Skip to main content

Achyranthes aspera Attenuates epilepsy in experimental animals: possible involvement of GABAergic mechanism

Abstract

The present study was aimed to examine the possible anticonvulsant property of aerial parts of Achyranthes aspera using various experimental models of epilepsy in mice. Petroleum ether extract of aerial parts of A. aspera (PeAA), methanolic eAA (MeAA) and aqueous eAA (AeAA) was initially evaluated against six-hertz seizure model in mice, based on the outcomes the effective extract was further evaluated against maximal electroshock (MES) and pentylenetetrazole (PTZ) models in mice. In addition, the potent extract was evaluated against the PTZ model by co-administering with flumazenil (FMZ), and also evaluated for its effect on GABA levels in brain and NMDA-induced lethality in mice. Furthermore, the probable locomotor deficit-inducing property of the extract was evaluated by actophotometer test in mice. In results, only MeAA showed protection against six-hertz-induced seizures in mice, based on these outcomes only MeAA was evaluated in MES and PTZ models. Notably, the MeAA (200, 400 and 800 mg/kg) has offered mild and dose dependent protection against MES and PTZ-induced seizures in mice. Alongside, the MeAA (400 mg/kg) showed a significant increase in GABA levels in the brain compared to control, and in line with these findings the anti-PTZ effect of MeAA (400 mg/kg, p.o.) was blocked when co-administered with flumazenil (5 mg/kg, i.p.). However, the MeAA has not shown significant protection against NMDA-induced mortality and also did not cause significant change in locomotor activity compared to before treatment. These findings suggest that MeAA possess mild anticonvulsant activity and the outcomes further confirmed the involvement of GABAergic mechanism behind the anticonvulsant activity of MeAA.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Abbreviations

PeAA:

Petroleum ether extract of Achyranthes aspera aerial parts

MeAA:

Methanolic extract of Achyranthes aspera aerial parts

AeAA:

Aqueous extract of Achyranthes aspera aerial parts

MES:

Maximal Electroshock

PTZ:

Pentylenetetrazole

HLTE:

Hind limb Tonic extensor

HLTF:

Hind limb Tonic flexion

GABA:

Gamma amino butyric acid

NMDA:

N-Methyl-D-aspartic acid

LD:

lethal dose

ED:

Effective dose

References

  1. Aditya G, Ajay KS (2016) The pharmacological potential of rutin. Saudi Pharm J. doi:10.1016/j.jsps.2016.04.025

    Google Scholar 

  2. Anandhan A, Tamilselvam K, Vijayraja D (2010) Resveratrol attenuates oxidative stress and improves behaviour in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) challenged mice. Ann Neurosci 17(3):113–119

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  3. Barua CC, Talukdar A, Begum SA, Buragohain B, Roy JD, Borah RS, Lahkar M (2009a) Antidepressant-like effects of the methanolic extract of Achyranthes aspera Linn. In Animal Models of Depression Pharmacologyonline 2:587–594

    Google Scholar 

  4. Barua CC, Roy JD, Buragohain B (2009b) Anxiolytic effects of hydroethanolic extract of Drymariacordata L wild. Ind J Exp Biol 47:969–973

    Google Scholar 

  5. Behr C, Goltzene MA, Kosmalski G, Hirsch E, Ryvlin P (2016) Epidemiology of epilepsy. Rev Neurol 172(1):27–36

    CAS  Article  PubMed  Google Scholar 

  6. Bhosale UA, Yegnanarayan R, Pophale PD, Zambare MR, Somani RS (2011a) Study of central nervous system depressant and behavioral activity of an ethanol extract of Achyranthes aspera (Agadha) in different animal models. Int J Appl Basic Med Res 1(2):104–108

    Article  PubMed  PubMed Central  Google Scholar 

  7. Bhosale U, Yegnanarayan R, Prachi P, Zambare M, Somani RS (2011b) Study of CNS depressant and behavioral activity of an ethanol extract of Achyranthes aspera (Chirchita) in mouse model. Ann Neurosci 18(2):44–47

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. Brown WC, Schiffman DO, Swinyard EA, Goodman LS (1953) Comparative assay of an antiepileptic drugs by psychomotor seizure test and minimal electroshock threshold test. J Pharmacol Exp Ther 107:273–283

    CAS  PubMed  Google Scholar 

  9. Bruno E, Buemi MR, De Luca L, Ferro S, Monforte AM, Supuran CT, Vullo D, De Sarro G, Russo E, Gitto R (2016) In vivo evaluation of selective carbonic anhydrase inhibitors as potential anticonvulsant agents. Chem Med Chem 11:1812–1818. doi:10.1002/cmdc.201500596

    CAS  Article  PubMed  Google Scholar 

  10. Calderón-Montaño JM, Burgos ME, Pérez GC, López LM (2011) A review on the dietary flavonoid kaempferol. Mini Rev Med Chem 11(4):298–344

    Article  PubMed  Google Scholar 

  11. Carter SO, Banerjee PK, McIntyre B, David H (2000) Modulation of absence seizures by the GABAA receptor: a critical role for metabotropic glutamate receptor 4 (mGluR4). J Neurosci 20:6218–6224

    Google Scholar 

  12. Chakraborty A, Amudha P, Geetha M (2010) Evaluation of anxiolytic activity of methanolic extract of Sapindusmukorossigaertn in mice. Int J Pharma Bio Sci 1(3):1–8

    Google Scholar 

  13. Chandana C, Barua AT, Shameem AB, Prabodh B, Mangala L (2012) Anxiolytic activity of methanol leaf extract of Achyranthesaspera Linn in mice using experimental models of anxiety. Ind J Pharmacol 44(1):63–67

    Article  Google Scholar 

  14. Christiaan HV, Ruud O, Elsebet N, James MC, Henrik HH, Lucianne G, Berend O, Naheed RM (2012) GABAA receptor a subunits differentially contribute to diazepam tolerance after chronic treatment. PLoS One 7(8):e3054

    Google Scholar 

  15. Chrościńska KM, Jargiełło BM, Andres MM, Łuszczki JJ, Czuczwar SJ (2016) Influence of caffeine on the protective activity of gabapentin and topiramate in a mouse model of generalized tonic-clonic seizures. Pharmacol Rep 68(4):680–685

    Article  Google Scholar 

  16. Citraro R, Navarra M, Leo A, Donato Di Paola E, Santangelo E, Lippiello P, Aiello R, Russo E, De Sarro G (2016) The anticonvulsant activity of a flavonoid-rich Extract from Orange juice involves both NMDA and GABA-benzodiazepine receptor complexes. Molecules 21. doi:10.3390/molecules21091261

  17. Formica JV, Regelson W (1995) Review of the biology of quercetin and related bioflavonoids. Food ChemToxicol 33(12):1061–1080

    CAS  Article  Google Scholar 

  18. Gatta E, Cupello A, Di Braccio M, Grossi G, Robello M, Scicchitano F, Russo E, De Sarro G (2016) Anticonvulsive activity in Audiogenic DBA/2 mice of 1,4-benzodiazepines and 1,5-benzodiazepines with different activities at cerebellar granule cell GABAA receptors. J Mol Neurosci: MN 60:539–547. doi:10.1007/s12031-016-0838-0

    CAS  Article  PubMed  Google Scholar 

  19. Gawande DY, Goel RK (2015) Pharmacological validation of in-silico guided novel nootropic potential of Achyranthes aspera L. J Ethnopharmacol 175:324–334

    CAS  Article  PubMed  Google Scholar 

  20. Gregory SK (2011) Quercetin. Alter Med Rev 16(2):172–194

    Google Scholar 

  21. Hamed SA (2016) The effect of epilepsy and antiepileptic drugs on sexual, reproductive and gonadal health of adults with epilepsy. Expert Rev Clin Pharmacol 9(6):807–819

    CAS  Article  PubMed  Google Scholar 

  22. Hauser WA, Annegers JF, Kurland LT (1993) Incidence of epilepsy and unprovoked seizures in Rochester, Minnesota: 1935–1984. Epilepsia 34:453–468

    CAS  Article  PubMed  Google Scholar 

  23. Hernan AE, Holmes GL (2016) Antiepileptic drug treatment strategies in neonatal epilepsy. Prog Brain Res 226:179–193

    CAS  Article  PubMed  Google Scholar 

  24. Huang RQ, Bell-Horner CL, Dibas MI, Covey DF, Drewe JA, Dillon GH (2001) Pentylenetetrazole-induced inhibition of recombinant gammaaminobutyric acid type a (GABA(a)) receptors: mechanism and site of action. J Pharmacol Exp Ther 298:986–995

    CAS  PubMed  Google Scholar 

  25. Ishola IO, Olayemi SO, Yemitan OK, Ekpemandudiri NK (2013) Mechanisms of anticonvulsant and sedative actions of the ethanolic stem-bark extract of Ficus Sur Forssk (Moraceae) in rodents. Pak J Biol Sci 16(21):1287–1294

    Article  PubMed  Google Scholar 

  26. Jarogniew JŁ, Aleksandra W, Ewa M, Dominika P, Dariusz D, Magdalena F (2012) Isobolographic characterization of interaction of levetiracetam with clobazam in the mouse 6 Hz psychomotor seizure model. J Pre-Clin Res 6(1):25–30

    Google Scholar 

  27. John G (2013) Molecular mechanisms of antiseizure drug activity at GABAA receptors. Seizure 22:589–600

    Article  Google Scholar 

  28. Joshi R, Reeta KH, Sharma SK, Tripathi M, Gupta YK (2015) Pharmacodynamic and pharmacokinetic interaction of PanchagavyaGhrita with phenytoin and carbamazepine in maximal electroshock induced seizures in rats. Ayu 36(2):196–202

    Article  PubMed  PubMed Central  Google Scholar 

  29. Kaminski RM, Livingood MR, Rogawski MA (2004) Allopregnanolone analogs that positively modulate GABA receptors protect against partial seizures induced by 6-Hz electrical stimulation in mice. Epilepsia 45(7):864–867

    CAS  Article  PubMed  Google Scholar 

  30. Karim N, Irshad S, Khan I, Mohammad A, Anis I, Shah MR, Khan I, Chebib M (2015) GABA(a) receptor modulation and neuropharmacological activities of viscosine isolated from Dodonaeaviscosa (Linn). Pharmacol Biochem Behav 136:64–72

    CAS  Article  PubMed  Google Scholar 

  31. Khan N, Akhtar MS, Khan BA, Braga Vde A, Reich A (2015) Antiobesity, hypolipidemic, antioxidant and hepatoprotective effects of Achyranthes aspera seed saponins in high cholesterol fed albino rats. Arch Med Sci 11(6):1261–1271

    Article  PubMed  PubMed Central  Google Scholar 

  32. Khazdair MR, Boskabady MH, Hosseini M, Rezaee R M Tsatsakis A(2015) The effects of Crocus sativus (saffron) and its constituents on nervous system: a review. Avicenna J Phytomed 5(5):376–391

    PubMed  PubMed Central  Google Scholar 

  33. Kothavade PS, Bulani VD, Nagmoti DM, Deshpande PS, Gawali NB, Juvekar AR (2015) Therapeutic Effect of Saponin Rich Fraction of Achyranthes aspera Linn. On Adjuvant-Induced Arthritis in Sprague-Dawley Rats. Autoimm Dis 2015:943645

    Google Scholar 

  34. Leander JD, Lawson RR, Ornstein PL, Zimmerman DM (1988) N-methyl-D-aspartic acid induced lethality in mice: selective antagonism by phencyclidine-like drugs. Brain Res 448:115–120

    CAS  Article  PubMed  Google Scholar 

  35. Li J, Fish RL, Cook SM, Tattersall FD, Atack JR (2006) Comparison of in vivo and ex vivo [3H]flumazenil binding assays to determine occupancy at the benzodiazepine binding site of rat brain GABAA receptors. Neuropharmacol 51(1):168–172

    CAS  Article  Google Scholar 

  36. Magdalena FL, Aleksandra W, Maria WKW, Piotr T, Jarogniew JL (2014) Effects of WIN 55,212-2 (a non-selective cannabinoid CB1 and CB2 receptor agonist) on the protective action of various classical antiepileptic drugs in the mouse 6 Hz psychomotor seizure model. J Neural Transm 121(7):707–715

    Article  Google Scholar 

  37. Malami S, Kyari H, Danjuma NM, Ya'u J, Hussaini IM (2016) Anticonvulsant Properties of Methanol Leaf Extract of LaggeraAurita Linn. F. (Asteraceae) in Laboratory Animals. J Ethnopharmacol. 191:301–306

    CAS  Article  PubMed  Google Scholar 

  38. Maria D, Arianna DL, Seyed FN, Zeliha ST, Seyed MN (2016) Polyphenols: well beyond the antioxidant capacity: Gallic acid and related compounds as neuroprotective agents: you are what you eat! Curr Pharm Biotechnol 15(4):362–372

    Google Scholar 

  39. Marvin MG (2010) Overview of drugs used for epilepsy and seizures etiology, diagnosis, and treatment. PT 35(7):392–415

    Google Scholar 

  40. Mishra A, Punia JK, Bladen C, Zamponi GW, Goel RK (2015) Anticonvulsant mechanisms of piperine, a piperidine alkaloid. Channels (Austin) 9(5):317–323

    Article  Google Scholar 

  41. Mora PA, Hernandez MMD (2016) Anticonvulsant activity of methanolic extract from Kalanchoepinnata lam. Stems and roots in mice: a comparison to diazepam. Neurologia 31(3):161–168

    Article  Google Scholar 

  42. Moreau JL, Pieri L, Prud'hon B (1989) Convulsions induced by centrally administered NMDA in mice: effects of NMDA antagonists, benzodiazepines, minor tranquilizers and anticonvulsants. Br J Pharmacol 98:1050–1054

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  43. Mukherjee H, Ojha D, Bag P, Chandel HS, Bhattacharyya S, Chatterjee TK et al (2013) Anti-herpes virus activities of Achyranthes aspera: an indianethnomedicine, and its triterpene acid. Microbiol Res 168(4):238–244

    CAS  Article  PubMed  Google Scholar 

  44. Mula M (2016) Third generation antiepileptic drug monotherapies in adults with epilepsy. Expert Rev Neurother 16(9):1087–1092

    CAS  Article  PubMed  Google Scholar 

  45. Narayan C, Kumar A (2014) Antineoplastic and immunomodulatory effect of polyphenolic components of Achyranthes aspera (PCA) extract on urethane induced lung cancer in vivo. Mol Biol Rep 41(1):179–191

    CAS  Article  PubMed  Google Scholar 

  46. Ndhlala AR, Ghebrehiwot HM, Ncube B, Aremu AO, Gruz J, Subrtova M (2015) Antimicrobial, anthelmintic activities and characterisation of functional phenolic acids of Achyranthes aspera Linn.: a medicinal plant used for the treatment of wounds and ringworm in East Africa. Front Pharmacol 6:274. doi:10.3389/fphar.2015.00274

    Article  PubMed  PubMed Central  Google Scholar 

  47. Nogueira E, Vassilieff VS (2000) Hypnotic, anticonvulsant and muscle relaxant effects of Rubus Brasiliensis. Involvement of GABA (a)-system. J Ethnopharmacol 70(3):275–280

    CAS  Article  PubMed  Google Scholar 

  48. OECD (2001) Guideline on acute oral toxicity (AOT) Environmental health and safety monograph series on testing and adjustment No.425. http://www.oecd.org/chemicalsafety/risk-assessment/1948378.pdf. Accessed 23 Aug 2016

  49. Parkash O, Kumar D, Kumar S (2015) Screening of methanol extract and ethyl acetate fraction of AbieswebbianaLindl. forNeuropharmacologicalActivities. Ind J Pharm Sci 77(5):536–541

    CAS  Article  Google Scholar 

  50. Psarropoulou C, Matsokis N, Angelatou F, Kostopoulos G (1994) Pentylenetetrazol-induced seizures decrease γ-aminobutyric acid-mediated recurrent inhibition and enhance adenosinemediated depression. Epilepsia 35:12–19

    CAS  Article  PubMed  Google Scholar 

  51. Rani N, Sharma SK, Vasudeva N (2012) Assessment of antiobesity potential of Achyranthes aspera Linn. Seed Evid Based Complement Alternat Med 2012:715912. doi:10.1155/2012/715912

    PubMed  Google Scholar 

  52. Rundfeldt C, Wlaz P, Honack D, Loscher W (1995) Anticonvulsant tolerance and withdrawal characteristics of benzodiazepine receptor ligands in different seizure models in mice. Comparison of diazepam, bretazenil and abecarnil. J Pharmacol Exp Ther 275:693–702

    CAS  PubMed  Google Scholar 

  53. Sasso O, La Rana G, Vitiello S, Russo R, D'Agostino G, Iacono A, Russo E, Citraro R, Cuzzocrea S, Piazza PV, De Sarro G, Meli R, Calignano A (2010) Palmitoylethanolamide modulates pentobarbital-evoked hypnotic effect in mice: involvement of allopregnanolone biosynthesis. Eur Neuropsychopharmacol 20(3):195–206

    CAS  Article  PubMed  Google Scholar 

  54. Satinder A, Suvasini S (2013) Newer anti-epileptic drugs. Indian Pediatr 50:1033–1040

    Article  Google Scholar 

  55. Saurabh SPS, Jha KK, Mishra G, Shruti S, Karchuli MS, Khosa RL (2011) Diuretic activity of whole plant extract of Achyranthes aspera Linn. Eur J Exp Biol 1(2):97–102

    Google Scholar 

  56. Sean DH, Amanda N, Dana AH, Jan KM, Gary KH (2012) Benzodiazepine dependence and its treatment with low dose flumazenil. Br J Clin Pharmacol 77(2):285–294

    Google Scholar 

  57. Shagun AST (2014) Achyranthes aspera Root extracts induce human ColonCancer cell (COLO-205) death by triggering the MitochondrialApoptosis pathway and S phase cell cycle arrest. Sci World J 2014:129697. doi:10.1155/2014/129697

    Google Scholar 

  58. Shannon M, Albers G, Burkhardt K (1997) Safety and efficacy of flumazenil in the reversal of benzodiazepine-induced conscious sedation. J Pediatr 131(4):582–586

    CAS  Article  PubMed  Google Scholar 

  59. Sharma J, Gairola S, Gaur RD, Painuli RM, Siddiqi TO (2013) Ethnomedicinal plants used for treating epilepsy by indigenous communities of sub-Himalayan region of Uttarakhand, Inda. J Ethnopharmacol 150(1):353–370

    Article  PubMed  Google Scholar 

  60. Showraki A, Emamghoreishi M, Oftadegan S (2016) Anticonvulsant effect of the aqueous extract and essential oil of CarumCarvi L. seeds in a Pentylenetetrazol model of seizure in mice. Iran J Med Sci. 41(3):200–208

    PubMed  Google Scholar 

  61. Suher MA, Abdullah SE, Saleem SA, Samir FS, Amina SA (2000) Effects of acute and chronic triazolam treatments on brain GABA levels in albino rats. Acta Neurobiol Exp (Wars) 60(4):447–455

    Google Scholar 

  62. Talukder FZ, Khan KA, Uddin R, Jahan N, Alam MA (2012) In vitro free radical scavenging and anti-hyperglycemic activities of Achyranthes aspera extract in alloxan-induced diabetic mice. Drug Discov Ther 6(6):298–305

    PubMed  Google Scholar 

  63. Uhlirova LM, Sustkova F, Krsiak M (2004) Behavioral effects of flumazenil in the social conflict test in mice. Psychopharmacol 171(3):259–269

    CAS  Article  Google Scholar 

  64. Viswanatha GL, Mohan CG, Shylaja H, Yuvaraj HC, Sunil V (2013) Anticonvulsant activity of 1,2,3,4,6-penta-O-galloyl-β-Dglucopyranose isolated from leaves of Mangifera indica. Naunyn Schmiedeberg's Arch Pharmacol 386(7):599–604

    CAS  Article  Google Scholar 

  65. Wojda E, Wlaz A, Patsalos PN, Luszczki JJ (2009) Isobolographic characterization of interactions of levetiracetam with the various antiepileptic drugs in the mouse 6 Hz psychomotor seizure model. Epilepsy Res 86(2–3):163–174

    CAS  Article  PubMed  Google Scholar 

  66. Wolfgang L (2011) Critical review of current animal models of seizures and epilepsy used in the discovery and development of new antiepileptic drugs. Seizure 20:359–368

    Article  Google Scholar 

  67. Yamaguchi S, Donevan SD, Rogawski MA (1993) Anticonvulsant activity of AMPA/kainate antagonists: comparison of GYKJ 52466 and NBQX in maximal electroshock and chemoconvulsant seizure models. Epilepsy Res 15:179–184

    CAS  Article  PubMed  Google Scholar 

  68. Yang Y, Wang X (2016) Sexual dysfunction related to antiepileptic drugs in patients with epilepsy. Expert Opin Drug Saf 15(1):31–42

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the technical help provided by Dr. Nandakumar K, Associate Professor, Department of Pharmacology, Manipal college of Pharmaceutical sciences, Manipal.

The authors greatly acknowledge Ms.Radiant Research Services Pvt. Ltd., Bangalore, Vitthartha Life Sciences, Bommasandra Industrial Area, Bangalore, and Manipal College of Pharmaceutical Sciences, Manipal for providing all the neccesary facilities and Technical help in completing the research work.

Author information

Affiliations

Authors

Contributions

GLV, MVV, NBLP and AG have contributed equally for designing, conducting the study, data collection, analysis and preparation of manuscript, MVV and NBLP involved in critical analysis and interpretation of findings, MVV, NBLP, AG have proof read and approved the final version of manuscript.

Corresponding author

Correspondence to Gollapalle Lakshminarayanashastry Viswanatha.

Ethics declarations

Conflicts of interest

The authors declare there are no conflicts of interest and they guarantee no further ethical conflict among the authors and the experimental methodology. Also, no formal funding from any agencies was used for this project.

Electronic supplementary material

ESM 1

(DOCX 94 kb)

ESM 2

(DOCX 93 kb)

ESM 3

(DOCX 92 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Viswanatha, G.L., Venkataranganna, M.V., Prasad, N.B.L. et al. Achyranthes aspera Attenuates epilepsy in experimental animals: possible involvement of GABAergic mechanism. Metab Brain Dis 32, 867–879 (2017). https://doi.org/10.1007/s11011-017-9981-8

Download citation

Keywords

  • Achyranthes aspera
  • Anticonvulsant
  • Epilepsy
  • Herbal medicine
  • Six-hertz seizures
  • MES –induced seizures
  • PTZ-induced seizures
  • Gamma-amino butyric acid
  • Diazepam