Advertisement

Metabolic Brain Disease

, Volume 32, Issue 3, pp 751–755 | Cite as

Ras-like without CAAX 2 (RIT2): a susceptibility gene for autism spectrum disorder

  • Shima Yazdandoost Hamedani
  • Jalal Gharesouran
  • Rezvan Noroozi
  • Arezou Sayad
  • Mir Davood Omrani
  • Atefeh Mir
  • Sarah Sadat Aghabozrg Afjeh
  • Mehdi Toghi
  • Saba Manoochehrabadi
  • Soudeh Ghafouri-Fard
  • Mohammad TaheriEmail author
Original Article

Abstract

Ras-like without CAAX2 (RIT2) which encodes a GTP-binding protein has recently been reported as a new susceptibility gene for Autism Spectrum Disorders (ASD) in a genome-wide association study. Since the gene is suggested to be involved in the pathogenesis of different neurological diseases, we investigated the association of two single nucleotide polymorphisms (SNP) rs16976358 and rs4130047 of this gene with ASD in Iranian patients. A total of 1004 individuals, comprising 532 ASD cases and 472 healthy subjects participated in this study. Allele frequency analyses showed significant over-presentation of rs16976358-C allele in cases versus controls (P < 0.0001). In addition, rs16976358 CC genotype (OR (95% CI) =3.57(1.72–7.69) and P < 0.0001) and rs4130047 CC genotype (OR (95% CI) =0.64(0.43–0.97) and P = 0.035) were associated with ASD in recessive inheritance model. Besides, haplotype analysis demonstrated an association between the C/T haplotype block (rs16976358/rs4130047) and ASD (OR (95%CI) = 0.44 (0.31–0.62), P < 0.0001). Altogether, our findings provided additional confirmation for the RIT2 gene participation in ASD risk and suggested the rs16976358 variant as a possible genetic risk factor for this disorder.

Keywords

Autism Spectrum disorder RIT2 Neurodevelopmental disorder 

Notes

Acknowledgements

We thank all of the patients participated in this study and are grateful to the Department of Medical Genetics of Shahid Beheshti University of Medical Science for their support of this work. We also thank the staff of the Department of Medical Genetics for technical support during the study.

References

  1. Bossers K, Meerhoff G, Balesar R, Van Dongen JW, Kruse CG, Swaab DF, Verhaagen J (2009) Analysis of gene expression in Parkinson's disease: possible involvement of neurotrophic support and axon guidance in dopaminergic cell death. Brain Pathol 19:91–107CrossRefPubMedGoogle Scholar
  2. Burbach JPH, VAN Der Zwaag B (2009) Contact in the genetics of autism and schizophrenia. Trends Neurosci 32:69–72CrossRefPubMedGoogle Scholar
  3. Collins A, Ke X (2012) Primer1: primer design web service for tetra-primer ARMS-PCR. The Open Bioinformatics Journal 6:55–58CrossRefGoogle Scholar
  4. Do CB, Tung JY, Dorfman E, Kiefer AK, Drabant EM, Francke U, Mountain JL, Goldman SM, Tanner CM, Langston JW (2011) Web-based genome-wide association study identifies two novel loci and a substantial genetic component for Parkinson's disease. PLoS Genet 7:e1002141CrossRefPubMedPubMedCentralGoogle Scholar
  5. Emamalizadeh B, Jamshidi J, Movafagh A, Ohadi M, Kazeminasab S, Biglarian A, Taghavi S, Motallebi M, Fazeli A, Ahmadifard A (2016) RIT2 polymorphisms: is there a differential association? Mol Neurobiol:1–7Google Scholar
  6. Geschwind DH (2008) Autism: many genes, common pathways? Cell 135:391–395CrossRefPubMedPubMedCentralGoogle Scholar
  7. Glessner JT, Connolly JJ, Hakonarson H (2014) Genome-wide association studies of autism. Current Behavioral Neuroscience Reports 1:234–241CrossRefGoogle Scholar
  8. Hamshere ML, Walters JTR, Smith R, Richards AL, Green E, Grozeva D, JONES I, Forty L, Jones L, Gordon-Smith K (2013) Genome-wide significant associations in schizophrenia to ITIH3/4, CACNA1C and SDCCAG8, and extensive replication of associations reported by the schizophrenia PGC. Mol Psychiatry 18:708–712CrossRefPubMedGoogle Scholar
  9. Iossifov I, Zheng T, Baron M, Gilliam TC, Rzhetsky A (2008) Genetic-linkage mapping of complex hereditary disorders to a whole-genome molecular-interaction network. Genome Res 18:1150–1162CrossRefPubMedPubMedCentralGoogle Scholar
  10. Kirov G, Gumus D, Chen W, Norton N, Georgieva L, Sari M, O’donovan MC, Erdogan F, Owen MJ, Ropers H-H (2008) Comparative genome hybridization suggests a role for NRXN1 and APBA2 in schizophrenia. Hum Mol Genet 17:458–465CrossRefPubMedGoogle Scholar
  11. Krumm N, O’roak BJ, Shendure J, Eichler EE (2014) A de novo convergence of autism genetics and molecular neuroscience. Trends Neurosci 37:95–105CrossRefPubMedGoogle Scholar
  12. Kwan KY (2013) Transcriptional dysregulation of neocortical circuit assembly in ASD. Int Rev Neurobiol 113:167CrossRefPubMedPubMedCentralGoogle Scholar
  13. Li J, Zhao L, You Y, Lu T, Jia M, Yu H, Ruan Y, Yue W, Liu J, Lu L (2015) Schizophrenia related variants in CACNA1C also confer risk of autism. PLoS One 10:e0133247CrossRefPubMedPubMedCentralGoogle Scholar
  14. Lin C-H, Chen M-L, Yu C-Y, Wu R-M (2013) RIT2 variant is not associated with Parkinson's disease in a Taiwanese population. Neurobiology of Aging 34:2236. e1–2236. e3CrossRefGoogle Scholar
  15. Liu X, Shimada T, Otowa T, Wu YY, Kawamura Y, Tochigi M, Iwata Y, Umekage T, Toyota T, Maekawa M. (2015a). Genome-wide association study of autism Spectrum disorder in the east Asian populations. Autism Research 9(3):340-349Google Scholar
  16. Liu Z-H, Guo J-F, Wang Y-Q, Li K, Sun Q-Y, Yan X-X, Xu C-S, Tang B-S (2015b) Assessment of RIT2 rs12456492 association with Parkinson's disease in Mainland China. Neurobiology of Aging 36:1600. e9–1600. e11CrossRefGoogle Scholar
  17. Lu Y, Liu W, Tan K, Peng J, Zhu Y, Wang X (2015) Genetic association of RIT2 rs12456492 polymorphism and Parkinson’s disease susceptibility in Asian populations: a meta-analysis. Scientific reports 5. doi: 10.1038/srep13805
  18. Marshall CR, Noor A, Vincent JB, Lionel AC, Feuk L, Skaug J, Shago M, Moessner R, Pinto D, Ren Y (2008) Structural variation of chromosomes in autism spectrum disorder. Am J Hum Genet 82:477–488CrossRefPubMedPubMedCentralGoogle Scholar
  19. Mitin N, Rossman KL, DER CJ (2005) Signaling interplay in Ras superfamily function. Curr Biol 15:R563–R574CrossRefPubMedGoogle Scholar
  20. Navaroli DM, Stevens ZH, Uzelac Z, Gabriel L, King MJ, Lifshitz LM, Sitte HH, Melikian HE (2011) The plasma membrane-associated GTPase Rin interacts with the dopamine transporter and is required for protein kinase C-regulated dopamine transporter trafficking. J Neurosci 31:13758–13770CrossRefPubMedPubMedCentralGoogle Scholar
  21. Nie K, Feng S-J, Tang H-M, Ma G-X, Gan R, Zhao X, Zhao J-H, Wang L-M, Huang Z-H, Huang J (2015) RIT2 polymorphism is associated with Parkinson's disease in a Han Chinese population. Neurobiology of Aging 36:1603. e15–1603. e17CrossRefGoogle Scholar
  22. Noroozi R, Taheri M, Movafagh A, Mirfakhraie R, Solgi G, Sayad A, Mazdeh M, Darvish H (2016) Glutamate receptor, metabotropic 7 (GRM7) gene variations and susceptibility to autism: a case–control study. Autism Res 9:1161–1168Google Scholar
  23. Pankratz N, Beecham GW, Destefano AL, Dawson TM, Doheny KF, Factor SA, Hamza TH, Hung AY, Hyman BT, Ivinson AJ (2012) Meta-analysis of Parkinson's disease: identification of a novel locus, RIT2. Ann Neurol 71:370–384CrossRefPubMedPubMedCentralGoogle Scholar
  24. Ronemus M, Iossifov I, Levy D, Wigler M (2014) The role of de novo mutations in the genetics of autism spectrum disorders. Nat Rev Genet 15:133–141CrossRefPubMedGoogle Scholar
  25. Rosenfeld JA, Ballif BC, Torchia BS, Sahoo T, Ravnan JB, Schultz R, Lamb A, Bejjani BA, Shaffer LG (2010) Copy number variations associated with autism spectrum disorders contribute to a spectrum of neurodevelopmental disorders. Genetics in Medicine 12:694–702CrossRefPubMedGoogle Scholar
  26. Safari MR, Omrani MD, Noroozi R, Sayad A, Sarrafzadeh S, Komaki A, Manjili FA, Mazdeh M, Ghaleiha A, Taheri M (2016) Synaptosome-associated protein 25 (SNAP25) gene association analysis revealed risk variants for ASD, in Iranian population. J Mol Neurosci 1–7. doi: 10.1007/s12031-016-0860-2
  27. Safari MR, GHAFOURI-Fard S, Noroozi R, Sayad A, Omrani MD, Komaki A, Eftekharian MM, Taheri M (2017) FOXP3 gene variations and susceptibility to autism: a case–control study. Gene 596:119–122CrossRefPubMedGoogle Scholar
  28. Shaw C, Sheth S, Li D, Tomljenovic L (2014) Etiology of autism spectrum disorders: genes, environment, or both. OA Autism 2(2):11Google Scholar
  29. Sole X, Guinó E, Valls J, Iniesta R, Moreno V (2006) SNPStats: a web tool for the analysis of association studies. Bioinformatics 22:1928–1929CrossRefPubMedGoogle Scholar
  30. Tager-Flusberg H, Paul R, Lord C (2005) Language and communication in autism. Handbook of autism and pervasive developmental disorders 1:335–364Google Scholar
  31. Takai Y, Sasaki T, Matozaki T (2001) Small GTP-binding proteins. Physiol Rev 81:153–208PubMedGoogle Scholar
  32. Vigil D, Cherfils J, Rossman KL, Der CJ (2010) Ras superfamily GEFs and GAPs: validated and tractable targets for cancer therapy? Nat Rev Cancer 10:842–857CrossRefPubMedPubMedCentralGoogle Scholar
  33. Wang J-Y, Gong M-Y, Ye Y-L, Ye J-M, Lin G-L, Zhuang Q-Q, Zhang X, Zhu J-H (2015) The RIT2 and STX1B polymorphisms are associated with Parkinson's disease. Parkinsonism Relat Disord 21:300–302CrossRefPubMedGoogle Scholar
  34. Ward LD, KELLIS M (2012) HaploReg: a resource for exploring chromatin states, conservation, and regulatory motif alterations within sets of genetically linked variants. Nucleic Acids Res 40:D930–D934CrossRefPubMedGoogle Scholar
  35. Yang W, Liu J, Zheng F, JIA M, Zhao L, Lu T, Ruan Y, Zhang J, Yue W, Zhang D (2013) The evidence for association of ATP2B2 polymorphisms with autism in Chinese Han population. PLoS One 8:e61021CrossRefPubMedPubMedCentralGoogle Scholar
  36. Zhang L, Wahlin K, Li Y, Masuda T, Yang Z, Zack DJ, Esumi N (2013) RIT2, a neuron-specific small guanosine triphosphatase, is expressed in retinal neuronal cells and its promoter is modulated by the POU4 transcription factors. Mol Vis 19:1371–1386PubMedPubMedCentralGoogle Scholar
  37. Zhang X, Niu M, Li H, Xie A (2015) RIT2 rs12456492 polymorphism and the risk of Parkinson’s disease: a meta-analysis. Neurosci Lett 602:167–171CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Shima Yazdandoost Hamedani
    • 1
  • Jalal Gharesouran
    • 2
    • 3
  • Rezvan Noroozi
    • 4
  • Arezou Sayad
    • 2
  • Mir Davood Omrani
    • 2
    • 5
  • Atefeh Mir
    • 6
  • Sarah Sadat Aghabozrg Afjeh
    • 2
  • Mehdi Toghi
    • 2
  • Saba Manoochehrabadi
    • 2
  • Soudeh Ghafouri-Fard
    • 2
  • Mohammad Taheri
    • 2
    • 5
    Email author
  1. 1.Department of BiologyIslamic Azad University, Central Tehran BranchTehranIran
  2. 2.Department of Medical Genetics, School of MedicineShahid Beheshti University of Medical SciencesTehranIran
  3. 3.Department of Medical Genetics, Faculty of MedicineTabriz University of Medical SciencesTabrizIran
  4. 4.Young Researchers and Elite Club, Ahvaz BranchIslamic Azad UniversityAhvazIran
  5. 5.Urogenital Stem Cell Research CenterShahid Beheshti University of Medical SciencesTehranIran
  6. 6.Department of Biology, Faculty of SciencesUniversity of Sistan and BalouchestanZahedanIran

Personalised recommendations