The anxiolytic-like effect of 6-styryl-2-pyrone in mice involves GABAergic mechanism of action

Abstract

The present work aims to investigate the anxiolytic activity of 6-styryl-2-pyrone (STY), obtained from Aniba panurensis, in behavioral tests and amino acids dosage on male Swiss mice. The animals were treated with STY (1, 10 or 20 mg), diazepam (DZP 1 or 2 mg/kg) or imipramine (IMI 30 mg/kg). Some groups were administered with flumazenil, 30 min before administration of the STYor DZP. The behavioral tests performed were open field, rota rod, elevated plus maze (EPM), hole-board (HB) and tail suspension test (TST). After behavioral tests, these animals were sacrificed and had their prefrontal cortex (PFC), hippocampus (HC) and striatum (ST) dissected for assaying amino acids (aspartate- ASP, glutamate- GLU, glycine- GLY, taurine- TAU and Gamma-aminobutyric acid- GABA). In EPM test, STY or DZP increased the number of entries and the time of permanence in the open arms, but these effects were reverted by flumazenil. In the HB test, STY increased the number of head dips however this effect was blocked by flumazenil. The effects of the STY on amino acid concentration in PFC showed increased GLU, GABA and TAU concentrations. In hippocampus, STY increased the concentrations of all amino acids studied. In striatum, STY administration at lowest dose reduced GLU concentrations, while the highest dosage caused the opposite effect. GLI, TAU and GABA concentrations increased with STY administration at highest doses. In conclusion, this study showed that STY presents an anxiolytic-like effect in behavioral tests that probably is related to GABAergic mechanism of action.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Aragão GF, Carneiro LMV, Junior APF, Vieira LC, Bandeira PN, Lemos TLG, Viana GS (2006) A possible mechanism for anxiolytic and antidepressant effects of alpha- and beta-amyrin from Protiu heptaphyllum (Aubl.) Pharmacol Biochem Behav 85(4):827–834

    Article  PubMed  Google Scholar 

  2. Archer J (1973) Tests for emotionality in rats and mice: a review. Anim Behav 21(2):205–223

    CAS  Article  PubMed  Google Scholar 

  3. Barbosa-Filho JM, Yoshida M, Gottlieb OR, Barbosa RCSBC, Giesbrecht AM, Young MCM (1987) Benzoyl esters and amides, stryrylpyrones and neolignans from the fruits of Aniba riparia. Phytochemistry 26(9):2615–2617

    CAS  Article  Google Scholar 

  4. Bittencourt AM, Gottlieb OR, Mors WB, Magalhaes MT, Mageswaran SM, Ollis WD, Sutherland IO (1971) The natural occurrence of 6-styryl-2-pyrones and their synthesis. Tetrahedron 27(5):1043–1048

    CAS  Article  Google Scholar 

  5. Chan CY, Sun HS, Shah SM, Agovic MS, Friedman E, Banerjee SP (2014) Modes of direct modulation by taurine of the glutamate NMDA receptor in rat cortex. Eur J Pharmacol 728:167–175

    CAS  Article  PubMed  Google Scholar 

  6. Clark G, Koster AG, Person DW (1971) Exploratory behavior in chronic disulfoton poisoning in mice. Psychopharmacology 20(2):169–171

    CAS  Article  Google Scholar 

  7. Crawley JN (1985) Exploratory behaviour models of anxiety in mice. Neurosci Biobehav Rev 9(1):37–44

    CAS  Article  PubMed  Google Scholar 

  8. Di Stasi LC, Hiruma-Lima CA (2003) Medicinal plants in the Amazon and Atlantic forest, 2nd edn. São Paulo, pp 139–143

  9. Dunham NW, Miya TS (1957) A note on a simple apparatus for detecting neurological deficits in rats and mice. J Am Pharm Assoc Am Pharm Assoc 46(3):208–209

    CAS  Article  PubMed  Google Scholar 

  10. Errico F, Rossi S, Napolitano F, Catuogno V, Topo E, Fisone G, D'Aniello A, Centonze D, Usiello A (2008) D-Aspartate prevents corticostriatal long-term depression and attenuates schizophrenia-like symptoms induced by amphetamine and MK-801. J Neurosci 28(41):10404–10414

    CAS  Article  PubMed  Google Scholar 

  11. Etkin A (2009) Functional neuroanatomy of anxiety: a neural circuit perspective. In: Stein MB, Steckler T (eds) Behavioral neurobiology of anxiety and its treatment. Springer Verlag, Berlin, pp 251–277

    Chapter  Google Scholar 

  12. Francisco ES, Guedes RC (2015) Neonatal taurine and alanine modulate anxiety-like behavior and decelerate cortical spreading depression in rats previously suckled under different litter sizes. Amino Acids 47(11):2437–2445

    CAS  Article  Google Scholar 

  13. Griffin CE, Kaye AM, Bueno FR, Kaye AD (2013) Benzodiazepine pharmacology and central nervous system–mediated effects. Ochsner J 13(2):214–223

    PubMed  PubMed Central  Google Scholar 

  14. Junyent F, Utrera J, Camins A, Pallàs M, Romero R, Auladell C (2009) Synthesis, uptake and release of taurine in astrocytes treated with 8-Br-cAMP. Neurosci Lett 467(3):199–202

    CAS  Article  PubMed  Google Scholar 

  15. Kjelstrup KG, Tuvnes FA, Steffenach HA, Murison R, Moser EI, Moser MB (2002) Reduced fear expression after lesions of the ventral hippocampus. Proc Natl Acad Sci U S A 99:10825–10830

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. Leggio GM, Torrisi SA, Castorina A, Platania CBM, Impellizzeri AAR, Fidilio A, Caraci F, Bucolo C, Drago F (2015) Dopamine D3 receptor-dependent changes in alpha6 GABAA subunit expression in striatum modulate anxiety-like behaviour: responsiveness and tolerance to diazepam. Eur Neuropsychopharmacol 25(9):1427–1436

    Article  PubMed  Google Scholar 

  17. Lindroth P, Mopper V (1979) High performance liquid chromatographic determination of subpicomole amounts of amino acids by precolumn fluorescence derivatization with o-phthaldialdehyde. Anal Chem 51(11):1667–1674

    CAS  Article  Google Scholar 

  18. Lister RG (1987) The use of a plus-maze to measure anxiety in the mouse. Psychopharmacology 92(2):180–185

    CAS  Article  PubMed  Google Scholar 

  19. Magnani P, Conforti A, Zanolin E, Marzotto M, Bellavite P (2010) Dose-effect study of Gelsemium sempervirens in high dilutions on anxiety-related responses in mice. Psychopharmacology 210(4):533–545

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. Marques CA (2001) Economic importance of the family Lauraceae Lindl. For Environ 8(1):195–206

    Google Scholar 

  21. Maurmann N, Reolon GK, Rech SB, Fett-Neto AG, Roesler R (2011) Valepotriate fraction of Valeriana glechomifolia shows sedative and anxiolytic properties and impairs recognition but not aversive memory in mice. Evid Based Complement Alternat Med 8:1–7

  22. Melo FHC, Venâncio ET, Sousa DP, Fontele MMF, Vasconcelos SMM, Viana SGB (2010) Sousa FC (2010) anxiolytic-like effert of carvacrol (5-isopropyl-2-methyphenol) in mice: involvement with GABAergic transmission. Fundam Clin Pharmacol 24(4):437–443

    CAS  Article  PubMed  Google Scholar 

  23. Mezzomo NJ, Silveira A, Giuliani GS, Quadros VA, Rosemberg DB (2016) The role of taurine on anxiety-like behaviors in zebrafish: a comparative study using the novel tank and the light-dark tasks. Neurosci Lett 613:19–24

    CAS  Article  PubMed  Google Scholar 

  24. Modi S, Rana P, Kaur P, Rani N, Khushu S (2014) Glutamate level in anterior cingulate predicts anxiety in healthy humans: a magnetic resonance spectroscopy study. Psychiatry Res 224(1):34–41

    Article  PubMed  Google Scholar 

  25. Montgomery KC (1955) The relation between fear induced by novel stimulation and exploratory behavior. J Comp Physiol Psychol 48(4):254–260

    CAS  Article  PubMed  Google Scholar 

  26. Motzkin JC, Philippi CL, Wolf R, Baskaya MK, Koenigs M (2015) Ventromedial prefrontal cortex is critical for the regulation of amygdala activity in humans. Biol Psychiatry 77(3):276–284

    Article  PubMed  Google Scholar 

  27. Muris P, Simon E, Lijphart H, Bos A, Hale W, Schmeitz K, Wolters (2017) The youth anxiety measure for DSM-5 (YAM-5): development and first psychometric evidence of a new scale for assessing anxiety disorders symptoms of children and adolescents. Child Psychiatry Hum Dev 48(1):1–17

    Article  PubMed  Google Scholar 

  28. Nielsen S (2015) Benzodiazepines. In: Geyer MA, Ellenbroek BA, Marsden CA, Barnes ThRE (ed) Curr Top Behav Neurosci. Springer, pp 1–19

  29. Nuss P (2015) Anxiety disorders and GABA neurotransmission: a disturbance of modulation. Neuropsychiatr Dis Treat 11:165–175

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Oja SS, Saransaari P (1996) Taurine as osmoregulator and neuromodulator in the brain. Metab Brain Dis 11(2):153–164

    CAS  Article  PubMed  Google Scholar 

  31. Pellow S, Chopin P, File SE, Briley M (1985) Validation of open: closed arm entries in an elevated plus maze as a measure of anxiety in the rat. J Neurosci Methods 14(3):149–167

    CAS  Article  PubMed  Google Scholar 

  32. Pereira EC, Lucetti DL, Barbosa-Filho JM, de Brito EM, Monteiro VS, Patrocínio MC, De Moura RR, Leal LK, Macedo DS, de Sousa FC, de Barros Viana GS, Vasconcelos SM (2009) Coumarin effects on amino acid levels in mice prefrontal cortex and hippocampus. Neurosci Lett 454(2):139–142

    CAS  Article  PubMed  Google Scholar 

  33. Phan KL, Fitzgerald DA, Cortese BM, Seraji-Bozorgzad N, Tancer ME, Moore GJ (2005) Anterior cingulate neurochemistry in social anxiety disorder: 1H-MRS at 4 Tesla. Neuroreport 16(2):183–186

    Article  PubMed  Google Scholar 

  34. Prut L, Belzung C (2003) The open field as a paradigm to measure the effects of drugs an anxiety-like behavior: a review. Eur J Pharmacol 463(1-3):3–33

    CAS  Article  PubMed  Google Scholar 

  35. Rabbani M, Sajjadi SE, Mohammadi A (2008) Evaluation of the anxiolytic effect of Nepeta persica Boiss. in mice. Evid Based Complement Alternat Med 5(2):181–186

    CAS  Article  PubMed  Google Scholar 

  36. Rezende BA, Silva GC, Corradi RG, Teles MM, Barbosa-Filho JM, Lemos VS, Cortes SF (2015) Dihydrogoniothalamin, an Endothelium and NO-Dependent Vasodilator Drug Isolated from Aniba panurensis. Planta Med 81(15):1375–1381

    CAS  Article  PubMed  Google Scholar 

  37. Rodgers RJ, Dalvi A (1997) Anxiety, defense and the elevated plus-maze. Neurosci Biobehav Rev 21(6):801–810

    CAS  Article  PubMed  Google Scholar 

  38. Siegel S, Sanacora G (2012) The roles of glutamate receptors across major neurological and psychiatric disorders. Pharmacol Biochem Behav 100(4):653–555

    CAS  Article  PubMed  Google Scholar 

  39. Silva MCC, Sampaio LR, De Araújo DP, Araújo PV, Monte AS, Rodrigues FT, Woods DJ, de Sousa FC, Fonteles MM, Vasconcelos SM (2014) Central effects of lipoic acid associated with paroxetine in mice. Am J Ther 21(2):85–90

    Article  PubMed  Google Scholar 

  40. Sirdifield C, Chipchase SY, Owen S, Siriwardena AN (2017) A systematic review and meta-synthesis of patients’ experiences and perceptions of seeking and using benzodiazepines and Z-drugs: towards safer prescribing. Patient 10:1

    Article  PubMed  Google Scholar 

  41. Smith KK, Dharmaratne HR, Feltenstein MW, Broom SL, Roach JT, Nanayakkara NP, Khan IA, Sufka KJ (2001) Anxiolytic effects of kava extract and kavalactones in the chick social separation-stress paradigm. Psychopharmacology 155(1):86–90

    CAS  Article  PubMed  Google Scholar 

  42. Sousa FCF, Melo CTV, Monteiro AP, Lima VTM, Guiterrez SJC, Pereira BA, Barbosa-Filho JM, Vasconcelos SM, Fonteles MF, Viana GS (2004) Antianxiety and antidepressant effects of riparin III from Aniba riparia (Nees) Mez (Lauraceae) in mice. Pharmacol Biochem Behav 78(1):27–33

    CAS  Article  PubMed  Google Scholar 

  43. Sperk G, Schwarzer C, Tsunashima K, Fuchs K, Sieghart W (1997) GABA(A) receptor subunits in the rat hippocampus I: immunocytochemical distribution of 13 subunits. Neuroscience 80:987–1000

    CAS  Article  PubMed  Google Scholar 

  44. Sperk G, Schwarzer C, Tsunashima K, Kandlhofer S (1998) Expression of GABA(A) receptor subunits in the hippocampus of the rat after kainic acid-induced seizures. Epilepsy Res 32(1-2):129–139

    CAS  Article  PubMed  Google Scholar 

  45. Steru L, Chermat R, Thierry B, Simon P (1985) The tail suspension test: a new method for screening antidepressants in mice. Psychopharmacology 85:367–370

    CAS  Article  PubMed  Google Scholar 

  46. Treit D, Fundytus M (1988) Thigmotaxis as a test for anxiolytic activity in rats. Pharmacol Biochem Behav 31(4):959–962

    CAS  Article  PubMed  Google Scholar 

  47. Trevor AJ (2015) Sedativo-hypnotic drugs. In: Katzung BG, Masters SB, Trevor AJ (eds) Basic and clinical pharmacology, 13rd edn. Mc Graw Hill, New York, pp 369–383

    Google Scholar 

  48. Trullas R, Jackson B, Skolnick P (1989) Anxiolytic properties of 1-aminocyclopropanecarboxylic acid, a ligand at strychnine-insensitive glycine receptors. Pharmacol Biochem Behav 34(2):313–316

    CAS  Article  PubMed  Google Scholar 

  49. Vasconcelos SMM, Chaves EM, Cunha NL, Patrocinio MCA, Sampaio LRL, Cordeiro RC, MTV DS, Lucio ASSC, Barbosa-Filho JM, Macedo DS (2012) Effects of the natural 6-styryl-2-pyrone on amino-acid levels in the prefrontal cortex of mice after pentylenetetrazole-induced seizures. Eur Neuropsychopharmacol 22(2):S18

    Google Scholar 

  50. Wu H, Jin Y, Wei J, Jin H, Sha D, Wu J (2005) Mode of action of taurine as a neuroprotector. Brain Res 1038(2):123–131

    CAS  Article  PubMed  Google Scholar 

  51. Zhang WN, Bast T, Xu Y, Feldon J (2014) Temporary inhibition of dorsal or ventral hippocampus by muscimol: distinct effects on measures of innate anxiety on the levated plus-maze, but similar disruption of contextual fear conditioning. Behav Brain Res 262:47–56

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Council for Scientific and Technological Development (CNPq), Brazilian Coordination for Professorship Improvement for Higher Education (CAPES), and Research Foundation of the State of Ceará (FUNCAP), all from Brazil.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Silvânia Maria Mendes Vasconcelos.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chaves, E.M.C., Honório-Júnior, J.E.R., Sousa, C.N.S. et al. The anxiolytic-like effect of 6-styryl-2-pyrone in mice involves GABAergic mechanism of action. Metab Brain Dis 33, 139–149 (2018). https://doi.org/10.1007/s11011-017-0139-5

Download citation

Keywords

  • 6-styryl-2-pyrone
  • Aniba panurensis
  • Anxiety
  • Behavior
  • Amino acids