Skip to main content

Advertisement

Log in

Dysfunction of GABAergic neurons in the parafacial zone mediates sleep disturbances in a streptozotocin-induced rat model of sporadic Alzheimer’s disease

  • Original Article
  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

Sleep disturbances are prevalent among patients with Alzheimer’s disease (AD) and often precede the onset and progression of dementia. However, there are no reliable animal models for investigating sleep disturbances in patients with sporadic AD (sAD), which accounts for more than 90% of all AD cases. In the present study, we characterize the sleep/wake cycles and explore a potential mechanism underlying sleep disturbance in a rat model of sAD induced via intracerebroventricular (icv) injection of streptozotocin (STZ). STZ-icv rats exhibited progressive decreases in slow wave sleep (SWS) during the light phase and throughout the light/dark cycle beginning from 7 days after STZ-icv. Additionally, increased wakefulness and decreased rapid-eye-movement (REM) and non-REM (NREM) sleep were observed from 14 days after STZ-icv. Beginning on day 7, STZ-icv rats exhibited significant decreases in delta (0.5–4.0 Hz) power accompanied by increased power in the beta (12–30 Hz) and low gamma bands (30–50 Hz) during NREM sleep, resembling deficits in sleep quality observed in patients with AD. Immunohistochemical staining revealed a significant reduction in the ratio of c-Fos-positive GABAergic neurons in the parafacial zone (PZ) beginning from day 7 after STZ-icv. These results suggest that the STZ-icv rat model is useful for evaluating sleep disturbances associated with AD, and implicate the dysregulation of GABAergic neuronal activity in the PZ is associated with sleep disturbance induced by STZ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anaclet C, Lin JS, Vetrivelan R, Krenzer M, Vong L, Fuller PM, Lu J (2011) Identification and characterization of a sleep-active cell group in the rostral medullary brainstem. J Neurosci 32:17970–17976

    Article  Google Scholar 

  • Anaclet C, Ferrari L, Arrigoni E, Bass CE, Saper CB, Lu J, Fuller PM (2014) GABAergic parafacial zone is a medullary slow–wave–sleep promoting center. Nat Neurosci 17:1217–1224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Y et al (2013) A non-transgenic mouse model (icv-STZ mouse) of Alzheimer's disease: similarities to and differences from the transgenic model (3xTg-AD mouse). Mol Neurobiol 47:711–725

    Article  CAS  PubMed  Google Scholar 

  • Colas D, Cespuglio R, Sarda N (2005) Sleep wake profile and EEG spectral power in young or old senescence accelerated mice. Neurobiol Aging 26:265–273

    Article  PubMed  Google Scholar 

  • Colbymilley J, Cavanagh C, Jego S, Breitner JC, Quirion R, Adamantidis A (2015) Sleep-wake cycle dysfunction in the TgCRND8 mouse model of Alzheimer's disease: from early to advanced pathological stages. PLoS One 10:e0130177–e0130177

    Article  Google Scholar 

  • Correia SC, Santos RX, Perry G, Zhu X, Moreira PI, Smith MA (2011) Insulin-resistant brain state: the culprit in sporadic Alzheimer's disease? Ageing Res Rev 10:264–273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cui SY et al (2016) Ca(2+) in the dorsal raphe nucleus promotes wakefulness via endogenous sleep-wake regulating pathway in the rats. Molecular Brain 9:71–71

    Article  PubMed  PubMed Central  Google Scholar 

  • Duncan MJ et al (2012) Effects of aging and genotype on circadian rhythms, sleep, and clock gene expression in APPxPS1 knock-in mice, a model for Alzheimer's disease. Exp Neurol 236:249–258

    Article  CAS  PubMed  Google Scholar 

  • Hamm V, Héraud C, Cassel JC, Mathis C, Goutagny R (2015) Precocious alterations of brain oscillatory activity in Alzheimer’s disease: a window of opportunity for early diagnosis and treatment. Front Cell Neurosci 9:491–491

    Article  PubMed  PubMed Central  Google Scholar 

  • Holth J, Patel T, Holtzman DM (2017a) Sleep in Alzheimer's disease - beyond amyloid. Neurobiology of Sleep & Circadian Rhythms 2:4–14

    Article  Google Scholar 

  • Holth JK, Mahan TE, Robinson GO, Rocha A, Holtzman DM (2017b) Altered sleep and EEG power in the P301S tau transgenic mouse model. Annals of Clinical & Translational. Neurology 4:180–190

    CAS  Google Scholar 

  • Iqbal K, Grundke-Iqbal I (2010) Alzheimer's disease, a multifactorial disorder seeking multitherapies. Alzheimers & Dementia the Journal of the Alzheimers Association 6:420–424

    Article  CAS  Google Scholar 

  • Ju YE (2014) Sleep and Alzheimer disease pathology--a bidirectional relationship. Nat Rev Neurol 10:115–119

    Article  CAS  PubMed  Google Scholar 

  • Ju YE et al (2013) Sleep quality and preclinical Alzheimer disease. JAMA Neurol 70:587–593

    Article  PubMed  PubMed Central  Google Scholar 

  • Jyoti A, Plano A, Riedel G, Platt B (2010) EEG, activity, and sleep architecture in a transgenic AβPPswe/PSEN1A246E Alzheimer's disease mouse. Journal of Alzheimers Disease Jad 22:873–887

    Article  PubMed  Google Scholar 

  • Jyoti A, Plano A, Riedel G, Platt B (2015) Progressive age-related changes in sleep and EEG profiles in the PLB1Triple mouse model of Alzheimer's disease. Neurobiol Aging 36:2768–2768

    Article  PubMed  Google Scholar 

  • Khan MB, Ahmad M, Ahmad S, Ishrat T, Vaibhav K, Khuwaja G, Islam F (2015) Bacopa monniera ameliorates cognitive impairment and neurodegeneration induced by intracerebroventricular-streptozotocin in rat: behavioral, biochemical, immunohistochemical and histopathological evidences. Metab Brain Dis 30:115–127

    Article  CAS  PubMed  Google Scholar 

  • Knezovic A, Osmanovic-Barilar J, Curlin M, Hof PR, Simic G, Riederer P, Salkovic-Petrisic M (2015) Staging of cognitive deficits and neuropathological and ultrastructural changes in streptozotocin-induced rat model of Alzheimer's disease. J Neural Transm 122:577–592

    Article  CAS  PubMed  Google Scholar 

  • Lee Y et al (2014) Insulin/IGF signaling-related gene expression in the brain of a sporadic Alzheimer's disease monkey model induced by intracerebroventricular injection of streptozotocin. Journal of Alzheimer's disease : JAD 38:251–267

    PubMed  Google Scholar 

  • Lim MM, Gerstner JR, Holtzman DM (2014) The sleep–wake cycle and Alzheimer’s disease: what do we know? Neurodegenerative Disease Management 4:351–362

    Article  PubMed  PubMed Central  Google Scholar 

  • Mander BA, Winer JR, Jagust WJ, Walker MP (2016a) Sleep: a novel mechanistic pathway, biomarker, and treatment target in the pathology of Alzheimer's disease? Trends Neurosci 39:552–566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mander BA, Winer JR, Jagust WJ, Walker MP (2016b) Sleep: a novel mechanistic pathway, biomarker, and treatment target in the pathology of Alzheimer's disease? Trends Neurosci 39:552–552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Musiek ES, Xiong DD, Holtzman DM (2015) Sleep, circadian rhythms, and the pathogenesis of Alzheimer disease. Exp Mol Med 47:e148–e148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paweł G (2016) Intracerebroventricular Streptozotocin injections as a model of Alzheimer’s disease: in search of a relevant mechanism. Mol Neurobiol 53:1741–1752

    Article  Google Scholar 

  • Paxinos G, Watson C (2014) Paxinos and Watson's the rat brain in stereotaxic coordinates. Academic Press, Cambridge

    Google Scholar 

  • Peter-Derex L, Yammine P, Bastuji H, Croisile B (2015) Sleep and Alzheimer's disease. Sleep Med Rev 19:29–38

    Article  PubMed  Google Scholar 

  • Ravelli KG, Rosário BDA, Camarini R, Hernandes MS, Britto LR (2016) Intracerebroventricular Streptozotocin as a model of Alzheimer’s disease: neurochemical and behavioral characterization in mice. Neurotox Res:1–7

  • Rothman SM, Mattson MP (2012) Sleep disturbances in Alzheimer’s and Parkinson’s diseases. NeuroMolecular Med 14:194–204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saper CB, Fuller PM (2017) Wake-sleep circuitry: an overview. Curr Opin Neurobiol 44:186–186

    Article  CAS  PubMed  Google Scholar 

  • Schneider F, Baldauf K, Wetzel W, Reymann KG (2014) Behavioral and EEG changes in male 5xFAD mice. Physiol Behav 135:25–25

    Article  CAS  PubMed  Google Scholar 

  • Sethi M et al (2015) Increased fragmentation of sleep-wake cycles in the 5XFAD mouse model of Alzheimer's disease. Neuroscience 290:80–89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siwek ME et al (2015) Altered theta oscillations and aberrant cortical excitatory activity in the 5XFAD model of Alzheimer's disease. Neural Plasticity 2015:781731–781731

    Article  PubMed  PubMed Central  Google Scholar 

  • Song JZ, Sun J, Jin DC, Deng YQ (2014) Rosiglitazone improves learning and memory impairment of 3 x Tg mice. Yao xue xue bao = Acta pharmaceutica Sinica 49:807–812

    CAS  PubMed  Google Scholar 

  • Urrestarazu E, Iriarte J (2016) Clinical management of sleep disturbances in Alzheimer's disease: current and emerging strategies. Nature and science of sleep 8:21–33

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Someren EJ, Van Der Werf YD, Roelfsema PR, Mansvelder HD, da Silva FH (2011) Slow brain oscillations of sleep, resting state, and vigilance. Prog Brain Res 193:3–15

    Article  PubMed  Google Scholar 

  • Wang ZJ et al (2015) Glucocorticoid receptors in the locus coeruleus mediate sleep disorders caused by repeated corticosterone treatment. Sci Rep 5:9442–9442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yeo HG et al (2015) Characterization of cerebral damage in a monkey model of Alzheimer's disease induced by Intracerebroventricular injection of Streptozotocin. Journal of Alzheimer's disease : JAD 46:989–1005

    Article  CAS  PubMed  Google Scholar 

  • Yu B et al (2016) Mechanisms underlying Footshock and psychological stress-induced abrupt awakening from posttraumatic “nightmares”. Int J Neuropsychopharmacol 19:pyv113–pyv113

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This study was funded by grants from the National Natural Science Foundation of China (No. 81573407, 81302746 and 81202511).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-He Zhang.

Ethics declarations

Conflict of interest

The authors declare that there are no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, JZ., Cui, SY., Cui, XY. et al. Dysfunction of GABAergic neurons in the parafacial zone mediates sleep disturbances in a streptozotocin-induced rat model of sporadic Alzheimer’s disease. Metab Brain Dis 33, 127–137 (2018). https://doi.org/10.1007/s11011-017-0125-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11011-017-0125-y

Keywords

Navigation