Advertisement

Metabolic Brain Disease

, Volume 33, Issue 3, pp 775–784 | Cite as

Neuronal loss and gliosis in the rat striatum subjected to 15 and 30 minutes of middle cerebral artery occlusion

  • Joon Ha Park
  • Jeong Hwi Cho
  • Ji Hyeon Ahn
  • Soo Young Choi
  • Tae-Kyeong Lee
  • Jae-Chul Lee
  • Bich Na Shin
  • Seongkweon Hong
  • Yong Hwan Jeon
  • Young-Myeong Kim
  • In Koo Hwang
  • Young Joo Lee
  • Moo-Ho Won
  • Il Jun Kang
Original Article
  • 179 Downloads

Abstract

Selective neuronal death or loss in certain brain regions has been well characterized in animal models of transient global cerebral ischemia. However, selective neuronal death in transient focal cerebral ischemia needs more investigation. Therefore, in this study, we studied selective neuronal death in the striatum (caudate putamen) of rats subjected to 15 or 30 min middle cerebral artery occlusion (MCAO). Neuronal death occurred in the dorsolateral field, not in the medial field in 30 min, not 15 min, MCAO-operated rats 5 days after MCAO using neuronal nuclear antigen immunohistochemistry and Fluoro-Jade B histofluorescence staining. In this group, immunoreactivity of glial fibrillary acidic protein in astrocytes was hardly shown in the dorsolateral field, although the immunoreactivity increased in the medial field. In addition, immunoreactivity of ionized calcium binding adapter molecule 1 in microglia was dramatically increased in the dorsolateral, not in the medial, field only in 30 min MCAO-operated rats. Briefly, these results show that at least 30 min of MCAO can evoke selective neuronal death, astrocytic dysfunction and microglial activation in the dorsolateral field of the rat striatum and suggest that a rat model of 30 min MCAO can be used to investigate mechanisms of neuronal death and gliosis following brief transient focal cerebral ischemic events for acute transient ischemic attack.

Keywords

Middle cerebral artery occlusion Caudate putamen Selective neuronal death Fluoro Jade B Astrocytes Microglia 

Notes

Acknowledgements

This research was supported by the Bio-Synergy Research Project (NRF-2015M3A9C4076322) of the Ministry of Science, ICT and Future Planning through the National Research Foundation (NRF) of Korea, Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2017R1D1A1B03030161) and by Basic Science Research Program through the NRF of Korea funded by the Ministry of Science, ICT &Future Planning (NRF-2017R1A2B4008403).

Compliance with ethical standards

Conflict of interest

All authors state that there is no conflict of interest

References

  1. Bae EJ et al (2015) Comparison of immunoreactivities of calbindin-D28k, calretinin and parvalbumin in the striatum between young, adult and aged mice, rats and gerbils. Neurochem Res 40:864–872CrossRefPubMedGoogle Scholar
  2. Crain BJ, Westerkam WD, Harrison AH, Nadler JV (1988) Selective neuronal death after transient forebrain ischemia in the Mongolian gerbil: a silver impregnation study. Neuroscience 27:387–402CrossRefPubMedGoogle Scholar
  3. Crotti A et al (2014) Mutant Huntingtin promotes autonomous microglia activation via myeloid lineage-determining factors. Nat Neurosci 17:513–521CrossRefPubMedPubMedCentralGoogle Scholar
  4. Gallyas F, Zoltay G, Dames W (1992) Formation of "dark" (argyrophilic) neurons of various origin proceeds with a common mechanism of biophysical nature (a novel hypothesis). Acta Neuropathol 83:504–509CrossRefPubMedGoogle Scholar
  5. Gamdzyk M, Malek M, Bratek E, Koks A, Kaminski K, Ziembowicz A, Salinska E (2016) Hyperbaric oxygen and hyperbaric air preconditioning induces ischemic tolerance to transient forebrain ischemia in the gerbil. Brain Res 1648:257–265CrossRefPubMedGoogle Scholar
  6. Garcia JH, Liu KF, Ye ZR, Gutierrez JA (1997) Incomplete infarct and delayed neuronal death after transient middle cerebral artery occlusion in rats. Stroke 28:2303–2309 discussion 2310CrossRefPubMedGoogle Scholar
  7. Han HS, Qiao Y, Karabiyikoglu M, Giffard RG, Yenari MA (2002) Influence of mild hypothermia on inducible nitric oxide synthase expression and reactive nitrogen production in experimental stroke and inflammation. J Neurosci 22:3921–3928CrossRefPubMedGoogle Scholar
  8. Hattori K, Lee H, Hurn PD, Crain BJ, Traystman RJ, DeVries AC (2000) Cognitive deficits after focal cerebral ischemia in mice. Stroke 31:1939–1944CrossRefPubMedGoogle Scholar
  9. Hayakawa K et al (2010) Inhibition of reactive astrocytes with fluorocitrate retards neurovascular remodeling and recovery after focal cerebral ischemia in mice. J Cereb Blood Flow Metab 30:871–882CrossRefPubMedGoogle Scholar
  10. Huttner HB et al (2014) The age and genomic integrity of neurons after cortical stroke in humans. Nat Neurosci 17:801–803CrossRefPubMedGoogle Scholar
  11. Katchanov J et al (2003) Selective neuronal vulnerability following mild focal brain ischemia in the mouse. Brain Pathol 13:452–464CrossRefPubMedGoogle Scholar
  12. Kato H, Kogure K, Liu XH, Araki T, Itoyama Y (1996) Progressive expression of immunomolecules on activated microglia and invading leukocytes following focal cerebral ischemia in the rat. Brain Res 734:203–212CrossRefPubMedGoogle Scholar
  13. Kirino T (1982) Delayed neuronal death in the gerbil hippocampus following ischemia. Brain Res 239:57–69CrossRefPubMedGoogle Scholar
  14. Lakhan SE, Kirchgessner A, Hofer M (2009) Inflammatory mechanisms in ischemic stroke: therapeutic approaches. J Transl Med 7:97CrossRefPubMedPubMedCentralGoogle Scholar
  15. Lee JC et al (2013) Neuronal damage and gliosis in the somatosensory cortex induced by various durations of transient cerebral ischemia in gerbils. Brain Res 1510:78–88CrossRefPubMedGoogle Scholar
  16. Lee JC et al (2016) New GABAergic Neurogenesis in the Hippocampal CA1 Region of a Gerbil Model of Long-Term Survival after Transient Cerebral Ischemic Injury. Brain Pathol 26:581–592CrossRefPubMedGoogle Scholar
  17. Lee JC et al (2017) Neuroprotection of ischemic preconditioning is mediated by thioredoxin 2 in the hippocampal CA1 region following a subsequent transient cerebral ischemia. Brain Pathol 27:276–291CrossRefPubMedGoogle Scholar
  18. Lin CS, Polsky K, Nadler JV, Crain BJ (1990) Selective neocortical and thalamic cell death in the gerbil after transient ischemia. Neuroscience 35:289–299CrossRefPubMedGoogle Scholar
  19. Liu D, Smith CL, Barone FC, Ellison JA, Lysko PG, Li K, Simpson IA (1999) Astrocytic demise precedes delayed neuronal death in focal ischemic rat brain. Brain Res Mol Brain Res 68:29–41CrossRefPubMedGoogle Scholar
  20. Mabuchi T et al (2000) Contribution of microglia/macrophages to expansion of infarction and response of oligodendrocytes after focal cerebral ischemia in rats. Stroke 31:1735–1743CrossRefPubMedGoogle Scholar
  21. Nakano S, Kogure K, Fujikura H (1990) Ischemia-induced slowly progressive neuronal damage in the rat brain. Neuroscience 38:115–124CrossRefPubMedGoogle Scholar
  22. Ohk TG et al (2012) Neuronal damage using fluoro-jade B histofluorescence and gliosis in the striatum after various durations of transient cerebral ischemia in gerbils. Neurochem Res 37:826–834CrossRefPubMedGoogle Scholar
  23. Ouyang YB, Voloboueva LA, Xu LJ, Giffard RG (2007) Selective dysfunction of hippocampal CA1 astrocytes contributes to delayed neuronal damage after transient forebrain ischemia. J Neurosci 27:4253–4260CrossRefPubMedPubMedCentralGoogle Scholar
  24. Park JH et al (2016) Hydroquinone strongly alleviates focal ischemic brain injury via blockage of blood-brain barrier disruption in rats. Toxicol Sci 154:430–441CrossRefGoogle Scholar
  25. Paxinos G, Watson C (2007) The rat brain in stereotaxic coordinates, 6th edn. Academic Press/Elsevier, AmsterdamGoogle Scholar
  26. Petito CK, Morgello S, Felix JC, Lesser ML (1990) The two patterns of reactive astrocytosis in postischemic rat brain. J Cereb Blood Flow Metab 10:850–859CrossRefPubMedGoogle Scholar
  27. Pulsinelli WA, Brierley JB, Plum F (1982) Temporal profile of neuronal damage in a model of transient forebrain ischemia. Ann Neurol 11:491–498CrossRefPubMedGoogle Scholar
  28. Radenovic L, Selakovic V, Olivan S, Calvo AC, Rando A, Janac B, Osta R (2014) Neuroprotective efficiency of tetanus toxin C fragment in model of global cerebral ischemia in Mongolian gerbils. Brain Res Bull 101:37–44CrossRefPubMedGoogle Scholar
  29. Rupalla K, Allegrini PR, Sauer D, Wiessner C (1998) Time course of microglia activation and apoptosis in various brain regions after permanent focal cerebral ischemia in mice. Acta Neuropathol 96:172–178CrossRefPubMedGoogle Scholar
  30. Salter MW, Stevens B (2017) Microglia emerge as central players in brain disease. Nat Med 23:1018–1027CrossRefPubMedGoogle Scholar
  31. Sapkota A et al (2017) Eupatilin exerts neuroprotective effects in mice with transient focal cerebral ischemia by reducing microglial activation. PLoS One 12:e0171479CrossRefPubMedPubMedCentralGoogle Scholar
  32. Schmued LC, Hopkins KJ (2000) Fluoro-Jade B: a high affinity fluorescent marker for the localization of neuronal degeneration. Brain Res 874:123–130CrossRefPubMedGoogle Scholar
  33. Shimada IS, Borders A, Aronshtam A, Spees JL (2011) Proliferating reactive astrocytes are regulated by Notch-1 in the peri-infarct area after stroke. Stroke 42:3231–3237CrossRefPubMedPubMedCentralGoogle Scholar
  34. Singh S, Swarnkar S, Goswami P, Nath C (2011) Astrocytes and microglia: responses to neuropathological conditions. Int J Neurosci 121:589–597CrossRefPubMedGoogle Scholar
  35. Sofroniew MV, Vinters HV (2010) Astrocytes: biology and pathology. Acta Neuropathol 119:7–35CrossRefPubMedGoogle Scholar
  36. Sugawara T, Chan PH (2003) Reactive oxygen radicals and pathogenesis of neuronal death after cerebral ischemia. Antioxid Redox Signal 5:597–607CrossRefPubMedGoogle Scholar
  37. Swanson RA, Farrell K, Stein BA (1997) Astrocyte energetics, function, and death under conditions of incomplete ischemia: a mechanism of glial death in the penumbra. Glia 21:142–153CrossRefPubMedGoogle Scholar
  38. Uno H, Matsuyama T, Akita H, Nishimura H, Sugita M (1997) Induction of tumor necrosis factor-alpha in the mouse hippocampus following transient forebrain ischemia. J Cereb Blood Flow Metab 17:491–499CrossRefPubMedGoogle Scholar
  39. Wang LM, Yan Y, Zou LJ, Jing NH, Xu ZY (2005) Moderate hypothermia prevents neural cell apoptosis following spinal cord ischemia in rabbits. Cell Res 15:387–393CrossRefPubMedGoogle Scholar
  40. Wu LJ, Stevens B, Duan S, MacVicar BA (2013) Microglia in neuronal circuits. Neural Plast 2013:586426CrossRefPubMedPubMedCentralGoogle Scholar
  41. Yu DK et al (2012) Neuronal damage in hippocampal subregions induced by various durations of transient cerebral ischemia in gerbils using Fluoro-Jade B histofluorescence. Brain Res 1437:50–57CrossRefPubMedGoogle Scholar
  42. Zhang H et al (2017) Sac-1004, a vascular leakage blocker, reduces cerebral ischemia-reperfusion injury by suppressing blood-brain barrier disruption and inflammation. J Neuroinflammation 14:122CrossRefPubMedPubMedCentralGoogle Scholar
  43. Zhao H et al (2013) MiRNA-424 protects against permanent focal cerebral ischemia injury in mice involving suppressing microglia activation. Stroke 44:1706–1713CrossRefPubMedGoogle Scholar
  44. Zhao XY et al (2015) Effect of arginine vasopressin on the cortex edema in the ischemic stroke of Mongolian gerbils. Neuropeptides 51:55–62CrossRefPubMedGoogle Scholar
  45. Zille M, Farr TD, Przesdzing I, Muller J, Sommer C, Dirnagl U, Wunder A (2012) Visualizing cell death in experimental focal cerebral ischemia: promises, problems, and perspectives. J Cereb Blood Flow Metab 32:213–231CrossRefPubMedGoogle Scholar
  46. Zini I, Grimaldi R, Pich EM, Zoli M, Fuxe K, Agnati LF (1990) Aspects of neural plasticity in the central nervous system-V. Studies on a model of transient forebrain ischemia in male Sprague-Dawley rats. Neurochem Int 16:451–468CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Joon Ha Park
    • 1
  • Jeong Hwi Cho
    • 2
  • Ji Hyeon Ahn
    • 1
  • Soo Young Choi
    • 1
  • Tae-Kyeong Lee
    • 2
  • Jae-Chul Lee
    • 2
  • Bich Na Shin
    • 2
  • Seongkweon Hong
    • 3
  • Yong Hwan Jeon
    • 4
  • Young-Myeong Kim
    • 5
  • In Koo Hwang
    • 6
  • Young Joo Lee
    • 7
  • Moo-Ho Won
    • 2
  • Il Jun Kang
    • 8
  1. 1.Department of Biomedical Science and Research Institute for Bioscience and BiotechnologyHallym UniversityChuncheonRepublic of Korea
  2. 2.Department of Neurobiology, School of MedicineKangwon National UniversityChuncheonRepublic of Korea
  3. 3.Department of Surgery, School of MedicineKangwon National UniversityChuncheonRepublic of Korea
  4. 4.Department of Radiology, School of MedicineKangwon National UniversityChuncheonRepublic of Korea
  5. 5.Department of Molecular and Cellular Biochemistry, School of MedicineKangwon National UniversityChuncheonRepublic of Korea
  6. 6.Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary ScienceSeoul National UniversitySeoulRepublic of Korea
  7. 7.Department of Emergency Medicine, Seoul Hospital, College of MedicineSooncheonhyang UniversitySeoulRepublic of Korea
  8. 8.Department of Food Science and NutritionHallym UniversityChuncheonRepublic of Korea

Personalised recommendations