Skip to main content
Log in

Interplay between adenosine receptor antagonist and cyclooxygenase inhibitor in haloperidol-induced extrapyramidal effects in mice

  • Original Article
  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

Antipsychotic drugs are the mainstay of psychotic disorders. The ‘typical’ antipsychotic agents are commonly employed for the positive symptoms of schizophrenia, though at an expense of extrapyramidal side effects (EPS). In the present study, we employed haloperidol (HP)-induced catalepsy model in mice to evaluate the role of adenosine receptor antagonist and cyclooxygenase (COX) enzyme inhibitor in the amelioration of EPS. HP produced a full blown catalepsy, akinesia and a significant impairment in locomotion and antioxidant status. Pre-treatment with COX inhibitor; naproxen (NPx) and adenosine receptor antagonist; caffeine (CAF), showed a significant impact on HP-induced cataleptic symptoms. Adenosine exerts pivotal control on dopaminergic receptors and is also involved in receptor internalization and recycling. On the other hand, prostaglandins (PGs) are implicated as neuro-inflammatory molecules released due to microglial activation in both Parkinson’s disease (PD) and antipsychotics-induced EPS. The involvement of these neuroeffector molecules has led to the possibility of use of CAF and COX inhibitors as therapeutic approaches to reduce the EPS burden of antipsychotic drugs. Both these pathways seem to be interlinked to each other, where adenosine modulates the formation of PGs through transcriptional modulation of COXs. We observed an additive effect with combined treatment of NPx and CAF against HP-induced movement disorder. These effects lead us to propose that neuromodulatory pathways of dopaminergic circuitry need to be explored for further understanding and utilizing the full therapeutic potential of antipsychotic agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aïd S, Bosetti F (2011) Targeting cyclooxygenases-1 and-2 in neuroinflammation: therapeutic implications. Biochimie 93:46–51

    Article  PubMed  CAS  Google Scholar 

  • Ascherio A, Zhang SM, Hernán MA et al (2001) Prospective study of caffeine consumption and risk of Parkinson’s disease in men and women. Ann Neurol 50:56–63

    Article  PubMed  CAS  Google Scholar 

  • Baldessarini RJ, Tarsy D (1980) Dopamine and the pathophysiology of dyskinesias induced by antipsychotic drugs. Annu Rev Neurosci 3:23–39

    Article  PubMed  CAS  Google Scholar 

  • Bartlett SE, Enquist J, Hopf FW et al (2005) Dopamine responsiveness is regulated by targeted sorting of D2 receptors. Proc Natl Acad Sci U S A 102:11521–11526

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Borroto-Escuela DO, Romero-Fernandez W, Tarakanov AO et al (2011) On the existence of a possible A 2A–D 2–β-Arrestin2 complex: A2A agonist modulation of D2 agonist-induced β-Arrestin2 recruitment. J Mol Biol 406:687–699

    Article  PubMed  CAS  Google Scholar 

  • Chen J-F, Xu K, Petze JP et al (2001) Neuroprotection by caffeine and A (2A) adenosine receptor inactivation in a model of Parkinson’s disease. J Neurosci 21:RC 143

    Article  CAS  Google Scholar 

  • Costall B, Naylor RJ (1973) Neuroleptic and non-neuroleptic catalepsy. Arzneim Forsc 23:674–683

    CAS  Google Scholar 

  • Dold M, Samare MT, Li C et al (2015) Haloperidol versus first-generation antipsychotics for the treatment of schizophrenia and other psychotic disorders. Cochrane Database Syst Rev. https://doi.org/10.1002/14651858.CD009831.pub2

  • El Yacoubi M, Ledent C, Menard JF et al (2000) The stimulant effects of caffeine on locomotor hehaviour in mice are mediated through its blockage of adenosie A2A receptors. Bri J Pharmacol 129:1465–1473

    Article  Google Scholar 

  • Fiebich BL, Lieb K, Hull M et al (2000) Effects of caffeine and paracetamol alone or in combination with acetylsalicylic acid on prostaglandin E2 synthesis in rat microglial cells. Neuropharmacology 39:2205–2213

    Article  PubMed  CAS  Google Scholar 

  • Fiebich BL, Biber K, Lieb K et al (1996) Cyclooxygenase-2 expression in rat microglia is induced by adenosine A2a-receptors. GLIA 18:152–160

    Article  PubMed  CAS  Google Scholar 

  • Fujita KA, Ostaszewski M, Matsuoka Y et al (2014) Integrating pathways of Parkinson’s disease in a molecular interaction map. Mol Neurobiol 49:88–102

    Article  PubMed  CAS  Google Scholar 

  • Glazer WM (2000) Extrapyramidal side effets, tardive dyskinesia, and the concept of atypicality. J Clin Psychiatry 61(Suppl 3):16–21

    PubMed  CAS  Google Scholar 

  • Ginovart N, Wilson AA, Hussey D, Houle S, Kapur S (2009) D2-receptor upregulation is dependent upon temporal course of D2-occupancy: a longitudinal [11C]-raclopride PET study in cats. Neuropsychopharmacology 34:662–671

    Article  PubMed  CAS  Google Scholar 

  • Hall S, Desbrow B, Anoopkumar-Dukie S et al (2015) A review of the bioactivity of coffee, caffeine and key coffee constituents on inflammatory responsed linked to depression. Food Res Int 76:626–636

    Article  PubMed  CAS  Google Scholar 

  • Hall S, Arora D, Anoopkumar-Dukie S, Grant GD (2016) Effect of coffee in lipopolysaccharide-induced indoleamine 2,3-dioxygenase activation and depressive-like behavior in mice. J Agric Food Chem 64:8745–8754

    Article  PubMed  CAS  Google Scholar 

  • Hornyckiewicz O (1973) Dopamine in the basal ganglia. Its role and therapeutic implications (including the clinical use of L-DOPA). Br Med Bull 29:172–178

    Article  Google Scholar 

  • Hurley MJ, Mash DC, Jenner P (2000) Adenosine A(2A) receptor mRNA expression in Parkinson’s disease. Neurosci Lett 291:54–58

    Article  PubMed  CAS  Google Scholar 

  • Jackson MJ, Al-Barghouthy G, Pearce RK et al (2004) Effect of 5-HT 1B/D receptor agonist and antagonist administration on motor function in haloperidol and MPTP-treated common marmosets. Pharmacol Biochem Behav 79:391–400

    Article  PubMed  CAS  Google Scholar 

  • Janero DR (1990) Malondialdehyde and thiobarbituric acid-reactivity as diagnostic indices of lipid peroxidation and peroxidative tissue injury. Free Radic Biol Med 9:515–540

    Article  PubMed  CAS  Google Scholar 

  • Jin J, Shie FS, Liu I et al (2007) Prostaglandin E 2 receptor subtype 2 (EP2) regulates microglial activation and associated neurotoxicity induced by aggregated α-synuclein. J Neuroinflammation 4:2. https://doi.org/10.1186/1742-2094-4-2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kafka SH, Corbett R (1996) Selective adenosine A2A receptor/dopamine D2 receptor interactions in animal models of schizophrenia. Eur J Pharmacol 295:147–154

    Article  PubMed  CAS  Google Scholar 

  • Kawano T, Anrather J, Zhou P et al (2006) Prostaglandin E2 EP1 receptors: downstream effectors of COX-2 neurotoxicity. Nat Med 12:225–229

    Article  PubMed  CAS  Google Scholar 

  • Kikuchi T, Tottori K, Uwahodo Y et al (1995) 7-{4-[4-(2,3-Dichlorophenyl)-1-Piperazinyl]Butyloxy}-3,4-Dihydro-2(1H)-Quinolinone (OPC-14597), a new putative antipsychotic drug with both presynaptic dopamine autoreceptor agonistic activity and postsynaptic D2 receptor antagonistic activity. J Pharmacol Exp Ther 274:329–336

    PubMed  CAS  Google Scholar 

  • Latini S, Pedata F (2001) Adenosine in the central nervous system: release mechanisms and extracellular concentrations. J Neurochem 79:463–484

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Roy BD, Wang W et al (2012) Identification of two functionally distinct endosomal recycling pathways for dopamine D2 receptor. J Neurosci 32:7178–7190

    Article  PubMed  CAS  Google Scholar 

  • Lima IV, Bastos LF, Limborço-Filho M, Fiebich BL, de Oliveira AC (2012) Role of prostaglandins in neuroinflammatory and neurodegenerative diseases. Mediat Inflamm 2012:1–13. https://doi.org/10.1155/2012/946813

    Article  CAS  Google Scholar 

  • Lizuka Y, Sei Y, Weinberger DR, Straub RE (2007) Evidence that the BLOC-1 protein dysbindin modulates dopamine D2 receptor internalization and signaling but not D1 internalization. J Neurosci 27:12390–12395

    Article  CAS  Google Scholar 

  • Lucas G, Bonhomme N, De Deurwaerdère P, Le Moal M, Spampinato U (1997) 8-OH-DPAT, a 5-HT1A agonist and ritanserin, a 5-HT2A/C antagonist, reverse haloperidol-induced catalepsy in rats independently of striatal dopamine release. Psychopharmacology 131:57–63

    Article  PubMed  CAS  Google Scholar 

  • Luong C, Miller A, Barnett J et al (1996) Flexibility of the NSAID binding site in the structure of human cyclooxygenase-2. Nat Struct Biol 3:927–933

    Article  PubMed  CAS  Google Scholar 

  • Malec D (1996) Haloperidol-induced catalepsy is influenced by adenosine receptor antagonists. Pol J Pharmacol 49:323–327

    Google Scholar 

  • Marshall JF, Berrios N (1979) Movement disorders of aged rats: reversal by dopamine receptor stimulation. Science 206:477–479

    Article  PubMed  CAS  Google Scholar 

  • Miller DD, Caroff SN, Davis SM et al (2008) Extrapyramidal side-effects of antipsychotics in a randomised trial. B J Psych 193:279–288

    Article  Google Scholar 

  • Moron MS, Depierre JW, Mannervik B (1979) Levels of glutathione, glutathione reductase and glutathione S-transferase activities in rat lung and liver. Biochim Biophys Acta 582:67–78

    Article  PubMed  CAS  Google Scholar 

  • Moo-Puc RE, Góngora-Alfaro JL, Alvarez-Cervera FJ et al (2003) Caffeine and muscarinic antagonists act in synergy to inhibit haloperidol-induced catalepsy. Neuropharmacology 45:493–503

    Article  PubMed  CAS  Google Scholar 

  • Naidu PS, Kulkarni SK (2001) Possible involvment of prostaglandins in haliperidol-induced orofacial dyskinesia in rats. Eur J Pharmacol 430:295–298

    Article  PubMed  CAS  Google Scholar 

  • Naidu PS, Kulkarni SK (2002) Differential effects of cyclooxygenase inhibitors on haloperidol-induced catalepsy. Prog Neuro-Psychopharmacol Biol Psychiatry 26:819–822

    Article  CAS  Google Scholar 

  • O'Connor JC, Lawson MA, Andre A et al (2009) Lipopolysaccharide-induced depressive-like behavior is mediated by indoleamine 2,3 -dioxygenase activation in mice. Mol Psychiatry 14:511–522

    Article  PubMed  CAS  Google Scholar 

  • Ono N, Saito R, Abiru T, Kamiya HO, Furukawa T (1986) Possible involvement of prostaglandins in cataleptic behavior in rats. Pharmacol Biochem Behav 25:463–467

    Article  PubMed  CAS  Google Scholar 

  • Ono N, Abiru T, Sugiyama K, Kamiya H (1992) Influences of cyclooxygenase inhibitors on the cataleptic behavior induced by haloperidol in mice. Prostag Leukotr Ess Fatty Acids 46:59–63

    Article  CAS  Google Scholar 

  • Quan Y, Jiang J, Dingledine R (2013) EP2 receptor signaling pathways regulate classical activation of microglia. J Biol Chem 288:9293–9202

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ross GW, Abbott RD, Petrovitch H et al (2000) Association of coffee and caffeine intake with the risk of Parkinson disease. JAMA 283:2674–2679

    Article  PubMed  CAS  Google Scholar 

  • Sanberg PR (1980) Haloperidol-induced catalepsy is mediated by postsynaptic dopamine receptors. Nature 284:472–473

    Article  PubMed  CAS  Google Scholar 

  • Salin-Pascual RJ (2012) Sleep, adenosine and caffeine as tools for the early diagnosis of Parkinson disease. Open Sleep J 5:59–66

    Article  Google Scholar 

  • Stayte S, Vissel B (2014) Advances in non-dopaminergic treatments for Parkinson’s disease. Front Neurosci 8:113

    PubMed  PubMed Central  Google Scholar 

  • Tanaka Y, Furuyashiki T, Momiyama T et al (2009) Prostaglandin E receptor EP1 enhances GABA-mediated inhibition of dopaminergic neurons in the substantia nigra pars compacta and regulates dopamine level in the dorsal striatum. Eur J Neurosci 30:2338–2346

    Article  PubMed  Google Scholar 

  • Teismann P, Tieu K, Choi DK et al (2003) Cyclooxygenase-2 is instrumental in Parkinson’s disease neurodegeneration. Proc Natl Acad Sci 29:5473–5478

    Article  CAS  Google Scholar 

  • Teismann P (2012) COX-2 in the neurodegenerative process of Parkinson’s disease. Biofactors 38:395–397

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Trevitt J, Vallance C, Harris A, Goode T (2009) Adenosine antagonists reverse the cataleptic effects of haloperidol: implications for the treatment of Parkinson’s disease. Pharmacol Biochem Behav 92:521–527

    Article  PubMed  CAS  Google Scholar 

  • Wang S, Hu LF, Yang Y, Ding JH, Hu G (2005) Studies of ATP-sensitive potassium channels on 6-hydroxydopamine and haloperidol rat models of Parkinson’s disease: implications for treating Parkinson’s disease? Neuropharmacology 48:984–992

    Article  PubMed  CAS  Google Scholar 

  • Wanibuchi F, Usuda S (1990) Synergistic effects between D-1 and D-2 dopamine antagonists on catalepsy in rats. Psychopharmacology 102:339–342

    Article  PubMed  CAS  Google Scholar 

  • Weihmuller FB, Hadjiconstantinou M, Bruno JP (1989) Dissociation between biochemical and behavioral recovery in MPTP-treated mice. Pharmacol Biochem Behav 34:113–117

    Article  PubMed  CAS  Google Scholar 

Download references

Funding

This work was supported by the funds from School of Pharmacy and Pharmacology, Griffith University, Gold Coast, QLD, Australia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Devinder Arora.

Ethics declarations

Conflicts of interest

The authors declare no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arora, D., Mudgal, J., Nampoothiri, M. et al. Interplay between adenosine receptor antagonist and cyclooxygenase inhibitor in haloperidol-induced extrapyramidal effects in mice. Metab Brain Dis 33, 1045–1051 (2018). https://doi.org/10.1007/s11011-018-0201-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11011-018-0201-y

Keywords

Navigation