Metabolic Brain Disease

, Volume 33, Issue 3, pp 917–931 | Cite as

In the search for reliable biomarkers for the early diagnosis of autism spectrum disorder: the role of vitamin D

  • Afaf El-Ansary
  • John J. Cannell
  • Geir Bjørklund
  • Ramesa Shafi Bhat
  • Abeer M. Al Dbass
  • Hanan A. Alfawaz
  • Salvatore Chirumbolo
  • Laila Al-Ayadhi
Original Article

Abstract

Autism spectrum disorder (ASD) affects about 1% of the world’s population. Vitamin D is thought to be essential for normal brain development and modulation of the immune system. Worldwide about 1 billion people are affected by vitamin D deficiency. High-sensitivity C-reactive protein (hs-CRP), cytochrome P450 2E1 (CYP2E1) and 8-hydroxy-2′-deoxyguanosine (8-OH-dG) are biomarkers related to inflammation and oxidative stress. In the present study, these biomarkers were together with serum 25-hydroxyvitamin D (25(OH)D3) analyzed in 28 (mean age seven years) Saudi male patients with ASD. The study was conducted to determine if there is any relationship between vitamin D levels, the tested biomarkers and the presence and severity of ASD. The hope was to identify if these biomarkers may be useful for early ASD diagnosis. The Childhood Autism Rating Scale (CARS) and the Social Responsiveness Scale (SRS) were used to measure autism severity. The results of the ASD children were compared with 27 age and gender-matched neurotypical controls. The data indicated that Saudi patients with ASD have significantly lower plasma levels of 25(OH)D3 than neurotypical controls (38 ng/ml compared to 56 ng/ml, respectively; [P = 0.001]). Surprisingly, the levels of CYP2E1 were lower in the children with ASD than the neurotypical controls (0.48 ± 0.08 vs. 69 ± 0.07 ng/ml, respectively; P = 0.001). The ASD children also had significantly higher levels of hs-CRP (0.79 ± 0.09 vs. 0.59 ± 0.09 ng/ml, respectively; P = 0.001) and 8-OH-dG (8.17 ± 1.04 vs. 4.13 ± 1.01 ng/ml, respectively; P = 0.001, compared to neurotypical age and gender-matched controls. The values for hs-CRP and 8-OH-dG did not correlate [P < 0.001] with autism severity. There was found a relationship between autism severity on the CARS scale and the levels of 25(OH)D3 and CYP1B1. But this was not found for SRS. All four biomarkers seemed to have good sensitivity and specificity, but the sample size of the present study was too small to determine clinical usefulness. The findings also indicate that inadequate levels of vitamin D play a role in the etiology and severity of autism. Furthermore, the results of the present study suggest the possibility of using 25(OH)D3, CYP1B1, hs-CRP and 8-OH-dG, preferably in combination, as biomarkers for the early diagnosis of ASD. However, further research is needed to evaluate this hypothesis.

Keywords

Autism Vitamin D 8-OHdG CYP1B1 High-sensitivity C-reactive protein Autism biomarkers 

Notes

Acknowledgements

This research project was supported by a grant from the Research Center of the Center for Female Scientific and Medical Colleges at King Saud University.

Compliance with ethical standards

Conflict of interest

The authors declare no potential conflicts of interest with respect to the authorship, and/or publication of this article.

Ethical approval

All procedures performed were in accordance with the ethical standards of the institutional and/or national research committee, and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

References

  1. ADDM Network-Autism and Developmental Disabilities Monitoring Network Surveillance Year 2010 Principal Investigators (2014) Prevalence of autism spectrum disorder among children aged 8 years - autism and developmental disabilities monitoring network, 11 sites, United States, 2010. MMWR Surveill Summ 63(2):1–21Google Scholar
  2. Agarwal KS, Mughal MZ, Upadhyay P, Berry JL, Mawer EB, Puliyel JM (2002) The impact of atmospheric pollution on vitamin D status of infants and toddlers in Delhi, India. Arch Dis Child 87:111–113PubMedPubMedCentralCrossRefGoogle Scholar
  3. Alfawaz HA, Shafi Bhat R, Al-Ayadhi L, El-Ansary AK (2014) Protective and restorative potency of Vitamin D on persistent biochemical autistic features induced in propionic acid-intoxicated rat pups. BMC Complement Altern Med 14:416.  https://doi.org/10.1186/1472-6882-14-416 PubMedPubMedCentralCrossRefGoogle Scholar
  4. Ali A, Cui X, Eyles D (2016) Developmental vitamin D deficiency and autism: putative pathogenic mechanisms. J Steroid Biochem Mol Biol.  https://doi.org/10.1016/j.jsbmb.2016.12.018
  5. Al-Yafee YA, Al-Ayadhi LY, Haq SH, El-Ansary AK (2011) Novel metabolic biomarkers related to sulfur-dependent detoxification pathways in autistic patients of Saudi Arabia. BMC Neurol 11:139.  https://doi.org/10.1186/1471-2377-11-139 PubMedPubMedCentralCrossRefGoogle Scholar
  6. Anderson DK, Liang JW, Lord C (2014) Predicting young adult outcome among more and less cognitively able individuals with autism spectrum disorders. J Child Psychol Psychiatry 55:485–494PubMedCrossRefGoogle Scholar
  7. APA-American Psychiatric Association (2000) Diagnostic and statistical manual of mental disorders: DSM-IV-TR. American Psychiatric Association, Washington, DCGoogle Scholar
  8. Baïz N, Dargent-Molina P, Wark JD, Souberbielle JC, Slama R, Annesi-Maesano I, EDEN Mother-Child Cohort Study Group (2012) Gestational exposure to urban air pollution related to a decrease in cord blood vitamin D levels. J Clin Endocrinol Metab 97:4087–4095PubMedCrossRefGoogle Scholar
  9. Baranek GT, Watson LR, Crais E, Reznick S (2003) First-Year Inventory (FYI) 2.0. University of North Carolina, Chapel HillGoogle Scholar
  10. Bikle DD, Siiteri PK, Ryzen E et al (1985) Serum protein binding of 1,25-dihydroxyvitamin D: a reevaluation by direct measurement of free metabolite levels. J Clin Endocrinol Metab 61:969–975PubMedCrossRefGoogle Scholar
  11. Bjørklund G (2016) Vitamin D deficiency: a global health problem. Peertechz J Environ Sci Toxicol 1:23–24 https://www.peertechz.com/Environmental-Science-Toxicology/pdf/PJEST-1-104.pdf. Accessed 21 April 2017CrossRefGoogle Scholar
  12. Bjørklund G, Saad K, Chirumbolo S, Kern JK, Geier DA, Geier MR, Urbina MA (2016) Immune dysfunction and neuroinflammation in autism spectrum disorder. Acta Neurobiol Exp (Wars) 76:257–268Google Scholar
  13. Bryson SE, Zwaigenbaum L, McDermott C, Rombough V, Brian J (2008) The autism observation scale for infants: scale development and reliability data. J Autism Dev Disord 38:731–738PubMedCrossRefGoogle Scholar
  14. Calderón-Garcidueñas L, Wen-Wang L, Zhang YJ, Rodriguez-Alcaraz A, Osnaya N, Villarreal-Calderón A, Santella RM (1999) 8-hydroxy-2'-deoxyguanosine, a major mutagenic oxidative DNA lesion, and DNA strand breaks in nasal respiratory epithelium of children exposed to urban pollution. Environ Health Perspect 107:469–474PubMedPubMedCentralGoogle Scholar
  15. Cannell JJ (2008) Autism and vitamin D. Med Hypotheses 70:750–759PubMedCrossRefGoogle Scholar
  16. Cannell JJ (2013) Autism, will vitamin D treat core symptoms? Med Hypotheses 81:195–198PubMedCrossRefGoogle Scholar
  17. Cannell JJ (2017) Vitamin D and autism, what’s new? Rev Endocr Metab Disord.  https://doi.org/10.1007/s11154-017-9409-0
  18. Carpenter TO, Zhang JH, Parra E, Ellis BK, Simpson C, Lee WM, Balko J, Fu L, Wong BY, Cole DE (2013) Vitamin D binding protein is a key determinant of 25-hydroxyvitamin D levels in infants and toddlers. J Bone Miner Res 28:213–221PubMedPubMedCentralCrossRefGoogle Scholar
  19. Chakrabarti B, Dudbridge F, Kent L, Wheelwright S, Hill-Cawthorne G, Allison C, Banerjee-Basu S, Baron-Cohen S (2009) Genes Related to Sex Steroids, Neural Growth, and Social–Emotional Behavior are Associated with Autistic Traits, Empathy, and Asperger Syndrome. 9 International Society for Autism Research, Wiley Periodicals, Inc. p 1–21Google Scholar
  20. Chauhan A, Chauhan V, Brown WT, Cohen I (2004) Oxidative stress in autism: increased lipid peroxidation and reduced serum levels of ceruloplasmin and transferring the antioxidant proteins. Life Sci 75:2539–2549PubMedCrossRefGoogle Scholar
  21. Chen J, Xin K, Wei J, Zhang K, Xiao H (2016) Lower maternal serum 25(OH) D in first trimester associated with higher autism risk in Chinese offspring. J Psychosom Res 89:98–101PubMedCrossRefGoogle Scholar
  22. Cherniack EP, Troen BR (2011) Vitamin D, cognitive function, and mental health. In: Benton D (ed) Lifetime nutritional influences on cognition, behaviour and psychiatric illness. Woodhead Publishing, Sawston, pp 420–438.  https://doi.org/10.1533/9780857092922.3.420 CrossRefGoogle Scholar
  23. Chirumbolo S, Bjørklund G, Sboarina A, Vella A (2017) The role of vitamin D in the immune system as a pro-survival molecule. Clin Ther.  https://doi.org/10.1016/j.clinthera.2017.03.021
  24. Christensen DL, Baio J, Van Naarden BK, Bilder D, Charles J, Constantino JN, Daniels J, Durkin MS, Fitzgerald RT, Kurzius-Spencer M, Lee LC, Pettygrove S, Robinson C, Schulz E, Wells C, Wingate MS, Zahorodny W, Yeargin-Allsopp M, Centers for Disease Control and Prevention (CDC) (2016) Prevalence and characteristics of autism spectrum disorder among children aged 8 years--Autism and Developmental Disabilities Monitoring Network, 11 sites, United States, 2012. MMWR Surveill Summ 65(3):1–23.  https://doi.org/10.15585/mmwr.ss6503a1 PubMedCrossRefGoogle Scholar
  25. Chun SK, Shin SA, Kim MY, Joung H, Chung J (2016) Effects of maternal genetic polymorphisms in vitamin D-binding protein and serum 25-hydroxyvitamin D concentration on infant birth weight. Nutrition 35:36–42.  https://doi.org/10.1016/j.nut.2016.10.006 PubMedCrossRefGoogle Scholar
  26. Constantino JN, Davis SA, Todd RD, Schindler MK, Gross MM, Brophy SL, Metzger LM, Shoushtari CS, Splinter R, Reich W (2003) Validation of a brief quantitative measure of autistic traits: comparison of the social responsiveness scale with the autism diagnostic interview-revised. J Autism Dev Disord 33:427–433PubMedCrossRefGoogle Scholar
  27. Coutinho AM, Oliveira G, Morgadinho T, Fesel C, Macedo TR, Bento C, Marques C, Ataíde A, Miguel T, Borges L, Vicente AM (2004) Variants of the serotonin transporter gene (SLC6A4) significantly contribute to hyperserotonemia in autism. Mol Psychiatry 9:264–271PubMedCrossRefGoogle Scholar
  28. Currenti SA (2010) Understanding and determining the etiology of autism. Cell Mol Neurobiol 30:161–171PubMedCrossRefGoogle Scholar
  29. Dawodu A, Wagner CL (2012) Prevention of vitamin D deficiency in mothers and infants worldwide - a paradigm shift. Paediatr Int Child Health 32:3–13PubMedPubMedCentralCrossRefGoogle Scholar
  30. Dawodu A, Zalla L, Woo JG, Herbers PM, Davidson BS, Heubi JE, Morrow AL (2014) Heightened attention to supplementation is needed to improve the vitamin D status of breastfeeding mothers and infants when sunshine exposure is restricted. Matern Child Nutr 10:383–397PubMedCrossRefGoogle Scholar
  31. Delanghe JR, Speeckaert R, Speeckaert MM (2015) Behind the scenes of vitamin D binding protein: more than vitamin D binding. Best Pract Res Clin Endocrinol Metab 29:773–786PubMedCrossRefGoogle Scholar
  32. Dey A (2013) Cytochrome P450 2E1: its clinical aspects and a brief perspective on the current research scenario. Subcell Biochem 67:1–104PubMedCrossRefGoogle Scholar
  33. Du L, Shan L, Wang B, Feng JY, Xu ZD, Jia FY (2015) Serum levels of 25-hydroxyvitamin D in children with autism spectrum disorders. Zhongguo Dang Dai Er Ke Za Zhi 17:68–71PubMedGoogle Scholar
  34. El-Ansary A (2016) Data of multiple regressions analysis between selected biomarkers related to glutamate excitotoxicity and oxidative stress in Saudi autistic patients. Data Brief 7:111–116PubMedPubMedCentralCrossRefGoogle Scholar
  35. El-Ansary A, Al-Ayadhi L (2012) Neuroinflammation in autism spectrum disorders. J Neuroinflammation 9:265.  https://doi.org/10.1186/1742-2094-9-265 PubMedPubMedCentralCrossRefGoogle Scholar
  36. El-Ansary AK, Bacha AG, Al-Ayahdi LY (2011a) Plasma fatty acids as diagnostic markers in autistic patients from Saudi Arabia. Lipids Health Dis 10:62.  https://doi.org/10.1186/1476-511X-10-62 PubMedPubMedCentralCrossRefGoogle Scholar
  37. El-Ansary A, Ben Bacha AG, Al-Ayadhi LY (2011b) Proinflammatory and proapoptotic markers in relation to mono and di-cations in plasma of autistic patients from Saudi Arabia. J Neuroinflammation 8:142.  https://doi.org/10.1186/1742-2094-8-142 PubMedPubMedCentralCrossRefGoogle Scholar
  38. El-Ansary A, Hassan WM, Qasem H, Das UN (2016) Identification of biomarkers of impaired sensory profiles among autistic patients. PLoS One 11:e0164153.  https://doi.org/10.1371/journal.pone.0164153 PubMedPubMedCentralCrossRefGoogle Scholar
  39. Emond P, Mavel S, Aïdoud N et al (2013) GC-MS-based urine metabolic profiling of autism spectrum disorders. Anal Bioanal Chem 405:5291–5300PubMedCrossRefPubMedCentralGoogle Scholar
  40. Fan X, Warner M, Gustafsson JA (2006) Estrogen receptor beta expression in the embryonic brain regulates development of calretinin-immunoreactive GABAergic interneurons. Proc Natl Acad Sci U S A. 103:19338–19343PubMedPubMedCentralCrossRefGoogle Scholar
  41. Fedirko V, Bostick RM, Long Q, Flanders WD, Fedirko V, Bostick RM, Long Q, Flanders WD, McCullough ML, Sidelnikov E et al (2010) Effects of supplemental vitamin D and calcium on oxidative DNA damage marker in normal colorectal mucosa: a randomized clinical trial. Cancer Epidemiol Biomarkers Prev 19:280–291PubMedPubMedCentralCrossRefGoogle Scholar
  42. Ferguson CS, Tyndale RF (2011) Cytochromes P450 in the brain: Emerging evidence for biological significance. Trends Pharmacol Sci 32:708–714PubMedPubMedCentralCrossRefGoogle Scholar
  43. Fernell E, Bejerot S, Westerlund J, Miniscalco C, Simila H, Eyles D, Gillberg C, Humble MB (2015) Autism spectrum disorder and low vitamin D at birth: a sibling control study. Mol Autism 6:3.  https://doi.org/10.1186/2040-2392-6-3 PubMedPubMedCentralCrossRefGoogle Scholar
  44. Fukuda M, Yamaguchi H, Yamamoto H, Aminaka M, Muramaka H, Kamiyama N et al (2008) The evaluation of oxidative stress damage in children with brain damage using 8 OH deoxyguanosine levels. Brain Dev 30:131–136PubMedCrossRefGoogle Scholar
  45. Garcion E, Thanh XD, Bled F, Teissier E, Dehouck MP, Rigault F, Brachet P, Girault A, Torpier G, Darcy F (1996) 1,25-Dihydroxyvitamin D3 regulates gamma 1 transpeptidase activity in rat brain. Neurosci Lett 216:183–186PubMedCrossRefGoogle Scholar
  46. Garcion E, Wion-Barbot N, Montero-Menei CN, Berger F, Wion D (2002) New clues about vitamin D functions in the nervous system. Trends Endocrinol Metab 13:100–105PubMedCrossRefGoogle Scholar
  47. Ghanizadeh A, Akhondzadeh S, Hormozi M, Makarem A, Abotorabi-Zarchi M, Firoozabadi A (2012) Glutathione-related factors and oxidative stress in autism, a review. Curr Med Chem 19:4000–4005PubMedCrossRefGoogle Scholar
  48. Gies P, Makin J, Dobbinson S, Javorniczky J, Henderson S, Guilfoyle R, Lock J (2013) Shade provision for toddlers at swimming pools in Melbourne. Photochem Photobiol 89:968–973PubMedCrossRefGoogle Scholar
  49. Gong ZL, Luo CM, Wang L, Shen L, Wei F, Tong RJ, Liu Y (2014) Serum 25-hydroxyvitamin D levels in chinese children with autism spectrum disorders. Neuroreport 25:23–27PubMedCrossRefGoogle Scholar
  50. Gonzalez-Suarez I, Redwood AB, Grotsky DA, Neumann MA, Cheng EH, Stewart CL, Dusso A, Gonzalo S (2011) A new pathway that regulates 53BP1 stability implicates cathepsin L and vitamin D in DNA repair. EMBO J 30:3383–3396.  https://doi.org/10.1038/emboj.2011.225 PubMedPubMedCentralCrossRefGoogle Scholar
  51. Gordon-Thomson C, Gupta R, Tongkao-on W, Ryan A, Halliday GM, Mason RS (2012) 1α,25 Dihydroxyvitamin D3 enhances cellular defenses against UV-induced oxidative and other forms of DNA damage in skin. Photochem Photobiol Sci 11:1837–1847PubMedCrossRefGoogle Scholar
  52. Graziano S, Johnston R, Deng O, Zhang J, Gonzalo S (2016) Vitamin D/vitamin D receptor axis regulates DNA repair during oncogene-induced senescence. Oncogene 35:5362–5376PubMedPubMedCentralCrossRefGoogle Scholar
  53. Griffin MD, Xing N, Kumar R (2003) Vitamin D and its analogs as regulators of immune activation and antigen presentation. Annu Rev Nutr 23:117–145PubMedCrossRefGoogle Scholar
  54. Gross ML, Tenenbein M, Sellers EA (2013) Severe vitamin D deficiency in 6 Canadian first nation formula-fed infants. Int J Circumpolar Health 72:20244.  https://doi.org/10.3402/ijch.v72i0.20244 PubMedCrossRefGoogle Scholar
  55. Helbock HJ, Beckman KB, Ames BN (1999) 8 hydroxy deoxyguanosine and 8hydroxyguanine as biomarkers of oxidative DNA damage. Methods Enzymol 300:156–166PubMedCrossRefGoogle Scholar
  56. Hodgson NW, Waly MI, Al-Farsi YM, Al-Sharbati MM, Al-Farsi O, Ali A, Ouhtit A, Zang T, Zhou ZS, Deth RC (2014) Decreased glutathione and elevated hair mercury levels are associated with nutritional deficiency-based autism in Oman. Exp Biol Med (Maywood) 239:697–706CrossRefGoogle Scholar
  57. Holick MF (2006) Resurrection of vitamin D deficiency and rickets. J Clin Invest 116:2062–2072PubMedPubMedCentralCrossRefGoogle Scholar
  58. Holick MF (2007) Vitamin D deficiency. N Engl J Med 357:266–281PubMedCrossRefGoogle Scholar
  59. Holick MF, Binkley NC, Bischoff-Ferrari HA, Gordon CM, Hanley DA, Heaney RP, Murad MH, Weaver CM, Endocrine Society (2011) Evaluation, treatment, and prevention of vitamin D deficiency: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab 96:1911–1930PubMedCrossRefGoogle Scholar
  60. Hosseinpanah F, Pour SH, Heibatollahi M, Moghbel N, Asefzade S, Azizi F (2010) The effects of air pollution on vitamin D status in healthy women: a cross sectional study. BMC Public Health 10:519.  https://doi.org/10.1186/1471-2458-10-519 PubMedPubMedCentralCrossRefGoogle Scholar
  61. Huang Y, Sullivan Pepe M, Feng Z (2007) Evaluating the predictiveness of a continuous marker. Biometrics. 63(4):1181–1188PubMedPubMedCentralCrossRefGoogle Scholar
  62. Jacob A, Zhou M, Wu R, Wang P (2009) The role of hepatic cytochrome P-450 in sepsis. Int J Clin Exp Med 2:203–211PubMedPubMedCentralGoogle Scholar
  63. Jain SK, Micinski D (2013) Vitamin D upregulates glutamate cysteine ligase and glutathione reductase, and GSH formation, and decreases ROS and MCP-1 and IL-8 secretion in high-glucose exposed U937 monocytes. Biochem Biophys Res Commun 437:7–11PubMedPubMedCentralCrossRefGoogle Scholar
  64. James SJ (2013) Autism and folate-dependent one-carbon metabolism: serendipity and critical branch-point decisions in science. Glob Adv Health Med 2:48–51PubMedPubMedCentralCrossRefGoogle Scholar
  65. James SJ, Cutler P, Melnyk S, Jernigan S, Janak L, Gaylor DW, Neubrander JA (2004) Metabolic biomarkers of increased oxidative stress and impaired methylation capacity in children with autism. Am J Clin Nutr 80:1611–1617PubMedCrossRefGoogle Scholar
  66. Jiménez-Garza O, Baccarelli AA, Byun HM, Márquez-Gamiño S, Barrón-Vivanco BS, Albores A (2015) CYP2E1 epigenetic regulation in chronic, low-level toluene exposure: Relationship with oxidative stress and smoking habit. Toxicol Appl Pharmacol 286:207–215PubMedCrossRefGoogle Scholar
  67. Jones KS, Assar S, Vanderschueren D, Bouillon R, Prentice A, Schoenmakers I (2015) Predictors of 25(OH)D3 half-life and plasma 25(OH)D3 concentration in Gambia and the UK. Osteoporos Int 26:1137–1146PubMedCrossRefGoogle Scholar
  68. Kelishadi R, Moeini R, Poursafa P, Farajian S, Yousefy H, Okhovat-Souraki AA (2014) Independent association between air pollutants and vitamin D deficiency in young children in Isfahan, Iran. Paediatr Int Child Health 34:50–55PubMedCrossRefGoogle Scholar
  69. Khakzad MR, Javanbakht M, Shayegan MR, Kianoush S, Omid F, Hojati M, Meshkat M (2012) The complementary role of high sensitivity C-reactive protein in the diagnosis and severity assessment of autism. Res Autism Spectr Disord 6:1032–1037CrossRefGoogle Scholar
  70. Kinney DK, Barch DH, Chayka B, Napoleon S, Munir KM (2010) Environmental risk factors for autism: do they help cause de novo genetic mutations that contribute to the disorder? Med Hypotheses 74:102–106PubMedCrossRefGoogle Scholar
  71. Kouzmenko A, Ohtake F, Fujiki R, Kato S (2010) Hormonal gene regulation through DNA methylation and demethylation. Epigenomics 2:765–774PubMedCrossRefGoogle Scholar
  72. Kuwabara H, Yamasue H, Koike S, Inoue H, Kawakubo Y, Kuroda M, Takano Y, Iwashiro N, Natsubori T, Aoki Y, Kano Y, Kasai K (2013) Altered metabolites in the plasma of autism spectrum disorder: a capillary electrophoresis time-of-flight mass spectroscopy study. PLoS ONE 8:e73814.  https://doi.org/10.1371/journal.pone.0073814 PubMedPubMedCentralCrossRefGoogle Scholar
  73. Lai JK, Lucas RM, Banks E, Ponsonby AL (2012) Ausimmune investigator group. Variability in vitamin D assays impairs clinical assessment of vitamin D status. Intern Med J 42:43–50PubMedCrossRefGoogle Scholar
  74. Lakhdar H, Zouhair K, Khadir K, Essari A, Richard A, Seité S, Rougier A (2007) Evaluation of the effectiveness of a broad-spectrum sunscreen in the prevention of chloasma in pregnant women. J Eur Acad Dermatol Venereol 21:738–742PubMedCrossRefGoogle Scholar
  75. Lanphear BP (2015) The impact of toxins on the developing brain. Annu Rev Public Health 36:211–230PubMedCrossRefGoogle Scholar
  76. Lin XF, Wang ZY, Feng WJ (2015) Influence of drug-metabolizing enzymes by autism treatment drug haloperidol. Latin American Journal of Pharmacy 34:1693–1696Google Scholar
  77. Løken-Amsrud KI, Holmøy T, Bakke SJ, Beiske AG, Bjerve KS et al (2012) Vitamin D and disease activity in multiple sclerosis before and during interferon-β treatment. Neurology 79:267–273PubMedCrossRefGoogle Scholar
  78. Magnusson C, Lundberg M, Lee BK, Rai D, Karlsson H, Gardner R, Kosidou K, Arver S, Dalman C (2016) Maternal vitamin D deficiency and the risk of autism spectrum disorders: population-based study. BJPsych Open 2:170–172PubMedPubMedCentralCrossRefGoogle Scholar
  79. Mahmoud AA, Ali AH (2014) Vitamin D receptor gene polymorphism and 25 hydroxy vitamin D levels in Egyptian patients with pulmonary tuberculosis. Egypt J Chest Dis Tuberc 63:651–655CrossRefGoogle Scholar
  80. Marusteri M, Bacarea V (2010) Comparing groups for statistical differences: how to choose the right statistical test? Biochemia Medica 20:15–32CrossRefGoogle Scholar
  81. Mazahery H, Camargo CA, Conlon C, Beck KL, Kruger MC, von Hurst PR (2016) Vitamin D and autism spectrum disorder: a literature review. Nutrients 8:236.  https://doi.org/10.3390/nu8040236 PubMedPubMedCentralCrossRefGoogle Scholar
  82. Mellenthin L, Wallaschofski H, Grotevendt A, Völzke H, Nauck M, Hannemann A (2014) Association between serum vitamin D concentrations and inflammatory markers in the general adult population. Metabolism 63:1056–1062PubMedCrossRefGoogle Scholar
  83. Mick KA (2005) Diagnosing autism: Comparison of the Childhood Autism Rating Scale (CARS) and the Autism Diagnostic Observation Schedule (ADOS). Dissertation, Wichita State UniversityGoogle Scholar
  84. Ming X, Stein TP, Brimacombe M, Johnson WG, Lambert GH, Wagner GC (2005) Increased excretion of a lipid peroxidation biomarker in autism. Prostaglandins Leukot Essent Fatty Acids 73:379–384PubMedCrossRefGoogle Scholar
  85. Ming X, Stein TP, Barnes V et al (2012) Metabolic perturbance in autism spectrum disorders: a metabolomics study. J Proteome Res 11:5856–5862PubMedCrossRefGoogle Scholar
  86. Mostafa GA, Al-Ayadhi LY (2012) Reduced serum concentrations of 25-hydroxy vitamin D in children with autism: relation to autoimmunity. J Neuroinflammation 9:201.  https://doi.org/10.1186/1742-2094-9-201 PubMedPubMedCentralCrossRefGoogle Scholar
  87. Nebert DW, Russell DW (2002) Clinical importance of the cytochromes P450. Lancet 360:1155–1162PubMedCrossRefGoogle Scholar
  88. Olmos-Ortiz A, García-Quiroz J, López-Marure R, González-Curiel I, Rivas-Santiago B, Olivares A, Avila E, Barrera D, Halhali A, Caldiño F, Larrea F, Díaz L (2016) Evidence of sexual dimorphism in placental vitamin D metabolism: Testosterone inhibits calcitriol-dependent cathelicidin expression. J Steroid Biochem Mol Biol 163:173–182PubMedCrossRefGoogle Scholar
  89. Patrick RP, Ames BN (2014) Vitamin D hormone regulates serotonin synthesis. Part 1: relevance for autism. FASEB J 28:2398–2413PubMedCrossRefGoogle Scholar
  90. Pelphrey K (2017) Charting a course for autism biomarkers. Biol Psychiatry 82:155–156PubMedCrossRefGoogle Scholar
  91. Pepe MS, Feng Z, Huang Y, Longton G, Prentice R, Thompson IM, Zheng Y (2008) Integrating the predictiveness of a marker with its performance as a classifier. Am J Epidemiol. 167:362–368PubMedCrossRefGoogle Scholar
  92. Piao SG, Song JC, Lim SW, Chung BH, Choi BS, Yang CW (2012) Protective effect of paricalcitol on cyclosporine-induced renal injury in rats. Transplant Proc 44:642–645PubMedCrossRefGoogle Scholar
  93. Prabhulkar S, Li CZ (2010) Assessment of oxidative DNA damage and repair at single cellular level via real-time monitoring of 8-OHdG biomarker. Biosens Bioelectron 26:1743–1749PubMedCrossRefGoogle Scholar
  94. Rose S, Melnyk S, Pavliv O, Bai S, Nick TG, Frye RE, James SJ (2012) Evidence of oxidative damage and inflammation associated with low glutathione redox status in the autism brain. Transl Psychiatry 10:e134.  https://doi.org/10.1038/tp.2012.61 CrossRefGoogle Scholar
  95. Saad K, Abdel-Rahman AA, Elserogy YM, Al-Atram AA, Cannell JJ, Bjørklund G, Abdel-Reheim MK, Othman HA, El-Houfey AA, Abd El-Aziz NH, Abd El-Baseer KA, Ahmed AE, Ali AM (2016a) Vitamin D status in autism spectrum disorders and the efficacy of vitamin D supplementation in autistic children. Nutr Neurosci 19:346–351PubMedCrossRefGoogle Scholar
  96. Saad K, Abdel-Rahman AA, Elserogy YM, Al-Atram AA, El-Houfey AA, Othman HA, Bjørklund G, Jia F, Urbina MA, Abo-Elela MG, Ahmad FA, Abd El-Baseer KA, Ahmed AE, Abdel-Salam AM (2016b) Randomized controlled trial of vitamin D supplementation in children with autism spectrum disorder. J Child Psychol Psychiatry.  https://doi.org/10.1111/jcpp.12652
  97. Sajdel-Sulkowska E, Lipinski B, Windom H, Audhya J, Mc Ginis W (2008) Oxidative stress in autism: cerebelar 3 nitroryrosine levels. Am J Biochem Biotechnol 4:73–84CrossRefGoogle Scholar
  98. Sajdel-Sulkowska EM, Xu M, Koibuchi N (2009) Increase in cerebellar 3-neurotrophin and oxidative stress markers in autism. Cerebellum 8:366–372PubMedCrossRefGoogle Scholar
  99. Salhia HO, Al-Nasser LA, Taher LS, Al-Khathaami AM, El-Metwally AA (2014) Systemic review of the epidemiology of autism in Arab Gulf countries. Neurosciences (Riyadh) 19:291–296Google Scholar
  100. Saltytė Benth J, Myhr KM, Løken-Amsrud KI, Beiske AG, Bjerve KS, Hovdal H, Midgard R, Holmøy T (2012) Modelling and prediction of 25-hydroxyvitamin D levels in Norwegian relapsing-remitting multiple sclerosis patients. Neuroepidemiology 39:84–93PubMedCrossRefGoogle Scholar
  101. Schuster I (2011) Cytochromes P450 are essential players in the vitamin D signaling system. Biochim Biophys Acta 1814:186–199PubMedCrossRefGoogle Scholar
  102. Singh VK (2005) Elevation of serum c-reactive protein and s100 proteins for systemic inflammation in autistic children. J Spec Educ Rehab 6:117–135Google Scholar
  103. Siniscalco D, Bradstreet JJ, Cirillo A, Antonucci N (2014) The in vitro GcMAF effects on endocannabinoid system transcriptionomics, receptor formation, and cell activity of autism-derived macrophages. J Neuroinflammation 11:78.  https://doi.org/10.1186/1742-2094-11-78 PubMedPubMedCentralCrossRefGoogle Scholar
  104. Stone WL, Coonrod EE, Turner LM, Pozdol SL (2004) Psychometric properties of the STAT for early autism screening. J Autism Dev Disord 34:691–701PubMedCrossRefGoogle Scholar
  105. Thompson PD, Jurutka PW, Whitfield GK, Myskowski SM, Eichhorst KR, Dominguez CE, Haussler CA, Haussler MR (2002) Liganded VDR induces CYP3A4 in small intestinal and colon cancer cells via DR3 and ER6 vitamin D responsive elements. Biochem Biophys Res Commun 299:730–738PubMedCrossRefGoogle Scholar
  106. Turner-Brown LM, Baranek GT, Reznick JS, Watson LR, Crais ER (2013) The first year inventory: a longitudinal follow-up of 12-montholds to 3 years of age. Autism 17:527–540PubMedCrossRefGoogle Scholar
  107. Vanlint S, Nugent M (2006) Vitamin D and fractures in people with intellectual disability. J Intellect Disabil Res 50(Pt 10):761–767.  https://doi.org/10.1111/j.1365-2788.2006.00841.x PubMedCrossRefGoogle Scholar
  108. Vickers AJ, Elkin EB (2006) Decision curve analysis: a novel method for evaluating prediction models. Med Decis Making. 26(6):565–574PubMedPubMedCentralCrossRefGoogle Scholar
  109. Vieira SE (2015) The health burden of pollution: the impact of prenatal exposure to air pollutants. Int J Chron Obstruct Pulmon Dis 10:1111–1121PubMedPubMedCentralCrossRefGoogle Scholar
  110. Vinkhuyzen AA, Eyles DW, Burne TH, Blanken LM, Kruithof CJ, Verhulst F, Jaddoe VW, Tiemeier H, McGrath JJ (2016) Gestational vitamin D deficiency and autism-related traits: the Generation R Study. Mol Psychiatry.  https://doi.org/10.1038/mp.2016.213
  111. Walker RB, Conn JA, Davies MJ, Moore VM (2006) Mothers’ views on feeding infants around the time of weaning. Public Health Nutr 9:707–713PubMedCrossRefGoogle Scholar
  112. Wang Z, Schuetz EG, Xu Y, Thummel KE (2013) Interplay between vitamin D and the drug metabolizing enzyme CYP3A4. J Steroid Biochem Mol Biol 136:54–58.  https://doi.org/10.1016/j.jsbmb.2012.09.012 PubMedCrossRefGoogle Scholar
  113. Wang T, Shan L, Du L, Feng J, Xu Z, Staal WG, Jia F (2016) Serum concentration of 25-hydroxyvitamin D in autism spectrum disorder: a systematic review and meta-analysis. Eur Child Adolesc Psychiatry 25:341–350PubMedCrossRefGoogle Scholar
  114. Watson LR, Baranek GT, Crais ER, Steven RJ, Dykstra J, Perryman T (2007) The first year inventory: retrospective parent responses to a questionnaire designed to identify one-year-olds at risk for autism. J Autism Dev Disord 37:49–61PubMedCrossRefGoogle Scholar
  115. Wegienka G, Kaur H, Sangha R, Cassidy-Bushrow AE (2016) Maternal-cord blood Vitamin D correlations vary by maternal levels. J Pregnancy 2016:7474192.  https://doi.org/10.1155/2016/7474192 PubMedPubMedCentralCrossRefGoogle Scholar
  116. Werner E, Dawson G (2005) Validation of the phenomenon of autistic regression using home videotapes. Arch Gen Psychiatry 62:889–895PubMedCrossRefGoogle Scholar
  117. Wikvall K (2001) Cytochrome P450 enzymes in the bioactivation of vitamin D to its hormonal form (review). Int J Mol Med 7:201–209PubMedCrossRefGoogle Scholar
  118. Windham GC, Zhang L, Gunier R, Croen LA, Grether JK (2006) Autism spectrum disorders in relation to distribution of hazardous air pollutants in the San Francisco Bay area. Environ Health Perspect 114:1438–1444PubMedPubMedCentralCrossRefGoogle Scholar
  119. Xu XJ, Shou XJ, Li J, Jia MX, Zhang JS, Guo Y, Wei QY, Zhang XT, Han SP, Zhang R, Han JS (2013) Mothers of autistic children: lower plasma levels of oxytocin and Arg-vasopressin and a higher level of testosterone. PLoS One 8:e74849.  https://doi.org/10.1371/journal.pone.0074849 PubMedPubMedCentralCrossRefGoogle Scholar
  120. Yang CJ, Liu CL, Sang B, Zhu XM, Du YJ (2015) The combined role of serotonin and interleukin-6 as biomarker for autism. Neuroscience 284:290–296PubMedCrossRefGoogle Scholar
  121. Yui K, Tanuma N, Yamada H, Kawasaki Y (2016) Reduced endogenous urinary total antioxidant power and its relation of plasma antioxidant activity of superoxide dismutase in individuals with autism spectrum disorder. Int J Dev Neurosci.  https://doi.org/10.1016/j.ijdevneu.2016.08.003
  122. Yusuf A, Elsabbagh M (2015) At the cross-roads of participatory research and biomarker discovery in autism: the need for empirical data. BMC Med Ethics 16:88.  https://doi.org/10.1186/s12910-015-0082-0 PubMedPubMedCentralCrossRefGoogle Scholar
  123. Zablotsky B, Black LI, Maenner MJ, Schieve LA, Blumberg SJ (2015) Estimated prevalence of autism and other developmental disabilities following questionnaire changes in the 2014 National Health Interview Survey. Natl Health Stat Report 87:1–20Google Scholar
  124. Zaky EA, Fouda EM, Algohary EA, Al-Shony ES (2015) Prevalence of autism spectrum disorders in vitamin D deficient or insufficient rickets. Int J Sci Res (Raipur) 4:1365–1373Google Scholar
  125. Zhang Q, Cheng Y, He M, Li T, Ma Z, Cheng H (2016) Effect of various doses of vitamin D supplementation on pregnant women with gestational diabetes mellitus: A randomized controlled trial. Exp Ther Med 12:1889–1895PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Afaf El-Ansary
    • 1
    • 2
    • 3
    • 4
  • John J. Cannell
    • 5
  • Geir Bjørklund
    • 6
  • Ramesa Shafi Bhat
    • 7
  • Abeer M. Al Dbass
    • 7
  • Hanan A. Alfawaz
    • 8
  • Salvatore Chirumbolo
    • 9
  • Laila Al-Ayadhi
    • 3
    • 4
    • 10
  1. 1.Central Laboratory, Female Centre for Scientific and Medical StudiesKing Saud UniversityRiyadhSaudi Arabia
  2. 2.Medicinal Chemistry Department, National Research CentreCairoEgypt
  3. 3.Autism Research and Treatment CenterRiyadhSaudi Arabia
  4. 4.Shaik AL-Amodi Autism Research ChairKing Saud UniversityRiyadhSaudi Arabia
  5. 5.Vitamin D CouncilSan Luis ObispoUSA
  6. 6.Council for Nutritional and Environmental MedicineMo i RanaNorway
  7. 7.Biochemistry Department, Science CollegeKing Saud UniversityRiyadhSaudi Arabia
  8. 8.Department of Food Science and Human NutritionKing Saud UniversityRiyadhSaudi Arabia
  9. 9.Department of Neurological and Movement SciencesUniversity of VeronaVeronaItaly
  10. 10.Department of Physiology, Faculty of MedicineKing Saud UniversityRiyadhSaudi Arabia

Personalised recommendations