Skip to main content
Log in

Selective A2A receptor antagonist SCH 58261 modulates striatal oxidative stress and alleviates toxicity induced by 3-Nitropropionic acid in male Wistar rats

  • Original Article
  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

The aim of the present study was to investigate the effects of SCH58261, a selective adenosine A2A receptor antagonist, on striatal toxicity induced by 3-nitropropionic acid (3-NP) in rats. The experimental protocol consisted of 10 administrations (once a day) of SCH58261 (0.01 or 0.05 mg/kg/day, intraperitoneal, i.p.). From 7th to 10th day, 3-NP (20 mg/kg/day, i.p.) was injected 1 h after SCH58261 administration. Twenty-four hours after the last 3-NP injection, the body weight gain, locomotor activity (open-field test), motor coordination (rotarod test), striatal succinate dehydrogenase (SDH) activity and parameters linked to striatal oxidative status were evaluated in rats. The marked body weight loss resulting from 3-NP injections in rats was partially protected by SCH 58261 at both doses. SCH 58261 at the highest dose was effective against impairments on motor coordination and locomotor activity induced by 3-NP. SCH 58261 was unable to restore the inhibition of SDH activity caused by 3-NP. In addition, the increase in striatal reactive species (RS) levels, depletion of reduced glutathione (GSH) content and stimulation of glutathione reductase (GR) activity provoked by 3-NP injections were alleviated by both doses of SCH 58261. The highest dose of SCH 58261 was also effective in attenuating the increase of protein carbonyl levels as well as the inhibition of glutathione peroxidase (GPx) activity in rats exposed to 3-NP. Our results revealed that reduction of oxidative stress in rat striatum by adenosine A2A receptor antagonism contributes for alleviating 3-NP-induced toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Allison C, Pratt JA (2003) Neuroadaptive processes in GABAergic and glutamatergic systems in benzodiazepine dependence. Pharmacol Therapeut 98:171–195

    Article  CAS  Google Scholar 

  • Backos DS, Franklin CC, Reigan P (2012) The role of glutathione in brain tumor drug resistance. Biochem Pharmacol 83:1005–1012

    Article  CAS  PubMed  Google Scholar 

  • Benchoua A, Trioulier Y, Zala D, Gaillard MC, Lefort N, Dufour N, Saudou F, Elalouf JM, Hirsch E, Hantraye P, Deglon N, Brouillet E (2006) Involvement of mitochondrial complex II defects in neuronal death produced by N-terminus fragment of mutated huntingtin. Mol Biol Cell 17:1652–1663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blum D, Galas MC, Pintor A, Brouillet E, Ledent C, Muller CE, Bantubungi K, Galluzzo M, Gall D, Cuvelier L, Rolland AS, Popoli P, Schiffmann SN (2003) A dual role of adenosine A(2A) receptors in 3-nitropropionic acid-induced striatal lesions: implications for the neuroprotective potential of A(2)A antagonists. J Neurosci 23:5361–5369

    CAS  PubMed  Google Scholar 

  • Bradford MM (1976) Rapid and sensitive method for quantitation of microgram quantities of protein utilizing principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Browne SE, Beal MF (2004) The energetics of Huntington’s disease. Neurochem Res 29:531–546

    Article  CAS  PubMed  Google Scholar 

  • Browne SE, Ferrante RJ, Beal MF (1999) Oxidative stress in Huntington’s disease. Brain Pathol 9:147–163

    Article  CAS  PubMed  Google Scholar 

  • Canas PM, Porciuncula LO, Cunha GM, Silva CG, Machado NJ, Oliveira JM, Oliveira CR, Cunha RA (2009) Adenosine A2A receptor blockade prevents synaptotoxicity and memory dysfunction caused by beta-amyloid peptides via p38 mitogen-activated protein kinase pathway. J Neurosci 29:14741–14751

    Article  CAS  PubMed  Google Scholar 

  • Carlberg I, Mannervik B (1985) Glutathione-reductase. Methods Enzymol 113:484–490

    Article  CAS  PubMed  Google Scholar 

  • Chaturvedi RK, Beal MF (2013) Mitochondria targeted therapeutic approaches in Parkinson’s and Huntington's diseases. Mol Cell Neurosci 55:101–114

    Article  CAS  PubMed  Google Scholar 

  • Chen NS, Luo T, Wellington C, Metzler M, McCutcheon K, Hayden MR, Raymond LA (1999) Subtype-specific enhancement of NMDA receptor currents by mutant huntingtin. J Neurochem 72:1890–1898

    Article  CAS  PubMed  Google Scholar 

  • Chen CM, Wu YR, Cheng ML, Liu JL, Lee YM, Lee PW, Soong BW, Chiu DT (2007) Increased oxidative damage and mitochondrial abnormalities in the peripheral blood of Huntington's disease patients. Biochem Biophys Res Commun 359:335–340

    Article  CAS  PubMed  Google Scholar 

  • Cunha RA (2001) Adenosine as a neuromodulator and as a homeostatic regulator in the nervous system: different roles, different sources and different receptors. Neurochem Int 38:107–125

    Article  CAS  PubMed  Google Scholar 

  • Domenici MR, Scattoni ML, Martire A, Lastoria G, Potenza RL, Borioni A, Venerosi A, Calamandrei G, Popoli P (2007) Behavioral and electrophysiological effects of the adenosine A2A receptor antagonist SCH 58261 in R6/2 Huntington's disease mice. Neurobiol Dis 28:197–205

    Article  CAS  PubMed  Google Scholar 

  • Fink JS, Kalda A, Ryu H, Stack EC, Schwarzschild MA, Chen JF, Ferrante RJ (2004) Genetic and pharmacological inactivation of the adenosine A2A receptor attenuates 3-nitropropionic acid-induced striatal damage. J Neurochem 88:538–544

    Article  CAS  PubMed  Google Scholar 

  • Fu JR, Jin J, Cichewicz RH, Hageman SA, Ellis TK, Xiang L, Peng Q, Jiang M, Arbez N, Hotaling K, Ross CA, Duan WZ (2012) Trans-(-)-epsilon-viniferin increases mitochondrial sirtuin 3 (SIRT3), activates AMP-activated protein kinase (AMPK), and protects cells in models of huntington disease. J Biol Chem 287:24460–24472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gomes CV, Kaster MP, Tome AR, Agostinho PM, Cunha RA (2011) Adenosine receptors and brain diseases: neuroprotection and neurodegeneration. Biochim Biophys Acta 1808:1380–1399

    Article  CAS  PubMed  Google Scholar 

  • Habig WH, Pabst MJ, Jakoby WB (1974) Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. J Biol Chem 249:7130–7139

    CAS  PubMed  Google Scholar 

  • Hissin PJ, Hilf R (1976) A fluorometric method for determination of oxidized and reduced glutathione in tissues. Anal Biochem 74:214–226

    Article  CAS  PubMed  Google Scholar 

  • Huang NK, Lin JH, Lin JT, Lin CI, Liu EM, Lin CJ, Chen WP, Shen YC, Chen HM, Chen JB, Lai HL, Yang CW, Chiang MC, Wu YS, Chang C, Chen JF, Fang JM, Lin YL, Chern Y (2011) A new drug design targeting the adenosinergic system for Huntington's disease. PLoS One 6:e20934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson WM, Wilson-Delfosse AL, Mieyal JJ (2012) Dysregulation of glutathione homeostasis in neurodegenerative diseases. Nutrients 4:1399–1440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klepac N, Relja M, Klepac R, Hecimovic S, Babic T, Trkulja V (2007) Oxidative stress parameters in plasma of Huntington's disease patients, asymptomatic Huntington's disease gene carriers and healthy subjects : a cross-sectional study. J Neurol 254:1676–1683

    Article  CAS  PubMed  Google Scholar 

  • Kumar P, Padi SS, Naidu PS, Kumar A (2007) Cyclooxygenase inhibition attenuates 3-nitropropionic acid-induced neurotoxicity in rats: possible antioxidant mechanisms. Fundam Clin Pharmacol 21:297–306

    Article  CAS  PubMed  Google Scholar 

  • Levine RL, Garland D, Oliver CN, Amici A, Climent I, Lenz AG, Ahn BW, Shaltiel S, Stadtman ER (1990) Determination of carbonyl content in oxidatively modified proteins. Methods Enzymol 186:464–478

    Article  CAS  PubMed  Google Scholar 

  • Loetchutinat C, Kothan S, Dechsupa S, Meesungnoen J, Jay-Gerin J-P, Mankhetkorn S (2005) Spectrofluorometric determination of intracellular levels of reactive oxygen species in drug-sensitive and drug-resistant cancer cells using the 2′,7′-dichlorofluorescein diacetate assay. Radiat Phys Chem 72:323–331

    Article  CAS  Google Scholar 

  • Long JD, Matson WR, Juhl AR, Leavitt BR, Paulsen JS (2012) 8OHdG as a marker for Huntington disease progression. Neurobiol Dis 46:625–634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maucksch C, Vazey EM, Gordon RJ, Connor B (2013) Stem cell-based therapy for Huntington's disease. J Cell Biochem 114:754–763

    Article  CAS  PubMed  Google Scholar 

  • Monopoli A, Lozza G, Forlani A, Mattavelli A, Ongini E (1998) Blockade of adenosine A2A receptors by SCH 58261 results in neuroprotective effects in cerebral ischaemia in rats. Neuroreport 9:3955–3959

    Article  CAS  PubMed  Google Scholar 

  • Park JH, Lee HJ, Koh SB, Ban JY, Seong YH (2004) Protection of NMDA-induced neuronal cell damage by methanol extract of Zizyphi Spinosi Semen in cultured rat cerebellar granule cells. J Ethnopharmacol 95:39–45

    Article  PubMed  Google Scholar 

  • Popoli P, Pintor A, Domenici MR, Frank C, Tebano MT, Pezzola A, Scarchilli L, Quarta D, Reggio R, Malchiodi-Albedi F, Falchi M, Massotti M (2002) Blockade of striatal adenosine A2A receptor reduces, through a presynaptic mechanism, quinolinic acid-induced excitotoxicity: possible relevance to neuroprotective interventions in neurodegenerative diseases of the striatum. J Neurosci 22:1967–1975

    CAS  PubMed  Google Scholar 

  • Ramaswamy S, McBride JL, Herzog CD, Brandon E, Gasmi M, Bartus RT, Kordower JH (2007) Neurturin gene therapy improves motor function and prevents death of striatal neurons in a 3-nitropropionic acid rat model of Huntington's disease. Neurobiol Dis 26:375–384

    Article  CAS  PubMed  Google Scholar 

  • Santos AR, De Campos RO, Miguel OG, Cechinel-Filho V, Yunes RA, Calixto JB (1999) The involvement of K+ channels and Gi/o protein in the antinociceptive action of the gallic acid ethyl ester. Eur J Pharmacol 379:7–17

    Article  CAS  PubMed  Google Scholar 

  • Sorolla MA, Reverter-Branchat G, Tamarit J, Ferrer I, Ros JQ, Cabiscol E (2008) Proteomic and oxidative stress analysis in human brain samples of Huntington disease. Free Radical Bio Med 45:667–678

    Article  CAS  Google Scholar 

  • Tunez I, Montilla P, Munoz MC, Drucker-Colin R (2004) Effect of nicotine on 3-nitropropionic acid-induced oxidative stress in synaptosomes. Eur J Pharmacol 504:169–175

    Article  CAS  PubMed  Google Scholar 

  • Tunez I, Tasset I, Perez-De La Cruz V, Santamaria A (2010) 3-Nitropropionic acid as a tool to study the mechanisms involved in Huntington’s disease: past, present and future. Molecules 15:878–916

    Article  CAS  PubMed  Google Scholar 

  • Walsh RN, Cummins RA (1976) The open-field test: a critical review. Psychol Bull 83:482–504

    Article  CAS  PubMed  Google Scholar 

  • Wendel A (1981) Glutathione peroxidase. Methods Enzymol 77:325–333

    Article  CAS  PubMed  Google Scholar 

  • Wu JH, Batist G (2013) Glutathione and glutathione analogues: therapeutic potentials. Biochim Biophys Acta 1830:3350–3353

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge UFPel, UNIFRA, FAPERGS (research grants #16/2551-0000526-5 – PRONUPEQ, # 16/2551-0000240-1 – PRONEM), CAPES and CNPq for the financial support. C.R.J. and C.L. are recipients of CNPq fellowship. M.P.P. is recipients of CAPES fellowship.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Cristiani F. Bortolatto or Ethel A. Wilhelm.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bortolatto, C.F., Reis, A.S., Pinz, M.P. et al. Selective A2A receptor antagonist SCH 58261 modulates striatal oxidative stress and alleviates toxicity induced by 3-Nitropropionic acid in male Wistar rats. Metab Brain Dis 32, 1919–1927 (2017). https://doi.org/10.1007/s11011-017-0086-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11011-017-0086-1

Keywords

Navigation