Ocimum basilicum improve chronic stress-induced neurodegenerative changes in mice hippocampus

Abstract

Alzheimer’s disease (AD), one of the progressive neurodegenerative diseases might be associated with exposure to stress and altered living conditions. This study aimed to evaluate the effectiveness of Ocimum basilicum (OB) essential oils in improving the neurodegenerative-like changes induced in mice after exposed to chronic unpredictable mild stress (CUMS). Forty male Swiss albino mice divided into four groups (n = 10); the control, CUMS, CUMS + Fluoxetine, CUMS + OB were used. Behavioral tests, serum corticosterone level, hippocampus protein level of the glucocorticoid receptors (GRs) and brain-dreived neurotropic factor (BDNF) were determined after exposure to CUMS. Hippocampus was histopathologically examined. Data were analyzed using statistical package for the social sciences (SPSS) and P value of less than 0.05 was considered significant. OB diminished the depression manifestation as well as impaired short term memory observed in the mice after exposure to the CUMS as evidenced by the forced swimming and elevated plus maze test. OB also up-regulated the serum corticosterone level, hippocampal protein level of the glucocorticoid receptor and the brain-derived neurotropic factor and reduced the neurodegenerative and atrophic changes induced in the hippocampus after exposure to CUMS. Essential oils of OB alleviated the memory impairment and hippocampal neurodegenerative changes induced by exposure to the chronic unpredictable stress indicating that it is the time to test its effectiveness on patients suffering from Alzheimer disease.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Aicardi G (2013) New hope from an old drug: fighting Alzheimer's disease with the cancer drug bexarotene (targretin)? Rejuvenation Res 16(6):524–528. https://doi.org/10.1089/rej.2013.1497

    Article  PubMed  CAS  Google Scholar 

  2. Aleisa AM, Alzoubi KH, Gerges NZ, Alkadhi KA (2006) Chronic psychosocial stress-induced impairment of hippocampal LTP: possible role of BDNF. Neurobiol Dis 22:453–462

    Article  PubMed  CAS  Google Scholar 

  3. Alzheimer’s Association (2015) Alzheimer's disease facts and figures. Alzheimers Dement 11(3):332–384

    Article  Google Scholar 

  4. Ayuob NN, Ali SS, Suliaman M, El Wahab MG, Ahmed SM (2016) The antidepressant effect of musk in an animal model of depression: a histopathological study. Cell Tissue Res 366(2):271–284

    Article  PubMed  Google Scholar 

  5. Bae D, Seol H, Yoon HG, Na JR, Oh K, Choi CY, Lee DW, Jun W, Youl Lee K, Lee J, Hwang K, Lee YH, Kim S (2012) Inhaled essential oil from Chamaecyparis obtuse ameliorates the impairments of cognitive function induced by injection of β-amyloid in rats. Pharm Biol 50(7):900–910

    Article  PubMed  Google Scholar 

  6. Bancroft JD, Gamble M (2008) Theory and practice of histological techniques, 6th edn. Churchill Livingstone, Philadelphia

    Google Scholar 

  7. Bora KS, Arora S, Shri R (2011) Role of Ocimum basilicum L. in prevention of ischemia and reperfusion-induced cerebral damage, and motor dysfunctions in mice brain. J Ethnopharmacol 137:1360–1365

    Article  PubMed  Google Scholar 

  8. Chen W, Mao L, Xing H, Xu L, Fu X, Huang L, Huang D, Pu Z, Li Q (2015) Lycopene attenuates Aβ1-42 secretion and its toxicity in human cell and Caenorhabditis elegans models of Alzheimer disease. Neurosci Lett. https://doi.org/10.1016/j.neulet.2015.10.009

  9. Chioca LR, Ferro MM, Baretta IP, Oliveira SM, Ferreira J, Losso EM, Andreatini R, Silva CR (2013) Anxiolytic-like effect of lavender essential oil inhalation in mice: Participation of serotonergic but not GABA neurotransmission. J Ethnopharmacol 147:412–418

    Article  PubMed  CAS  Google Scholar 

  10. Chung JK, Plitman E, Nakajima S, Chakravarty MM, Caravaggio F, Gerretsen P, Iwata Y, Graff-Guerrero A (2016) Cortical amyloid β Deposition and current depressive symptoms in Alzheimer disease and mild cognitive impairment. J Geriatr Psychiatry Neurol 29(3):149–159

  11. Cvetković-Dožić D, Skender-Gazibara M, Dožić S (2001) Neuropathological hallmarks of Alzheimer's disease. Arch Oncol 9(3):195–199

    Google Scholar 

  12. Doro R, Lotan D, Versano Z, Benatav L, Franko M, Armoza S, Kately N, Rehavi M (2014) Escitalopram or novel herbal mixture treatments duringor following exposure to stress reduce anxiety like behavior through corticosterone and BDNF modifications. PLoS One 9(4):e91455. https://doi.org/10.1371/journal.pone.0091455 eCollection 2014

    Article  CAS  Google Scholar 

  13. Doron R, Lotan D, Einat N, Yaffe R, Winer A, Marom I, Meron G, Kately N, Rehavi M (2014) A novel herbal treatment reduces depressive-like behaviors and increases BDNF levels in the brain of stressed mice. Life Sci 94(2):151–157

    Article  PubMed  CAS  Google Scholar 

  14. Duman RS, Monteggia LM (2006) A neurotrophic model for stress-related mood disorders. Biol Psychiatry 59:1116–1127

    Article  PubMed  CAS  Google Scholar 

  15. Dwivedi Y, Rizavi HS, Pandey GN (2006) Antidepressants reverse corticosterone-mediated decrease in brain-derived neurotrophic factor expression: differential regulation of specific exons by antidepressants and corticosterone. Neuroscience 139(3):1017–1029

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Gong S, Miao YL, Jiao GZ, Sun MJ, Li H, Lin J, Luo MJ, Tan JH (2015) Dynamics and correlation of serum cortisol and corticosterone under different physiological or stressful conditions in mice. PLoS One 10(2):e0117503

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Grayer RJ, Bryan SE, Veitch NC, Goldstone FJ, Paton A, Wollenweber E (1996) External flavones in sweet basil, Ocimum basilicum, and related taxa. Phytochemistry 43(5):1041–1047

  18. Hritcu L, Cioanca O, Hancianu M (2012) Effects of lavender oil inhalation on improving scopolamine-induced spatial memory impairment in laboratory rats. Phytomedicine 19(6):529–534. https://doi.org/10.1016/j.phymed.2012.02.002

    Article  PubMed  CAS  Google Scholar 

  19. Huang Y, Skwarek-Maruszewska A, Horré K, Vandewyer E, Wolfs L, Snellinx A et al (2015) Loss of GPR3 reduces the amyloid plaque burden and improves memory in Alzheimer's disease mouse models. Sci Transl Med 7(309):309ra164

    Article  PubMed  CAS  Google Scholar 

  20. Ismail M (2006) Central Properties and Chemical Composition of Ocimum basilicum Essential Oil. Pharm Biol 44:619–626

    Article  CAS  Google Scholar 

  21. Itoh J, Nabeshima T, Kameyama T (1990) Utility of an elevated plus-maze for the evaluation of memory in mice: effects of nootropics, scopolamine and electroconvulsive shock. Psychopharmacology 101(1):27–33

    Article  PubMed  CAS  Google Scholar 

  22. Johansson L, Guo X, Waern M, Ostling S, Gustafson D, Johansson L, Guo X, Waern M, Ostling S, Gustafson D, Bengtsson C et al (2010) Midlife psychological stress and risk of dementia: a 35-year longitudinal population study. Brain 133:2217–2224

    Article  PubMed  Google Scholar 

  23. Khan IA, Abourashed EA (2010) Leung’s Encyclopedia of Common Natural Ingredients. Wiley, Hoboken, pp 455–465

    Google Scholar 

  24. Kulkarni SK (2007) Hand book of experimental pharmacology, 3rd edn. Vallabh Prakashan, Delhi, pp 36–38

    Google Scholar 

  25. Laroche S, Davis S, Jay TM (2000) Plasticity at hippocampal to prefrontal cortex synapses: dual roles in working memory and consolidation. Hippocampus 10:438–446

    Article  PubMed  CAS  Google Scholar 

  26. Lee KW, Kim JB, Seo JS, Kim TK, Im JY, Baek IS, Kim KS, Lee JK, Han PL (2009) Behavioral stress accelerates plaque pathogenesis in the brain of Tg2576 mice via generation of metabolic oxidative stress. J Neurochem 108:165–175

    Article  PubMed  CAS  Google Scholar 

  27. Li B, Yamamori H, Tatebayashi Y, Shafit-Zagardo B, Tanimukai H, Chen S, Iqbal K, Grundke-Iqbal I (2008) Failure of neuronal maturation in Alzheimer disease dentate gyrus. J Neuropathol Exp Neurol 67(1):78–84

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Li M, Fu Q, Li Y, Li S, Xue J, Ma S (2014) Emodin opposes chronic unpredictable mild stress induced depressive-like behavior in mice by upregulating the levels of hippocampal glucocorticoid receptor and brain-derived neurotrophic factor. Fitoterapia 98:1–10

    Article  PubMed  CAS  Google Scholar 

  29. Liu D, Xie K, Yang X, Gu J, Ge L, Wang X, Wang Z (2014) Resveratrol reverses the effects of chronic unpredictable mild stress on behavior, serum corticosterone levels and BDNF expression in rats. Behav Brain Res 264:9–16

    Article  PubMed  CAS  Google Scholar 

  30. Makhlouf NA, El-Beshbishy RA, Abousetta A (2014) Ginkgo modulates noise-induced hippocampal damage in male albino rats: a light and electron microscopic study. Egypt J Hist 37(1):159–174. https://doi.org/10.1097/01.EHX.0000444078.17248.ab

    Article  Google Scholar 

  31. Marksteiner J, Walch T, Bodner T, Gurka P, Donnemiller E (2003) Fluoxetine in Alzheimer's disease with severe obsessive compulsive symptoms and a low density of serotonin transporter sites. Pharmacopsychiatry 36(5):207–209

    Article  PubMed  CAS  Google Scholar 

  32. McEwen BS (2007) Physiology and neurobiology of stress and adaptation: central role of the brain. Physiol Rev 87:873–904

    Article  PubMed  Google Scholar 

  33. Mineur YS, Belzung C, Crusio WE (2006) Effects of unpredictable chronic mild stress on anxiety and depression-like behavior in mice. Behav Brain Res 175:43–50

    Article  PubMed  Google Scholar 

  34. Nobakht M, Hoseini SM, Mortazavi P, Sohrabi I, Esmailzade B, Roosh RN, Omidzahir S (2011) Neuropathological Changes in Brain Cortex and Hippocampus in a Rat Model of Alzheimer’s Disease. Iran Biomed J 15:51–58

    PubMed  PubMed Central  Google Scholar 

  35. Okasha EF (2012) Dentate gyrus changes in an Alzheimer-induced model in adult male albino rats and the possible protection by ginger: Histological and immunohistochemical study. Egypt J Hist 35:711–720

    Article  Google Scholar 

  36. de Paula JJ, Diniz BS, Bicalho MA, Albuquerque MR, Nicolato R, de Moraes EN, Romano-Silva MA, Malloy-Diniz LF (2015) Specific cognitive functions and depressive symptoms as predictors of activities of daily living in older adults with heterogeneous cognitive backgrounds. Front Aging Neurosci 7:139

    Article  PubMed  PubMed Central  Google Scholar 

  37. Pavesi E, Canteras NS, Carobrez AP (2011) Acquisition of Pavlovian fear conditioning using β-adrenoceptor activation of the dorsal premammillary nucleus as an unconditioned stimulus to mimic live predator-threat exposure. Neuropsychopharmacology 36:926–939

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Paxinos G, Watson C (1998) The Rat Hippocampus in Stereotaxic Coordinates. Academic Press, San Diego

    Google Scholar 

  39. Popp J, Wolfsgruber S, Heuser I, Peters O, Hüll M, Schröder J, Möller HJ, Lewczuk P, Schneider A, Jahn H, Luckhaus C, Perneczky R, Frölich L, Wagner M, Maier W, Wiltfang J, Kornhuber J, Jessen F (2015) Cerebrospinal fluid cortisol and clinical disease progression in MCI and dementia of Alzheimer's type. Neurobiol Aging 36(2):601–607

    Article  PubMed  CAS  Google Scholar 

  40. Saab BJ, Georgiou J, Nath A, Lee FJS, Wang M, Michalon A et al (2009) NCS-1 in the dentate gyrus promotes exploration, synaptic plasticity, and rapid acquisition of spatial memory. Neuron 63:643–656

    Article  PubMed  CAS  Google Scholar 

  41. Satou T, Kasuya H, Maeda K, Koike K (2014) Daily inhalation of α-pinene in mice: effects on behavior and organ accumulation. Phytother Res 28:1284–1287

    Article  PubMed  CAS  Google Scholar 

  42. Sotiropoulos I, Catania C, Pinto LG, Silva R, Pollerberg GE, Takashima A et al (2011) Stress acts cumulatively to precipitate Alzheimer's disease-like tau pathology and cognitive deficits. J Neurosci 31:7840–7847

    Article  PubMed  CAS  Google Scholar 

  43. Srivareerat M, Tran TT, Salim S, Aleisa AM, Alkadhi KA (2011) Chronic nicotine restores normal Aβ levels and prevents short-term memory and E-LTP impairment in Aβ rat model of Alzheimer’s disease. Neurobiol Aging 32:834–844

    Article  PubMed  CAS  Google Scholar 

  44. Tsigos C, Chrousos GP (2002) Hypothalamic-pituitary-adrenal axis neuroendocrine factors and stress. J Psychosom Res 53:865–871

    Article  PubMed  Google Scholar 

  45. Wang Y, Kan H, Yin Y, Wua W, Hua W, Wang M, Li W, Li W (2014) Protective effects of ginsenoside Rg1 on chronic restraint stress induced learning and memory impairments in male mice. Pharmacology. Biochemistry and Behavior 120:73–81

    Article  CAS  Google Scholar 

  46. Wilson RS, Barnes LL, Bennett DA, Li Y, Bienias JL, Mendes de Leon CF et al (2005) Proneness to psychological distress and risk of Alzheimer disease in a biracial community. Neurology 64:380–382

    Article  PubMed  CAS  Google Scholar 

  47. Wingenfeld K, Wolf OT (2014) Stress, memory, and the hippocampus. Front Neurol Neurosci 34:109–120. https://doi.org/10.1159/000356423

    Article  PubMed  Google Scholar 

  48. World Medical Association Declaration of Helsinki (2013) Ethical Principles for Medical Research Involving Human Subjects. JAMA 310(20):2191–2194

    Article  CAS  Google Scholar 

  49. Yoshiyama K, Arita H, Suzuki J (2015) The effect of aroma hand massage therapy for people with dementia. J Altern Complement Med 21(12):759–765

  50. Zahra K, Khan MA, Iqbal F (2015) Oral supplementation of Ocimum basilicum has the potential to improves the locomotory, exploratory, anxiolytic behavior and learning in adult male albino mice. Neurol Sci 36:73–78

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Yousef Abdullatif Jameel, Chair of Prophetic Medical Applications (YAJCPMA), Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia, for his support to this study.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Nasra Naeim Ayuob.

Ethics declarations

Conflict of interests

The authors declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ayuob, N.N., El Wahab, M.G.A., Ali, S.S. et al. Ocimum basilicum improve chronic stress-induced neurodegenerative changes in mice hippocampus. Metab Brain Dis 33, 795–804 (2018). https://doi.org/10.1007/s11011-017-0173-3

Download citation

Keywords

  • Sweet Basil
  • Depression
  • Alzheimer
  • Corticosterone
  • GR
  • BDNF