, Issue 4, pp 1009–1018 | Cite as

New views and possibilities of antidiabetic drugs in treating and/or preventing mild cognitive impairment and Alzheimer’s Disease

  • Kai Long Zhong
  • Fang Chen
  • Hao Hong
  • Xuan Ke
  • Yang Ge Lv
  • Su Su Tang
  • Yu Bing Zhu
Review Article

Abstract

Mounting evidence suggests that diabetes mellitus (DM) is associated with mild cognitive impairment (MCI), vascular dementia and Alzheimer’s disease (AD). Biological, clinical and epidemiological data support a close link between DM and AD. Increasingly, studies have found that several antidiabetic agents can promote neurogenesis, and clinically ameliorate cognitive and memory impairments in different clinical settings. Data has shown that these antidiabetic drugs positively affect mitochondrial and synaptic function, neuroinflammation, and brain metabolism. Evidence to date strongly suggests that these antidiabetic drugs could be developed as disease-modifying therapies for MCI and AD in patients with and without diabetes.

Keywords

Antidiabetic drugs Diabetes mellitus Mild cognitive impairment Alzheimer’s disease Insulin resistance 

Notes

Acknowledgements

This work was supported by grants from the National Natural Science Foundation of China (81573413 and 81773714 to to Hao Hong, 81603113 to Su Su Tang), the Natural Science Foundation of Jiangsu Province (BK20150705 to Su Su Tang) and the Fundamental Research Funds for the Central Universities (2632017PT01).

Compliance with ethical standards

Conflict of interest

We declare that all authors have no conflict of interest.

References

  1. Alberti G, Zimmet P, Shaw J, Bloomgarden Z, Kaufman F, Silink M, Consensus Workshop Group (2004) Type2 diabetes in the young: the evolving epidemic: the international diabetes federation consensus workshop. Diabetes Care 27:1798–1811CrossRefPubMedGoogle Scholar
  2. Arvanitakis Z, Wilson RS, Bienias JL, Evans DA, Bennett DA (2004) Diabetes mellitus and risk of Alzheimer disease and decline in cognitive function. Arch Neuro l61:661–666CrossRefGoogle Scholar
  3. Banks WA, Owen JB, Erickson MA (2012) Insulin in the brain: there and back again. Pharmacol Ther 136:82–93CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bauduceau B, Doucet J, Bordier L, Garcia C, Dupuy O, Mayaudon H (2010) Hypoglycaemia and dementia in diabetic patients. Diabetes Metab 36:S106–S111CrossRefPubMedGoogle Scholar
  5. Bauman WA, Shaw S, Jayatilleke E, Spungen AM, Herbert V (2000) Increased intake of calcium reverses vitamin B12 malabsorption induced by metformin. Diabetes Care 23:1227–1231CrossRefPubMedGoogle Scholar
  6. Beeri MS, Schmeidler J, Silverman JM, Gandy S, Wysocki M, Hannigan CM, Purohit DP, Lesser G, Grossman HT, Haroutunian V (2008) Insulin in combination with other diabetes medication is associated with less Alzheimer neuropathology. Neurology 71:750–757CrossRefPubMedPubMedCentralGoogle Scholar
  7. Biessels GJ, Staekenborg S, Brunner E, Brayne C, Scheltens P (2006) Risk of dementia in diabetes mellitus: a systematic review. Lancet Neurol 5:64–74CrossRefPubMedGoogle Scholar
  8. Biessels GJ, Deary IJ, Ryan CM (2008) Cognition and diabetes: a lifespan perspective. Lancet Neurol 7:184–190CrossRefPubMedGoogle Scholar
  9. Bomfim TR, Forny-Germano L, Sathler LB, Brito-Moreira J, Houzel JC, Decker H, Silverman MA, Kazi H, Melo HM, McClean PL, Holscher C, Arnold SE, Talbot K, Klein WL, Munoz DP, Ferreira ST, De Felice FG (2012) An anti-diabetes agent protects the mouse brain from defective insulin signaling caused by Alzheimer’s disease-associated Aβ oligomers. J Clin Invest 122:1339–1353CrossRefPubMedPubMedCentralGoogle Scholar
  10. Campbell RK (2011) Clarifying the role of incretin-based therapies in the treatment of type 2 diabetes mellitus. Clin Ther 33:511–527CrossRefPubMedGoogle Scholar
  11. Cardoso S, Carvalho C, Santos R, Correia S, Santos MS, Seiça R, Oliveira CR, Moreira PI (2011) Impact of STZ-induced hyperglycemia and insulin-induced hypoglycemia in plasma amino acids and cortical synaptosomal neurotransmitters. Synapse 65:457–466CrossRefPubMedGoogle Scholar
  12. Carro E, Torres-Aleman I (2004) The role of insulin and insulin-like growth factor I in the molecular and cellular mechanisms underlying the pathology of Alzheimer’s disease. Eur J Pharmacol 490:127–133CrossRefPubMedGoogle Scholar
  13. Chen Y, Zhou K, Wang R, Liu Y, Kwak YD, Ma T, Thompson RC, Zhao Y, Smith L, Gasparini L, Luo Z, Xu H, Liao FF (2009) Antidiabetic drug metformin (GlucophageR) increases biogenesis of Alzheimer's amyloid peptides via up-regulating BACE1 transcription. Proc Natl Acad Sci U S A 106:3907–3912CrossRefPubMedPubMedCentralGoogle Scholar
  14. Chen F, Dong RR, Zhong KL, Ghosh A, Tang SS, Long Y, Hu M, Miao MX, Liao JM, Sun HB, Kong LY, Hong H (2016) Antidiabetic drugs restore abnormal transport of amyloid-β across the blood brain barrier and memory impairment in db/db mice. Neuropharmacology 101:123–136CrossRefPubMedGoogle Scholar
  15. Cignarelli A, Giorgino F, Vettor R (2013) Pharmacologic agents for type 2 diabetes therapy and regulation of adipogenesis. Arch Physiol Biochem 119:139–150CrossRefPubMedGoogle Scholar
  16. Claxton A, Baker LD, Wilkinson CW, Trittschuh EH, Chapman D, Watson GS, Cholerton B, Plymate SR, Arbuckle M, Craft S (2013) Sex and ApoE genotype differences in treatment response to two doses of intranasal insulin in adults with mild cognitive impairment or Alzheimer’s disease. J Alzheimers Dis 35:789–797CrossRefPubMedPubMedCentralGoogle Scholar
  17. Correia SC, Santos RX, Carvalho C, Cardoso S, Candeias E, Santos MS, Oliveira CR, Moreira PI (2012) Insulin signaling, glucose metabolism and mitochondria: major players in Alzheimer’s disease and diabetes interrelation. Brain Res 1441:64–78CrossRefPubMedGoogle Scholar
  18. Craft S, Asthana S, Newcomer JW, Wilkinson CW, Matos IT, Baker LD, Cherrier M, Lofgreen C, Latendresse S, Petrova A, Plymate S, Raskind M, Grimwood K, Veith RC (1999) Enhancement of memory in Alzheimer disease with insulin and somatostatin, but not glucose. Arch Gen Psychiatry 56:1135–1140CrossRefPubMedGoogle Scholar
  19. Craft S, Baker LD, Montine TJ, Minoshima S, Watson GS, Claxton A, Arbuckle M, Callaghan M, Tsai E, Plymate SR, Green PS, Leverenz J, Cross D, Gerton B (2012) Intranasal insulin therapy for Alzheimer disease and amnestic mild cognitive impairment: apilot clinical trial. Arch Neurol 69:29–38CrossRefPubMedGoogle Scholar
  20. Crane PK, Walker R, Hubbard RA, Li G, Nathan DM, Zheng H, Haneuse S, Craft S, Montine TJ, Kahn SE, McCormick W, McCurry SM, Bowen JD, Larson EB (2013) Glucose levels and risk of dementia. N Engl J Med 369:540–548CrossRefPubMedPubMedCentralGoogle Scholar
  21. Cummings JL, Cole G (2002) Alzheimer disease. JAMA 287:2335–2338CrossRefPubMedGoogle Scholar
  22. Currais A, Prior M, Lo D, Jolivalt C, Schubert D, Maher P (2012) Diabetes exacerbates amyloid and neurovascular pathology in aging-accelerated mice. Aging Cell 11:1017–1026CrossRefPubMedPubMedCentralGoogle Scholar
  23. D’Amico M, Di Filippo C, Marfella R, Abbatecola AM, Ferraraccio F, Rossi F, Paolisso G (2010) Long-term inhibition of dipeptidyl peptidase-4 in Alzheimer’s prone mice. Exp Gerontol 45:202–207CrossRefPubMedGoogle Scholar
  24. De Felice FG, Vieira MN, Bomfim TR, Decker H, Velasco PT, Lambert MP, Viola KL, Zhao WQ, Ferreira ST, Klein WL (2009) Protection of synapses against Alzheimer’s-linked toxins: insulin signaling prevents the pathogenic binding of Aβ oligomers. Proc Natl Acad Sci U S A 106:1971–1976CrossRefPubMedPubMedCentralGoogle Scholar
  25. de la Monte SM (2012) Brain insulin resistance and deficiency as therapeutic targets in Alzheimer’s disease. Curr Alzheimer Res 9:35–66CrossRefPubMedPubMedCentralGoogle Scholar
  26. DiTacchio KA, Heinemann SF, Dziewczapolski G (2014) Metformin treatment alters memory function in a mouse model of Alzheimer’s Disease. J Alzheimers Dis 44:43–48CrossRefGoogle Scholar
  27. El-Mir MY, Detaille D, R-Villanueva G, Delgado-Esteban M, Guigas B, Attia S, Fontaine E, Almeida A, Leverve X (2008) Neuroprotective role of antidiabetic drug metformin against apoptotic cell death in primary cortical neurons. J Mol Neurosci 34:77–87CrossRefPubMedGoogle Scholar
  28. Exalto LG, Whitmer RA, Kappele LJ, Biessels GJ (2012) An update on type 2 diabetes, vascular dementia and Alzheimer’s disease. Exp Gerontol 47:858–864CrossRefPubMedGoogle Scholar
  29. Fernandez AM, Torres-Alemán I (2012) The many faces of insulin-like peptide signalling in the brain. Nat Rev Neurosci 13:225–239CrossRefPubMedGoogle Scholar
  30. Gavin JR, Stolar MW, Freeman JS, Spellman CW (2010) Improving outcomes in patients with type 2 diabetes mellitus: practical solutions for clinical challenges. J Am Osteopath Assoc 110:2–14Google Scholar
  31. Gejl M, Gjedde A, Egefjord L, Møller A, Hansen SB, Vang K, Rodell A, Brændgaard H, Gottrup H, Schacht A, Møller N, Brock B, Rungby J (2016) In Alzheimer's Disease, 6-Month Treatment with GLP-1 Analog Prevents Decline of Brain Glucose Metabolism: Randomized, Placebo-Controlled, Double-Blind Clinical Trial. Front Aging Neurosci 8:108CrossRefPubMedPubMedCentralGoogle Scholar
  32. Ghasemi R, Zarifkar A, Rastegar K, maghsoudi N, Moosavi M (2014) Insulin protects against Aβ-induced spatial memory impairment, hippocampal apoptosis and MAPKs signaling disruption. Neuropharmacology 85:113–120CrossRefPubMedGoogle Scholar
  33. Gold M, Alderton C, Zvartau-Hind M, Egginton S, Saunders AM, Irizarry M, Craft S, Landreth G, Linnamagi U, Sawchak S (2010) Rosiglitazone monotherapy in mild-to-moderate Alzheimer’s disease: results from a randomized, double-blind, placebo-controlled phase III study. Dement Geriatr Cogn Disord 30:131–146CrossRefPubMedPubMedCentralGoogle Scholar
  34. Gradman TJ, Laws A, Thompson LW, Reaven GM (1993) Verbal learning and/or memoryimproves with glycemic control in older subjects with non-insulin-dependent diabetes mellitus. J Am Geriatr Soc 41:1305–1312CrossRefPubMedGoogle Scholar
  35. Gupta A, Bisht B, Dey CS (2011) Peripheral insulin-sensitizer drug metformin ameliorates neuronal insulin resistance and Alzheimer’s-like changes. Neuropharmacology 60:910–920CrossRefPubMedGoogle Scholar
  36. Hamano T, Shirafuji N, Makino C, Yen SH, Kanaan NM, Ueno A, Suzuki J, Ikawa M, Matsunaga A, Yamamura O, Kuriyama M, Nakamoto Y (2016) Pioglitazone prevents tau oligomerization. Biochem Biophys Res Commun 478:1035–1042CrossRefPubMedGoogle Scholar
  37. Hanyu H, Sato T, Kiuchi A, Sakurai H, Iwamoto T (2009) Pioglitazone improved cognition in a pilot study on patients with Alzheimer’s disease and mild cognitive impairment with diabetes mellitus. J Am Geriatr Soc 57:177–179CrossRefPubMedGoogle Scholar
  38. Heneka MT, Landreth GE, Feinstein DL (2001) Role for peroxisome proliferator-activated receptor-gamma in Alzheimer’s disease. Ann Neurol 49:276CrossRefPubMedGoogle Scholar
  39. Hilder TL, Baer LA, Fuller PM, Fuller CA, Grindeland RE, Wade CE, Graves LM (2005) Insulin-independent pathways mediating glucose uptake in hindlimb-suspended skeletal muscle. J Appl Physiol 99:2181–2188CrossRefPubMedGoogle Scholar
  40. Holscher C (2010) The role of GLP-1 in neuronal activity and neurodegeneration. Vitam Horm 84:331–354CrossRefPubMedGoogle Scholar
  41. Hsu CC, Wahlqvist ML, Lee MS, Tsai HN (2011) Incidence of dementia is increased in type 2 diabetes and reduced by the use of sulfonylureas and metformin. J Alzheimers Dis 24:485–493CrossRefPubMedGoogle Scholar
  42. Hunter K, Holscher C (2012) Drugs developed to treat diabetes, liraglutide and lixisenatide, cross the blood brain barrier and enhance neurogenesis. BMC Neurosci 13:33CrossRefPubMedPubMedCentralGoogle Scholar
  43. Hwang IK, Kim IY, Joo EJ, Shin JH, Choi JW, Won MH, Yoon YS, Seong JK (2010) Metformin normalizes type 2 diabetes-induced decrease in cell proliferation and neuroblast differentiation in the rat dentate gyrus. Neurochem Res 35:645–650CrossRefPubMedGoogle Scholar
  44. Imfeld P, Bodmer M, Jick SS, Meier CR (2012) Metformin, other antidiabetic drugs, and risk of Alzheimer’s disease: a population-based case-control study. J Am Geriatr Soc 60:916–921CrossRefPubMedGoogle Scholar
  45. Jia X, Olson DJ, Ross AR, Wu L (2006) Structural and functional changes in human insulin induced by methylglyoxal. FASEB J 20:1555–1557CrossRefPubMedGoogle Scholar
  46. Kalaria RN (2009) Neurodegenerative disease: diabetes, microvascular pathology and Alzheimer disease. Nat Rev Neurol 5:305–316CrossRefPubMedGoogle Scholar
  47. Kariharan NG, Parameshwaran K, Bagasrawala I, Ahuja M, Abdel-Rahman E, Amin AT, Dhanasekaran M, Suppiramaniam V, Amin RH (2015) Central activation of PPAR-gamma ameliorates diabetes induced cognitive dysfunction and improves BDNF expression. Neurobiol Aging 36:1452–1461CrossRefGoogle Scholar
  48. Kern W, Peters A, Fruehwald-Schultes B, Deininger E, Born J, Fehm HL (2001) Improving influence of insulin on cognitive functions in humans. Neuroendocrinology 74:270–280CrossRefPubMedGoogle Scholar
  49. Khanfar MA, AbuKhader MM, Alqtaishat S, Taha MO (2013) Pharmacophore modeling, homology modeling, and in silico screening reveal mammalian target of rapamycin inhibitory activities for sotalol, glyburide, metipranolol, sulfamethizole, glipizide, and pioglitazone. J Mol Graph Model 42:39–49CrossRefPubMedGoogle Scholar
  50. Kim B, Feldman EL (2012) Insulin resistance in the nervous system. Trends Endocrinol Metab 23:133–141CrossRefPubMedPubMedCentralGoogle Scholar
  51. Kim DH, Huh JW, Jang M, Suh JH, Kim TW, Park JS, Yoon SY (2012) Sitagliptin increases tau phosphorylation in the hippocampus of rats with type 2 diabetes and in primary neuron cultures. Neurobiol Dis 46:52–58CrossRefPubMedGoogle Scholar
  52. Kroner Z (2009) The relationship between Alzheimer’s disease and diabetes: Type 3 diabetes. Altern Med Rev 14:373–379PubMedGoogle Scholar
  53. Lamkanfi M, Mueller JL, Vitari AC, Misaghi S, Fedorova A, Deshayes K, Lee WP, Hoffman HP, Dixit VM (2009) Glyburide inhibits the Cryopyrin/Nalp3 inflammasome. J Cell Biol 187:61–70CrossRefPubMedPubMedCentralGoogle Scholar
  54. Launer LJ, Miller ME, Williamson JD, Lazar RM, Gerstein HC, Murray AM, Sullivan M, Horowitz KR, Ding J, Marcovina S, Lovato LC, Lovato J, Margolis KL, O’Connor P, Lipkin EW, Hirsch J, Coker L, MaldjianJ SJL, Truwit C, Davatzikos C, Bryan RN, ACCORD MIND Investigators (2011) Effects of intensive glucose lowering on brain structure and function inpeople with type 2 diabetes (ACCORD-MIND): a randomised open-label substudy. Lancet Neurol 10:969–977CrossRefPubMedPubMedCentralGoogle Scholar
  55. Li J, Deng J, Sheng W, Zuo Z (2012) Metformin attenuates Alzheimer's disease-like neuropathology in obese, leptin-resistant mice. Pharmacol Biochem Behav 10:564–574CrossRefGoogle Scholar
  56. Lin MT, Beal MF (2006) Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 443:787–795CrossRefPubMedGoogle Scholar
  57. Lindholm D, Wootz H, Korhonen L (2006) ER stress and neurodegenerative diseases. Cell Death Differ 13:385–392CrossRefPubMedGoogle Scholar
  58. Luchsinger JA, Tang MX, Shea S, Mayeux R (2004) Hyperinsulinemia and risk of Alzheimer disease. Neurology 63:1187–1192CrossRefPubMedGoogle Scholar
  59. Luchsinger JA, Reitz C, Patel B, Tang MX, Manly JJ, Mayeux R (2007) Relation of diabetes to mild cognitive impairment. Arch Neurol 64:570–575CrossRefPubMedGoogle Scholar
  60. MacLeod K, Hepburn D, Frier B (1993) Frequency and morbidity of severe hypoglycaemia in insulin-treated diabetic patients. Diabet Med 10:238–245CrossRefPubMedGoogle Scholar
  61. Matsuzaki T, Sasaki K, Tanizaki Y, Hata J, Fujimi K, Matsui Y, Sekita A, Suzuki SO, Kanba S, Kiyohara Y, Iwaki T (2010) Insulin resistance is associated with the pathology of Alzheimer disease: the Hisayama study. Neurology 75:764–770CrossRefPubMedGoogle Scholar
  62. McClean PL, Parthsarathy V, Faivre E, Holscher C (2011) The diabetes drug liraglutide prevents degenerative processes in a mouse model of Alzheimer’s disease. J Neurosci 31:6587–6594CrossRefPubMedGoogle Scholar
  63. Mielke JG, Taghibiglou C, Wang YT (2006) Endogenous insulin signaling protects cultured neurons from oxygen-glucose deprivation-induced cell death. Neuroscience 143:165–173CrossRefPubMedGoogle Scholar
  64. Moore EM, Mander AG, Ames D, Kotowicz MA, Carne RP, Brodaty H, Woodward M, Boundy K, Ellis KA, Bush AI, Faux NG, Martins R, Szoeke C, Rowe C, Watters DA, AIBL Investigators (2013) Increased risk of cognitive impairment in patients with diabetes is associated with metformin. Diabetes Care 36:2981–2987CrossRefPubMedPubMedCentralGoogle Scholar
  65. Morsink LM, Smits MM, Diamant M (2013) Advances in pharmacologic therapies for type 2 diabetes. Curr Atheroscler Rep 15:302CrossRefPubMedGoogle Scholar
  66. O’Neill C, Kiely AP, Coakley MF, Manning S, Long-Smith CM (2012) Insulin and IGF-1 signalling: longevity, protein homoeostasis and Alzheimer’s disease. Biochem Soc Trans 40:721–727CrossRefPubMedGoogle Scholar
  67. Ott A, Stolk RP, van Harskamp F, Pols HA, Hofman A, Breteler MM (1999) Diabetes mellitus and the risk of dementia: The Rotterdam Study. Neurology 53:1937–1942CrossRefPubMedGoogle Scholar
  68. Pandini G, Pace V, Copani A, Squatrito S, Milardi D, Vigneri R (2013) Insulin has multiple antiamyloidogenic effects on human neuronal cells. Endocrinology 154:375–387CrossRefPubMedGoogle Scholar
  69. Park S, Kim DS, Kang S, Moon NR (2013) β-Amyloid-induced cognitive dysfunction impairs glucose homeostasis by increasing insulin resistance and decreasing β-cell mass in non-diabetic and diabetic rats. Metabolism 62:1749–1760CrossRefPubMedGoogle Scholar
  70. Pasquier F, Boulogne A, Leys D, Fontaine P (2006) Diabetes mellitus and dementia. Diabetes Metab 32:403–414CrossRefPubMedGoogle Scholar
  71. Pathan AR, Viswanad B, Sonkusare SK, Ramarao P (2006) Chronic administration of pioglitazone attenuates intracerebroventricular streptozotocin induced-memory impairment in rats. Life Sci 79:2209–2216CrossRefPubMedGoogle Scholar
  72. Peila R, Rodriguez BL, Launer LJ, Honolulu-Asia Aging Study (2002) Type 2 diabetes, APOE gene, and the risk for dementia and related pathologies: The Honolulu-Asia Aging Study. Diabetes 51:1256–1262CrossRefPubMedGoogle Scholar
  73. Pernicova I, Korbonits M (2014) Metformin-mode of action and clinical implications for diabetes and cancer. Nat Rev Endocrinol 10:143–156CrossRefPubMedGoogle Scholar
  74. Pintana H, Apaijai N, Chattipakorn N, Chattipakorn SC (2013) DPP-4 inhibitors improve cognition and brain mitochondrial function of insulin-resistant rats. J Endocrinol 218:1–11CrossRefPubMedGoogle Scholar
  75. Pipatpiboon N, Pintana H, Pratchayasakul W, Chattipakorn N, Chattipakorn SC (2013) DPP4-inhibitor improves neuronal insulin receptor function, brain mitochondrial function and cognitive function in rats with insulin resistance induced by high-fat diet consumption. Eur J Neurosci 37:839–849CrossRefPubMedGoogle Scholar
  76. Plastino M, Fava A, Pirritano D, Cotronei P, Sacco N, Sperli T, Spano A, Gallo D, Mungari P, Consoli D, Bosco D (2010) Effects of insulinic therapy on cognitive impairment in patients with Alzheimer disease and diabetes mellitus type-2. J Neurol Sci 288:112–116CrossRefPubMedGoogle Scholar
  77. Qiu WQ, Folstein MF (2006) Insulin, insulin-degrading enzyme and amyloid-beita peptide in Alzheimer’s disease: review and hypothesis. Neurobiol Aging 27:190–198CrossRefPubMedGoogle Scholar
  78. Reger MA, Watson GS, Frey WH 2nd, Baker LD, Cholerton B, Keeling ML, Belongia DA, Fishel MA, Plymate SR, Schellenberg GD, Cherrier MM, Craft S (2006) Effects of intranasal insulin on cognition in memory-impaired older adults: modulation by APOE genotype. Neurobiol Aging 27:451–458CrossRefPubMedGoogle Scholar
  79. Reger MA, Watson GS, Green PS, Wilkinson CW, Baker LD, Cholerton B, Fishel MA, Plymate SR, Breitner JC, DeGroodt W, Mehta P, Craft S (2008) Intranasal insulin improves cognition and modulates β-amyloid in early AD. Neurology 70:440–448CrossRefPubMedGoogle Scholar
  80. Risner ME, Saunders AM, Altman JF, Ormandy GC, Craft S, Foley IM, Zvartau-Hind ME, Hosford DA, Roses AD (2006) Efficacy of rosiglitazone in a genetically defined population with mild-to-moderate Alzheimer’s disease. Pharmacogenomics J 6:246–254CrossRefPubMedGoogle Scholar
  81. Ryan CM, Freed MI, Rood JA, Cobitz AR, Waterhouse BR, Strachan MW (2006) Improving metabolic control leads to better working memory in adults with type 2 diabetes. Diabetes Care 29:345–351CrossRefPubMedGoogle Scholar
  82. Schioth HB, Craft S, Brooks SJ, Frey WH 2nd, Benedict C (2012) Brain insulin signaling and Alzheimer’s disease: current evidence and future directions. Mol Neurobiol 46:4–10CrossRefPubMedGoogle Scholar
  83. Schrijvers EM, Witteman JC, Sijbrands EJ, Hofman A, Koudstaal PJ, Breteler MM (2010) Insulin metabolism and the risk of Alzheimer disease: the Rotterdam Study. Neurology 75:1982–1987CrossRefPubMedPubMedCentralGoogle Scholar
  84. Shingo AS, Kanabayashi T, Kito S, Murase T (2013) Intracerebroventricular administration of an insulin analogue recovers STZ-induced cognitive decline in rats. Behav Brain Res 241:105–111CrossRefPubMedGoogle Scholar
  85. Sims-Robinson C, Kim B, Rosko A, Feldman EL (2010) How does diabetes accelerate Alzheimer disease pathology? Nat Rev Neurol 6:551–559CrossRefPubMedPubMedCentralGoogle Scholar
  86. Sjöholm A, Nyström T (2006) Inflammation and the etiology of type 2diabetes. Diabetes Metab Res Rev 22:4–10CrossRefPubMedGoogle Scholar
  87. Stranahan AM, Arumugam TV, Cutler RG, Lee K, Egan JM, Mattson MP (2008) Diabetes impairs hippocampal function through glucocorticoid–mediated effects on new and mature neurons. Nat Neurosci 11:309–317CrossRefPubMedPubMedCentralGoogle Scholar
  88. Suh SW, Aoyama K, Matsumori Y, Liu J, Swanson RA (2005) Pyruvate administered after severe hypoglycemia reduces neuronal death and cognitive impairment. Diabetes 54:1452–1458CrossRefPubMedGoogle Scholar
  89. Tzimopoulou S, Cunningham VJ, Nichols TE, Searle G, Bird NP, Mistry P, Dixon IJ, Hallett WA, Whitcher B, Brown AP, Zvartau-Hind M, Lotay N, Lai RY, Castiglia M, Jeter B, Matthews JC, Chen K, Bandy D, Reiman EM, Gold M, Rabiner EA, Matthews PM (2010) A multi-center randomized proof-of-concept clinical trial applying [18F]FDG-PET for evaluation of metabolic therapy with rosiglitazone XR in mild to moderate Alzheimer’s disease. J Alzheimers Dis 22:1241–1256CrossRefPubMedGoogle Scholar
  90. Vandal M, White PJ, Tremblay C, St-Amour I, Chevrier G, Emond V, Lefrançois D, Virgili J, Planel E, Giguere Y, Marette A, Calon F (2014) Insulin reverses the high fat diet-induced increase in brain Aβ and improves memory in an animal model of Alzheimer’s disease. Diabetes 63:4291–4301CrossRefPubMedGoogle Scholar
  91. Wang KC, Woung LC, Tsai MT, Liu CC, Su YH, Li CY (2012) Risk of Alzheimer’s disease in relation to diabetes: a population-based cohort study. Neuroepidemiology 38:237–244CrossRefPubMedGoogle Scholar
  92. Watson GS, Cholerton BA, Reger MA, Baker LD, Plymate SR, Asthana S, Fishel MA, Kulstad JJ, Green PS, Cook DG, Kahn SE, Keeling ML, Craft S (2005) Preserved cognition in patients with early Alzheimer disease and amnestic mild cognitive impairment during treatment with rosiglitazone: a preliminary study. Am J Geriatr Psychiatry 13:950–958PubMedGoogle Scholar
  93. Whitmer RA, Karter AJ, Yaffe K, Quesenberry CP Jr, Selby JV (2009) Hypoglycemic episodes and risk of dementia in older patients with type 2 diabetes mellitus. JAMA 301:1565–1572CrossRefPubMedPubMedCentralGoogle Scholar
  94. Yamagishi S, Nakamura K, Inoue H, Kikuchi S, Takeuchi M (2005) Serum or cerebrospinal fluid levels of glyceraldehyde-derived advanced glycation end products (AGEs) may be a promising biomarker for early detection of Alzheimer’s disease. Med Hypotheses 64:1205–1207CrossRefPubMedGoogle Scholar
  95. Yang Y, Zhang J, Ma D, Zhang M, Hu S, Shao S, Gong CX (2013) Subcutaneous administration of liraglutide ameliorates Alzheimer-associated tau hyperphosphorylation in rats with type 2 diabetes. J Alzheimers Dis 37:637–648CrossRefPubMedGoogle Scholar
  96. Zang M, Zuccollo A, Hou X, Nagata D, Walsh K, Herscovitz H, Brecher P, Ruderman NB, Cohen RA (2004) AMP-activated protein kinase is required for the lipid-lowering effect of metformin in insulin-resistant human HepG2 cells. J Biol Chem 279:47898–47905CrossRefPubMedGoogle Scholar
  97. Zemva J, Schubert M (2011) Central insulin and insulin-like growthfactor-1 signaling: implications for diabetes associated dementia. Curr Diabetes Rev 7:356–366CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Kai Long Zhong
    • 1
  • Fang Chen
    • 2
  • Hao Hong
    • 2
  • Xuan Ke
    • 2
  • Yang Ge Lv
    • 2
  • Su Su Tang
    • 2
  • Yu Bing Zhu
    • 1
  1. 1.Department of Pharmacy, Nanjing First HospitalNanjing Medical UniversityNanjingChina
  2. 2.Department of Pharmacology, Key Laboratory of Neuropsychiatric DiseasesChina Pharmaceutical UniversityNanjingChina

Personalised recommendations