Abstract
Methylene Blue (MB) is considered to have diverse medical applications and is a well-described treatment for methemoglobinemias and ifosfamide-induced encephalopathy. In recent years the focus has shifted to MB as an antimalarial agent and as a potential treatment for neurodegenerative disorders such as Alzheimer’s disease. Of interest are reports that MB possesses antidepressant and anxiolytic activity in pre-clinical models and has shown promise in clinical trials for schizophrenia and bipolar disorder. MB is a noteworthy inhibitor of monoamine oxidase A (MAO-A), which is a well-established target for antidepressant action. MB is also recognized as a non-selective inhibitor of nitric oxide synthase (NOS) and guanylate cyclase. Dysfunction of the nitric oxide (NO)-cyclic guanosine monophosphate (cGMP) cascade is strongly linked to the neurobiology of mood, anxiety and psychosis, while the inhibition of NOS and/or guanylate cyclase has been associated with an antidepressant response. This action of MB may contribute significantly to its psychotropic activity. However, these disorders are also characterised by mitochondrial dysfunction and redox imbalance. By acting as an alternative electron acceptor/donor MB restores mitochondrial function, improves neuronal energy production and inhibits the formation of superoxide, effects that also may contribute to its therapeutic activity. Using MB in depression co-morbid with neurodegenerative disorders, like Alzheimer’s and Parkinson’s disease, also represents a particularly relevant strategy. By considering their physicochemical and pharmacokinetic properties, analogues of MB may provide therapeutic potential as novel multi-target strategies in the treatment of depression. In addition, low MAO-A active analogues may provide equal or improved response with a lower risk of adverse effects.
Similar content being viewed by others
Abbreviations
- 5HIAA:
-
5-Hydroxyindoleacetic acid
- 5-HT:
-
5-Hydroxytryptamine/ serotonin
- AChE:
-
Acetylcholinesterase
- ADP:
-
Adenosine diphosphate
- APP:
-
Amyloid precursor protein
- ATP:
-
Adenosine triphosphate
- Aβ:
-
Amyloid beta
- BuChE:
-
Butyrylcholinesterase
- cAMP:
-
Cyclic adenosine monophosphate
- cGMP:
-
Cyclic guanosine monophosphate
- Cmax :
-
Maximal concentration in plasma
- CNS:
-
Central nervous system
- DLC:
-
Delocalized lipophilic cation
- DPAG:
-
Dorsal periaqueductal grey matter
- ETC:
-
Ethylthioninium chloride
- FAD:
-
Flavin adenine dinucleotide
- FADH2 :
-
Reduced flavin adenine dinucleotide
- FSL:
-
Flinders sensitive line
- FST:
-
Forced swim test
- GABA:
-
γ-Aminobutyric acid
- GC:
-
Guanylate cyclase
- i.p.:
-
Intraperitoneal
- i.v.:
-
Intravenous
- LeucoMB:
-
Reduced methylene blue
- MAO:
-
Monoamine oxidase
- MB:
-
Methylene blue
- MG:
-
Methylene green
- MPP+ :
-
1-Methyl-4-phenylpyridinium
- NAD+ :
-
Nicotinamide adenine dinucleotide
- NADH:
-
Reduced nicotinamide adenine dinucleotide
- NADPH:
-
Reduced nicotinamide adenine dinucleotide phosphate
- NMDA:
-
N-Methyl-D-aspartate
- NO:
-
Nitric oxide
- NOS:
-
Nitric oxide synthase
- RNS:
-
Reactive nitrogen species
- ROS:
-
Reactive oxygen species
- SRI:
-
Serotonin reuptake inhibitor
- ST:
-
Serotonin toxicity
- λmax :
-
Wavelength of maximal absorption
References
aan het Rot M, Collins KA, Murrough JW, Perez AM, Reich DL, Charney DS, Mathew SJ (2010) Safety and efficacy of repeated-dose intravenous ketamine for treatment-resistant depression. Biol Psychiatry 67:139–145. doi:10.1016/j.biopsych.2009.08.038
Adler G, Mautes AE (2014) Improvement in behavioral symptoms, motor impairment and activities of daily living in a patient with the behavioral variant of frontotemporal dementia under treatment with methylene blue. Geriatr Ment Health Care 2:1–2
Aeschlimann C, Cerny T, Kupfer A (1996) Inhibition of monoamine oxidase activity and prevention of ifosfamide encephalopathy by methylene blue. Drug Metab Dispos 24:1336–1339
Ajithkumar T, Parkinson C, Shamshad F, Murray P (2007) Ifosfamide encephalopathy. Clin Oncol 19:108–114
Akiskal HS, Djenderedjian AM, Rosenthal RH, Khani MK (1977) Cyclothymic disorder: validating criteria for inclusion in the bipolar affective group. Am J Psychiatry 134:1227–1233. doi:10.1176/ajp.134.11.1227
Alda M, MacQueen GM, McKinnon M, Garnham J, MacLellan S, Hajek T, O’Donovan C, Sokolenko J (2011) P.2.E.001 methylene blue for residual symptoms and for cognitive dysfunction in bipolar disorder: results of a double-blind trial. Eur Neuropsychopharmacol 21:S417–S418
Alici-Evcimen Y, Breitbart WS (2007) Ifosfamide neuropsychiatric toxicity in patients with cancer. Psychooncology 16:956–960. doi:10.1002/pon.1161
Allexsaht WJ (1938) The use of methylene blue in the treatment of catatonic dementia praecox patients. Psych Quar 12:245–252
Almeida RC, Felisbino CS, Lopez MG, Rodrigues AL, Gabilan NH (2006) Evidence for the involvement of L-arginine-nitric oxide-cyclic guanosine monophosphate pathway in the antidepressant-like effect of memantine in mice. Behav Brain Res 168:318–322. doi:10.1016/j.bbr.2005.11.023
Andreazza AC, Young LT (2014) The neurobiology of bipolar disorder: identifying targets for specific agents and synergies for combination treatment. Int J Neuropsychopharmacol 17:1039–1052. doi:10.1017/S1461145713000096
Angst J (2007) The bipolar spectrum. Br J Psychiatry 190:189–191. doi:10.1192/bjp.bp.106.030957
Arnold WP, Mittal CK, Katsuki S, Murad F (1977) Nitric oxide activates guanylate cyclase and increases guanosine 3′,5′-cyclic monophosphate levels in various tissue preparations. Proc Natl Acad Sci U S A 74:3203–3207
Ashcroft GW, Eccleston D, Murray LG, Glen AIM, Crawford TBB, Pullar IA, Shields PJ, Walter DS, Blackburn IM, Connechan J, Lonergan M (1972) Modified amine hypothesis for the aetiology of affective illness. Lancet 2:573–577
Ashurst J, Wasson M (2011) Methemoglobinemia: a systematic review of the pathophysiology, detection, and treatment. Del Med J 83:203–208
Austin MP, Mitchell P, Goodwin GM (2001) Cognitive deficits in depression: possible implications for functional neuropathology. Br J Psychiatry 178:200–206
Bach KK, Lindsay FW, Berg LS, Howard RS (2004) Prolonged postoperative disorientation after methylene blue infusion during parathyroidectomy. Anesth Analg 99:1573–1574. doi:10.1213/01.ANE.0000134860.73875.CF
Baddeley TC, McCaffrey J, Storey JM, Cheung JK, Melis V, Horsley D, Harrington CR, Wischik CM (2015) Complex disposition of methylthioninium redox forms determines efficacy in tau aggregation inhibitor therapy for Alzheimer's disease. J Pharmacol Exp Ther 352:110–118. doi:10.1124/jpet.114.219352
Baldessarini RJ (2001) Drugs and the treatment of psychiatric disorders: depression and anxiety disorders. In: Hardman JG, Limbird LE, Goodman Gilman A (eds) Goodman and Gilman’s the pharmacological basis of therapeutics, 10th edn. McGraw-Hill, New York, pp 447–483
Balu DT, Lucki I (2009) Adult hippocampal neurogenesis: regulation, functional implications, and contribution to disease pathology. Neurosci Biobehav Rev 33:232–252. doi:10.1016/j.neubiorev.2008.08.007
Belmaker RH, Agam G (2008) Major depressive disorder. N Engl J Med 358:55–68. doi:10.1056/NEJMra073096
Benazzi F (2006) The continuum/spectrum concept of mood disorders: is mixed depression the basic link? Eur Arch Psychiatry Clin Neurosci 256:512–515. doi:10.1007/s00406-006-0672-4
Bennett MC, Diamond DM, Stryker SL, Parks JK, Parker WD Jr (1992) Cytochrome oxidase inhibition: a novel animal model of Alzheimer's disease. J Geriatr Psychiatry Neurol 5:93–101
Ben-Shachar D, Karry R (2008) Neuroanatomical pattern of mitochondrial complex I pathology varies between schizophrenia, bipolar disorder and major depression. PLoS One 3:e3676. doi:10.1371/journal.pone.0003676
Berk M, Dean OM, Cotton SM, Jeavons S, Tanious M, Kohlmann K, Hewitt K, Moss K, Allwang C, Schapkaitz I, Robbins J, Cobb H, Ng F, Dodd S, Bush AI, Malhi GS (2014) The efficacy of adjunctive N-acetylcysteine in major depressive disorder: a double-blind, randomized, placebo-controlled trial. J Clin Psychiatry 75:628–636. doi:10.4088/JCP.13m08454
Berk M, Plein H, Ferreira D (2001) Platelet glutamate receptor supersensitivity in major depressive disorder. Clin Neuropharmacol 24:129–132
Bernstein HG, Stanarius A, Baumann B, Henning H, Krell D, Danos P, Falkai P, Bogerts B (1998) Nitric oxide synthase-containing neurons in the human hypothalamus: reduced number of immunoreactive cells in the paraventricular nucleus of depressive patients and schizophrenics. Neuroscience 83:867–875
Bilici M, Efe H, Koroglu MA, Uydu HA, Bekaroglu M, Deger O (2001) Antioxidative enzyme activities and lipid peroxidation in major depression: alterations by antidepressant treatments. J Affect Disord 64:43–51
Blass N, Fung D (1976) Dyed but not dead-methylene blue overdose. Anesthesiology 45:458–459
Bonnet U (2003) Moclobemide: therapeutic use and clinical studies. CNS Drug Rev 9:97–140
Bortolato B, Miskowiak KW, Kohler CA, Maes M, Fernandes BS, Berk M, Carvalho AF (2016) Cognitive remission: a novel objective for the treatment of major depression? BMC Med 14:9. doi:10.1186/s12916-016-0560-3
Bradberry SM (2003) Occupational methaemoglobinaemia. Mechanisms of production, features, diagnosis and management including the use of methylene blue. Toxicol Rev 22:13–27
Brand SJ, Moller M, Harvey BH (2015) A review of biomarkers in mood and psychotic disorders: a dissection of clinical vs. preclinical correlates. Curr Neuropharmacol 13:324–368
Brand L, van Zyl J, Minnaar EL, Viljoen F, du Preez JL, Wegener G, Harvey BH (2012) Corticolimbic changes in acetylcholine and cyclic guanosine monophosphate in the flinders sensitive line rat: a genetic model of depression. Acta Neuropsychiatr 24:215–225. doi:10.1111/j.1601-5215.2011.00622.x
Brandon MC, Lott MT, Nguyen KC, Spolim S, Navathe SB, Baldi P, Wallace DC (2005) MITOMAP: a human mitochondrial genome database-2004 update. Nucleic Acids Res 33:D611–D613. doi:10.1093/nar/gki079
Bredt DS (1999) Endogenous nitric oxide synthesis: biological functions and pathophysiology. Free Radic Res 31:577–596
Brink CB, Clapton JD, Eagar BE, Harvey BH (2008) Appearance of antidepressant-like effect by sildenafil in rats after central muscarinic receptor blockade: evidence from behavioural and neuro-receptor studies. J Neural Transm (Vienna) 115:117–125. doi:10.1007/s00702-007-0806-5
Bruchey AK, Gonzalez-Lima F (2008) Behavioral, physiological and biochemical hormetic responses to the autoxidizable dye methylene blue. Am J Pharmacol Toxicol 3:72–79
Buchholz K, Schirmer RH, Eubel JK, Akoachere MB, Dandekar T, Becker K, Gromer S (2008) Interactions of methylene blue with human disulfide reductases and their orthologues from plasmodium falciparum. Antimicrob Agents Chemother 52:183–191. doi:10.1128/AAC.00773-07
Calabrese V, Butterfield DA, Scapagnini G, Stella AM, Maines MD (2006) Redox regulation of heat shock protein expression by signaling involving nitric oxide and carbon monoxide: relevance to brain aging, neurodegenerative disorders, and longevity. Antioxid Redox Signal 8:444–477. doi:10.1089/ars.2006.8.444
Callaway NL, Riha PD, Bruchey AK, Munshi Z, Gonzalez-Lima F (2004) Methylene blue improves brain oxidative metabolism and memory retention in rats. Pharmacol Biochem Behav 77:175–181
Callaway NL, Riha PD, Wrubel KM, McCollum D, Gonzalez-Lima F (2002) Methylene blue restores spatial memory retention impaired by an inhibitor of cytochrome oxidase in rats. Neurosci Lett 332:83–86
Cameron HA, McEwen BS, Gould E (1995) Regulation of adult neurogenesis by excitatory input and NMDA receptor activation in the dentate gyrus. J Neurosci 15:4687–4692
Cavalli A, Bolognesi ML, Minarini A, Rosini M, Tumiatti V, Recanatini M, Melchiorre C (2008) Multi-target-directed ligands to combat neurodegenerative diseases. J Med Chem 51:347–372. doi:10.1021/jm7009364
Cenene J, Schoonheydt A (1988) Visible spectroscopy of methylene blue on hectorite, laponite B, and barasym in aqueous suspension. Clay Clay Miner 36:214–224
Cesura AM, Pletscher A (1992) The new generation of monoamine oxidase inhibitors. Prog Drug Res 38:171–297
Clark L, Chamberlain SR, Sahakian BJ (2009) Neurocognitive mechanisms in depression: implications for treatment. Annu Rev Neurosci 32:57–74. doi:10.1146/annurev.neuro.31.060407.125618
Clay HB, Sillivan S, Konradi C (2011) Mitochondrial dysfunction and pathology in bipolar disorder and schizophrenia. Int J Dev Neurosci 29:311–324. doi:10.1016/j.ijdevneu.2010.08.007
Congdon EE, Wu JW, Myeku N, Figueroa YH, Herman M, Marinec PS, Gestwicki JE, Dickey CA, Yu WH, Duff KE (2012) Methylthioninium chloride (methylene blue) induces autophagy and attenuates tauopathy in vitro and in vivo. Autophagy 8:609–622. doi:10.4161/auto.19048
Conradi HJ, Ormel J, de Jonge P (2011) Presence of individual (residual) symptoms during depressive episodes and periods of remission: a 3-year prospective study. Psychol Med 41:1165–1174. doi:10.1017/S0033291710001911
Coyle JT, Puttfarcken P (1993) Oxidative stress, glutamate, and neurodegenerative disorders. Science 262:689–695
Craddock N, Owen MJ (2005) The beginning of the end for the Kraepelinian dichotomy. Br J Psychiatry 186:364–366. doi:10.1192/bjp.186.5.364
Culo F, Sabolovic D, Somogyi L, Marusic M, Berbiguier N, Galey L (1991) Anti-tumoral and anti-inflammatory effects of biological stains. Agents Actions 34:424–428
Da Prada M, Zurcher G, Wuthrich I, Haefely WE (1988) On tyramine, food, beverages and the reversible MAO inhibitor moclobemide. J Neural Transm Suppl 26:31–56
D'Aquila PS, Collu M, Gessa GL, Serra G (2000) The role of dopamine in the mechanism of action of antidepressant drugs. Eur J Pharmacol 405:365–373
Dawson TM, Snyder SH (1994) Gases as biological messengers: nitric oxide and carbon monoxide in the brain. J Neurosci 14:5147–5159
De Paermentier F, Mauger JM, Lowther S, Crompton MR, Katona CL, Horton RW (1997) Brain alpha-adrenoceptors in depressed suicides. Brain Res 757:60–68
Delport A, Harvey BH, Petzer A, Petzer JP (2014) Azure B and a synthetic structural analogue of methylene blue, ethylthioninium chloride, present with antidepressant-like properties. Life Sci 117:56–66. doi:10.1016/j.lfs.2014.10.005
Delport A (2017) Evaluation of methylene blue and selected synthetic analogues as antidepressant agents. North-West University, Thesis
Delport A, Harvey BH, Petzer A, Petzer JP (2017) The monoamine oxidase inhibition properties of selected structural analogues of methylene blue. Toxicol Appl Pharmacol 325:1–8. doi:10.1016/j.taap.2017.03.026
de-Oliveira RW, Guimarães FS (1999) Anxiolytic effect of methylene blue microinjected into the dorsal periaqueductal gray matter. Braz J Med Biol Res 32:1529–1532
Deutsch JA (1971) The cholinergic synapse and the site of memory. Science 174:788–794
Deutsch SI, Rosse RB, Paul SM, Tomasino V, Koetzner L, Morn CB, Mastropaolo J (1996) 7-Nitroindazole and methylene blue, inhibitors of neuronal nitric oxide synthase and NO-stimulated guanylate cyclase, block MK-801-elicited behaviors in mice. Neuropsychopharmacology 15:37–43. doi:10.1016/0893-133X(95)00153-5
Deutsch SI, Rosse RB, Schwartz BL, Fay-McCarthy M, Rosenberg PB, Fearing K (1997) Methylene blue adjuvant therapy of schizophrenia. Clin Neuropharmacol 20:357–363
Di Monte DA, DeLanney LE, Irwin I, Royland JE, Chan P, Jakowec MW, Langston JW (1996) Monoamine oxidase-dependent metabolism of dopamine in the striatum and substantia nigra of L-DOPA-treated monkeys. Brain Res 738:53–59
DiSanto AR, Wagner JG (1972) Pharmacokinetics of highly ionized drugs. II. Methylene blue-absorption, metabolism, and excretion in man and dog after oral administration. J Pharm Sci 61:1086–1090
Dormoi J, Briolant S, Desgrouas C, Pradines B (2013) Efficacy of proveblue (methylene blue) in an experimental cerebral malaria murine model. Antimicrob Agents Chemother 57:3412–3414. doi:10.1128/AAC.02381-12
Drevets WC, Furey ML (2010) Replication of scopolamine's antidepressant efficacy in major depressive disorder: a randomized, placebo-controlled clinical trial. Biol Psychiatry 67:432–438. doi:10.1016/j.biopsych.2009.11.021
Ehrhardt K, Davioud-Charvet E, Ke H, Vaidya AB, Lanzer M, Deponte M (2013) The antimalarial activities of methylene blue and the 1,4-naphthoquinone 3-[4-(trifluoromethyl)benzyl]-menadione are not due to inhibition of the mitochondrial electron transport chain. Antimicrob Agents Chemother 57:2114–2120. doi:10.1128/AAC.02248-12
Eroglu L, Caglayan B (1997) Anxiolytic and antidepressant properties of methylene blue in animal models Pharmacol Res 36:381–385. doi:10.1006/phrs.1997.0245
Farris W, Leissring MA, Hemming ML, Chang AY, Selkoe DJ (2005) Alternative splicing of human insulin-degrading enzyme yields a novel isoform with a decreased ability to degrade insulin and amyloid beta-protein. Biochemistry 44:6513–6525. doi:10.1021/bi0476578
Fattal O, Budur K, Vaughan AJ, Franco K (2006) Review of the literature on major mental disorders in adult patients with mitochondrial diseases. Psychosomatics 47:1–7. doi:10.1176/appi.psy.47.1.1
Fedele E, Raiteri M (1999) In vivo studies of the cerebral glutamate receptor/NO/cGMP pathway. Prog Neurobiol 58:89–120
Finberg JP, Gillman K (2011) Selective inhibitors of monoamine oxidase type B and the "cheese effect". Int Rev Neurobiol 100:169–190. doi:10.1016/B978-0-12-386467-3.00009-1
Finberg JP, Rabey JM (2016) Inhibitors of MAO-A and MAO-B in psychiatry and neurology. Front Pharmacol 7:340
Finberg JP, Wang J, Bankiewicz K, Harvey-White J, Kopin IJ, Goldstein DS (1998) Increased striatal dopamine production from L-DOPA following selective inhibition of monoamine oxidase B by R(+)-N-propargyl-1-aminoindan (rasagiline) in the monkey. J Neural Transm Suppl 52:279–285
Finkel MS, Laghrissi-Thode F, Pollock BG, Rong J (1996) Paroxetine is a novel nitric oxide synthase inhibitor. Psychopharmacol Bull 32:653–658
Finley PR (1994) Selective serotonin reuptake inhibitors: pharmacologic profiles and potential therapeutic distinctions. Ann Pharmacother 28:1359–1369
Flott B, Seifert W (1991) Characterization of glutamate uptake systems in astrocyte primary cultures from rat brain. Glia 4:293–304. doi:10.1002/glia.440040307
Forstermann U, Schmidt HH, Pollock JS, Sheng H, Mitchell JA, Warner TD, Nakane M, Murad F (1991) Isoforms of nitric oxide synthase. Characterization and purification from different cell types. Biochem Pharmacol 42:1849–1857
Furey ML, Drevets WC (2006) Antidepressant efficacy of the antimuscarinic drug scopolamine: a randomized, placebo-controlled clinical trial. Arch Gen Psychiatry 63:1121–1129. doi:10.1001/archpsyc.63.10.1121
Furey ML, Khanna A, Hoffman EM, Drevets WC (2010) Scopolamine produces larger antidepressant and antianxiety effects in women than in men. Neuropsychopharmacology 35:2479–2488. doi:10.1038/npp.2010.131
Gabrielli D, Belisle E, Severino D, Kowaltowski AJ, Baptista MS (2004) Binding, aggregation and photochemical properties of methylene blue in mitochondrial suspensions. Photochem Photobiol 79:227–232
Garthwaite J (1991) Glutamate, nitric oxide and cell-cell signalling in the nervous system. Trends Neurosci 14:60–67
Gardner A, Boles RG (2011) Beyond the serotonin hypothesis: mitochondria, inflammation and neurodegeneration in major depression and affective spectrum disorders. Prog Neuro-Psychopharmacol Biol Psychiatry 35:730–743. doi:10.1016/j.pnpbp.2010.07.030
Gardner A, Johansson A, Wibom R, Nennesmo I, von Dobeln U, Hagenfeldt L, Hallstrom T (2003) Alterations of mitochondrial function and correlations with personality traits in selected major depressive disorder patients. J Affect Disord 76:55–68
Gerner RH, Hare TA (1981) CSF GABA in normal subjects and patients with depression, schizophrenia, mania, and anorexia nervosa. Am J Psychiatry 138:1098–1101. doi:10.1176/ajp.138.8.1098
Gillman PK (2006a) A review of serotonin toxicity data: implications for the mechanisms of antidepressant drug action. Biol Psychiatry 59:1046–1051. doi:10.1016/j.biopsych.2005.11.016
Gillman PK (2006b) Methylene blue implicated in potentially fatal serotonin toxicity. Anaesthesia 61:1013–1014. doi:10.1111/j.1365-2044.2006.04808.x
Goldman ME, Erickson CK (1983) Effects of acute and chronic administration of antidepressant drugs on the central cholinergic nervous system. Comparison with anticholinergic drugs Neuropharmacology 22:1215–1222
Gonzalez AM, Pascual J, Meana JJ, Barturen F, del Arco C, Pazos A, Garcia-Sevilla JA (1994) Autoradiographic demonstration of increased alpha 2-adrenoceptor agonist binding sites in the hippocampus and frontal cortex of depressed suicide victims. J Neurochem 63:256–265
Gonzalez-Lima F, Valla J, Matos-Collazo S (1997) Quantitative cytochemistry of cytochrome oxidase and cellular morphometry of the human inferior colliculus in control and Alzheimer's patients. Brain Res 752:117–126
Gonzalez-Lima F, Bruchey AK (2004) Extinction memory improvement by the metabolic enhancer methylene blue. Learn Mem 11:633–640. doi:10.1101/lm.82404
Gould E, Cameron HA, McEwen BS (1994) Blockade of NMDA receptors increases cell death and birth in the developing rat dentate gyrus. J Comp Neurol 340:551–565. doi:10.1002/cne.903400408
Goy MF (1991) cGMP: the wayward child of the cyclic nucleotide family. Trends Neurosci 14:293–299
Greig NH, Utsuki T, Ingram DK, Wang Y, Pepeu G, Scali C, Yu QS, Mamczarz J, Holloway HW, Giordano T, Chen D, Furukawa K, Sambamurti K, Brossi A, Lahiri DK (2005) Selective butyrylcholinesterase inhibition elevates brain acetylcholine, augments learning and lowers Alzheimer beta-amyloid peptide in rodent. Proc Natl Acad Sci U S A 102:17213–17218. doi:10.1073/pnas.0508575102
Gruetter CA, Kadowitz PJ, Ignarro LJ (1981) Methylene blue inhibits coronary arterial relaxation and guanylate cyclase activation by nitroglycerin, sodium nitrite, and amyl nitrite. Can J Physiol Pharmacol 59:150–156
Guimarães FS, de Aguiar JC, Del Bel EA, Ballejo G (1994) Anxiolytic effect of nitric oxide synthase inhibitors microinjected into the dorsal central grey. Neuroreport 5:1929–1932
Guix FX, Uribesalgo I, Coma M, Munoz FJ (2005) The physiology and pathophysiology of nitric oxide in the brain. Prog Neurobiol 76:126–152. doi:10.1016/j.pneurobio.2005.06.001
Guttmann P, Ehrlich P (1891) Über die wirkung des methylenblau bei malaria. Berlin Klin Wochenschr 28:953–956
Halliwell B, Gutteridge JMC (2007) Free radicals in biology and medicine. Clarendon Press, Oxford
Harkin A, Connor TJ, Burns MP, Kelly JP (2004) Nitric oxide synthase inhibitors augment the effects of serotonin re-uptake inhibitors in the forced swimming test. Eur Neuropsychopharmacol 14:274–281. doi:10.1016/j.euroneuro.2003.08.010
Harkin AJ, Bruce KH, Craft B, Paul IA (1999) Nitric oxide synthase inhibitors have antidepressant-like properties in mice. 1. Acute treatments are active in the forced swim test. Eur J Pharmacol 372:207–213
Harrington CR, Storey JM, Clunas S, Harrington KA, Horsley D, Ishaq A, Kemp SJ, Larch CP, Marshall C, Nicoll SL, Rickard JE, Simpson M, Sinclair JP, Storey LJ, Wischik CM (2015) Cellular models of aggregation-dependent template-directed proteolysis to characterize tau aggregation inhibitors for treatment of Alzheimer disease. J Biol Chem 290:10862–10875. doi:10.1074/jbc.M114.616029
Harvey BH (1996) Affective disorders and nitric oxide: a role in pathways to relapse and refractoriness. Hum Psychopharmacol 11:309–319
Harvey BH (2008) Is major depressive disorder a metabolic encephalopathy? Hum Psychopharmacol 23:371–384
Harvey BH, Bester A (2000) Withdrawal-associated changes in peripheral nitrogen oxides and striatal cyclic GMP after chronic haloperidol treatment. Behav Brain Res 111:203–211
Harvey BH, Duvenhage I, Viljoen F, Scheepers N, Malan SF, Wegener G, Brink CB, Petzer JP (2010) Role of monoamine oxidase, nitric oxide synthase and regional brain monoamines in the antidepressant-like effects of methylene blue and selected structural analogues. Biochem Pharmacol 80:1580–1591. doi:10.1016/j.bcp.2010.07.037
Harvey BH, Joubert C, du Preez JL, Berk M (2008) Effect of chronic N-acetyl cysteine administration on oxidative status in the presence and absence of induced oxidative stress in rat striatum. Neurochem Res 33:508–517. doi:10.1007/s11064-007-9466-y
Harvey BH, McEwen BS, Stein DJ (2003) Neurobiology of antidepressant withdrawal: implications for the longitudinal outcome of depression. Biol Psychiatry 54:1105–1117
Harvey BH, Retief R, Korff A, Wegener G (2006) Increased hippocampal nitric oxide synthase activity and stress responsiveness after imipramine discontinuation: role of 5HT 2A/C-receptors. Metab Brain Dis 21:211–220. doi:10.1007/s11011-006-9018-1
Haynes RK, Chan WC, Wong HN, Li KY, Wu WK, Fan KM, Sung HH, Williams ID, Prosperi D, Melato S, Coghi P, Monti D (2010) Facile oxidation of leucomethylene blue and dihydroflavins by artemisinins: relationship with flavoenzyme function and antimalarial mechanism of action. ChemMedChem 5:1282–1299. doi:10.1002/cmdc.201000225
Heiberg IL, Wegener G, Rosenberg R (2002) Reduction of cGMP and nitric oxide has antidepressant-like effects in the forced swimming test in rats. Behav Brain Res 134:479–484
Howland RH (2009) The antidepressant effects of anticholinergic drugs. J Psychosoc Nurs Ment Health Serv 47:17–20
Hroudova J, Fisar Z, Kitzlerova E, Zverova M, Raboch J (2013) Mitochondrial respiration in blood platelets of depressive patients. Mitochondrion 13:795–800. doi:10.1016/j.mito.2013.05.005
Hu Y, Wu DL, Luo CX, Zhu LJ, Zhang J, Wu HY, Zhu DY (2012) Hippocampal nitric oxide contributes to sex difference in affective behaviors. Proc Natl Acad Sci U S A 109:14224–14229. doi:10.1073/pnas.1207461109
Hubálek F, Binda C, Khalil A, Li M, Mattevi A, Castagnoli N, Edmondson DE (2005) Demonstration of isoleucine 199 as a structural determinant for the selective inhibition of human monoamine oxidase B by specific reversible inhibitors. J Biol Chem 280:15761–15766. doi:10.1074/jbc.M500949200
Iadecola C (1997) Bright and dark sides of nitric oxide in ischemic brain injury. Trends Neurosci 20:132–139
Iadecola C, Li J, Ebner TJ, Xu X (1995) Nitric oxide contributes to functional hyperemia in cerebellar cortex. Am J Phys 268:R1153–R1162
Ignarro LJ (2002) Nitric oxide as a unique signaling molecule in the vascular system: a historical overview. J Physiol Pharmacol 53:503–514
Ignarro LJ, Kadowitz PJ (1985) The pharmacological and physiological role of cyclic GMP in vascular smooth muscle relaxation. Annu Rev Pharmacol Toxicol 25:171–191. doi:10.1146/annurev.pa.25.040185.001131
Impert O, Katafias A, Kita P, Mills A, Pietkiewicz-Graczyk A, Wrzeszcz G (2003) Kinetics and mechanism of a fast leuco-methylene blue oxidation by copper(II)-halide species in acidic aqueous media. Dalton Trans 2003:348–353
Isbister GK, Hackett LP, Dawson AH, Whyte IM, Smith AJ (2003) Moclobemide poisoning: toxicokinetics and occurrence of serotonin toxicity. Br J Clin Pharmacol 56:441–450
Janowsky DS, el-Yousef MK, Davis JM (1974) Acetylcholine and depression. Psychosom Med 36:248–257
Janowsky DS, el-Yousef MK, Davis JM, Sekerke HJ (1972) A cholinergic-adrenergic hypothesis of mania and depression. Lancet 2:632–635
Kaehler ST, Singewald N, Sinner C, Philippu A (1999) Nitric oxide modulates the release of serotonin in the rat hypothalamus. Brain Res 835:346–349
Kato T (2005) Mitochondrial dysfunction in bipolar disorder: from 31P-magnetic resonance spectroscopic findings to their molecular mechanisms. Int Rev Neurobiol 63:21–40. doi:10.1016/S0074-7742(05)63002-4
Kelner MJ, Bagnell R, Hale B, Alexander NM (1988) Potential of methylene blue to block oxygen radical generation in reperfusion injury. Basic Life Sci 49:895–898
Kerns EH, Di L (2008) Lipophilicity. In: kerns EH, di L (ed) drug-like properties: structure, design and methods from ADME and toxicity optimization, 2nd edn. Academic press, pp 43-47
Khajavi D, Farokhnia M, Modabbernia A, Ashrafi M, Abbasi SH, Tabrizi M, Akhondzadeh S (2012) Oral scopolamine augmentation in moderate to severe major depressive disorder: a randomized, double-blind, placebo-controlled study. J Clin Psychiatry 73:1428–1433. doi:10.4088/JCP.12m07706
Kim SJ, Ha DJ, Koo TS (2014) Simultaneous quantification of methylene blue and its major metabolite, azure B, in plasma by LC-MS/MS and its application for a pharmacokinetic study. Biomed Chromatogr 28:518–524. doi:10.1002/bmc.3063
Klamer D, Engel JA, Svensson L (2004) Phencyclidine-induced behaviour in mice prevented by methylene blue. Basic Clin Pharmacol Toxicol 94:65–72
Klerman GL (1981) The spectrum of mania. Compr Psychiatry 22:11–20
Kretschmer E (2015) Constitution and character: research on the constitution and the doctrine of temperaments (1921). Vertex 26:303–317
Krumenacker JS, Hanafy KA, Murad F (2004) Regulation of nitric oxide and soluble guanylyl cyclase. Brain Res Bull 62:505–515. doi:10.1016/S0361-9230(03)00102-3
Kupfer A, Aeschlimann C, Cerny T (1996) Methylene blue and the neurotoxic mechanisms of ifosfamide encephalopathy. Eur J Clin Pharmacol 50:249–252
Kurt M, Bilge SS, Aksoz E, Kukula O, Celik S, Kesim Y (2004) Effect of sildenafil on anxiety in the plus-maze test in mice. Pol J Pharmacol 56:353–357
Lanni C, Govoni S, Lucchelli A, Boselli C (2009) Depression and antidepressants: molecular and cellular aspects. Cell Mol Life Sci 66:2985–3008. doi:10.1007/s00018-009-0055-x
Lee SK, Mills A (2003) Novel photochemistry of leuco-methylene blue. Chem Commun 18:2366–2367
Lehr E (2002) Potential antidepressant properties of pramipexole detected in locomotor and operant behavioral investigations in mice. Psychopharmacology 163:495–500. doi:10.1007/s00213-002-1199-7
Lemke MR, Fuchs G, Gemende I, Herting B, Oehlwein C, Reichmann H, Rieke J, Volkmann J (2004) Depression and Parkinson's disease. J Neurol 251 Suppl 6:VI/24-27
Leonard BE (1993) The comparative pharmacology of new antidepressants. J Clin Psychiatry 54(Suppl):3–15
Leonard BE (1995) Mechanisms of action of antidepressants. CNS Drugs 4:1–12
Liebenberg N, Harvey BH, Brand L, Brink CB (2010) Antidepressant-like properties of phosphodiesterase type 5 inhibitors and cholinergic dependency in a genetic rat model of depression. Behav Pharmacol 21:540–547. doi:10.1097/FBP.0b013e32833befe5
Lin AL, Poteet E, Du F, Gourav RC, Liu R, Wen Y, Bresnen A, Huang S, Fox PT, Yang SH, Duong TQ (2012) Methylene blue as a cerebral metabolic and hemodynamic enhancer. PLoS One 7:e46585. doi:10.1371/journal.pone.0046585
Lo JC, Darracq MA, Clark RF (2014) A review of methylene blue treatment for cardiovascular collapse. J Emerg Med 46:670–679. doi:10.1016/j.jemermed.2013.08.102
Lorrain DS, Hull EM (1993) Nitric oxide increases dopamine and serotonin release in the medial preoptic area. Neuroreport 5:87–89
Loscalzo J (1995) Nitric oxide and vascular disease. N Engl J Med 333:251–253. doi:10.1056/NEJM199507273330410
Lu J, Goula D, Sousa N, Almeida OF (2003) Ionotropic and metabotropic glutamate receptor mediation of glucocorticoid-induced apoptosis in hippocampal cells and the neuroprotective role of synaptic N-methyl-D-aspartate receptors. Neuroscience 121:123–131
Lu YC, Liu S, Gong QZ, Hamm RJ, Lyeth BG (1997) Inhibition of nitric oxide synthase potentiates hypertension and increases mortality in traumatically brain-injured rats. Mol Chem Neuropathol 30:125–137
Luo D, Das S, Vincent SR (1995) Effects of methylene blue and LY83583 on neuronal nitric oxide synthase and NADPH-diaphorase. Eur J Pharmacol 290:247–251
Luo D, Knezevich S, Vincent SR (1993) N-methyl-D-aspartate-induced nitric oxide release: an in vivo microdialysis study. Neuroscience 57:897–900
Machado-Vieira R, Salvadore G, Diazgranados N, Zarate CA Jr (2009) Ketamine and the next generation of antidepressants with a rapid onset of action. Pharmacol Ther 123:143–150. doi:10.1016/j.pharmthera.2009.02.010
Maes M (1995) Evidence for an immune response in major depression: a review and hypothesis. Prog Neuro-Psychopharmacol Biol Psychiatry 19:11–38
Maes M (2008) The cytokine hypothesis of depression: inflammation, oxidative & nitrosative stress (IO&NS) and leaky gut as new targets for adjunctive treatments in depression. Neuro Endocrinol Lett 29:287–291
Maes M, Galecki P, Chang YS, Berk M (2011) A review on the oxidative and nitrosative stress (O&NS) pathways in major depression and their possible contribution to the neurodegenerative processes in that illness. Prog Neuro-Psychopharmacol Biol Psychiatry 35:676–692. doi:10.1016/j.pnpbp.2010.05.004
Maes M, Verkerk R, Vandoolaeghe E, Lin A, Scharpe S (1998) Serum levels of excitatory amino acids, serine, glycine, histidine, threonine, taurine, alanine and arginine in treatment-resistant depression: modulation by treatment with antidepressants and prediction of clinical responsivity. Acta Psychiatr Scand 97:302–308
Maes M, Yirmyia R, Noraberg J, Brene S, Hibbeln J, Perini G, Kubera M, Bob P, Lerer B, Maj M (2009) The inflammatory & neurodegenerative (I&ND) hypothesis of depression: leads for future research and new drug developments in depression. Metab Brain Dis 24:27–53. doi:10.1007/s11011-008-9118-1
Magarinos AM, McEwen BS (1995) Stress-induced atrophy of apical dendrites of hippocampal CA3c neurons: comparison of stressors. Neuroscience 69:83–88
Maier W, Zobel A, Wagner M (2006) Schizophrenia and bipolar disorder: differences and overlaps. Curr Opin Psychiatry 19:165–170. doi:10.1097/01.yco.0000214342.52249.82
Martinez JL Jr, Jensen RA, Vasquez BJ, McGuinness T, McGaugh JL (1978) Methylene blue alters retention of inhibitory avoidance responses. Physiol Psychol 6:387–390
Mayer B, Brunner F, Schmidt K (1993) Inhibition of nitric oxide synthesis by methylene blue. Biochem Pharmacol 45:367–374
Mayes PA (1993) Biologic oxidation. In: Murray RK, Granner DK, Mayes PA, Rodwell VW (eds) Harper’s biochemistry, 23rd edn. Appleton & Lange, East Norwalk, pp 112–118
McGrath J, Saha S, Chant D, Welham J (2008) Schizophrenia: a concise overview of incidence, prevalence, and mortality. Epidemiol Rev 30:67–76. doi:10.1093/epirev/mxn001
McIntyre RS, Cha DS, Soczynska JK, Woldeyohannes HO, Gallaugher LA, Kudlow P, Alsuwaidan M, Baskaran A (2013) Cognitive deficits and functional outcomes in major depressive disorder: determinants, substrates, and treatment interventions. Depress Anxiety 30:515–527. doi:10.1002/da.22063
Melis V, Magbagbeolu M, Rickard JE, Horsley D, Davidson K, Harrington KA, Goatman K, Goatman EA, Deiana S, Close SP, Zabke C, Stamer K, Dietze S, Schwab K, Storey JM, Harrington CR, Wischik CM, Theuring F, Riedel G (2015) Effects of oxidized and reduced forms of methylthioninium in two transgenic mouse tauopathy models. Behav Pharmacol 26:353–368. doi:10.1097/FBP.0000000000000133
Millan MJ (2004) The role of monoamines in the actions of established and "novel" antidepressant agents: a critical review. Eur J Pharmacol 500:371–384. doi:10.1016/j.ejphar.2004.07.038
Millan MJ (2009) Dual- and triple-acting agents for treating core and co-morbid symptoms of major depression: novel concepts, new drugs. Neurotherapeutics 6:53–77. doi:10.1016/j.nurt.2008.10.039
Miller AH, Maletic V, Raison CL (2009) Inflammation and its discontents: the role of cytokines in the pathophysiology of major depression. Biol Psychiatry 65:732–741. doi:10.1016/j.biopsych.2008.11.029
Miller KJ, Hoffman BJ (1994) Adenosine A3 receptors regulate serotonin transport via nitric oxide and cGMP. J Biol Chem 269:27351–27356
Mitsuhata H, Saitoh J, Hasome N, Takeuchi H, Horiguchi Y, Shimizu R (1995) Nitric oxide synthase inhibition is detrimental to cardiac function and promotes bronchospasm in anaphylaxis in rabbits. Shock 4:143–148
Möller M, Du Preez JL, Viljoen FP, Berk M, Harvey BH (2013) N-acetyl cysteine reverses social isolation rearing induced changes in cortico-striatal monoamines in rats. Metab Brain Dis 28:687–696. doi:10.1007/s11011-013-9433-z
Moore PK, Handy RL (1997) Selective inhibitors of neuronal nitric oxide synthase-is no NOS really good NOS for the nervous system? Trends Pharmacol Sci 18:204–211
Morava E, Gardeitchik T, Kozicz T, de Boer L, Koene S, de Vries MC, McFarland R, Roobol T, Rodenburg RJ, Verhaak CM (2010) Depressive behaviour in children diagnosed with a mitochondrial disorder. Mitochondrion 10:528–533. doi:10.1016/j.mito.2010.05.011
Moylan S, Maes M, Wray NR, Berk M (2013) The neuroprogressive nature of major depressive disorder: pathways to disease evolution and resistance, and therapeutic implications. Mol Psychiatry 18:595–606. doi:10.1038/mp.2012.33
Mudher A, Lovestone S (2002) Alzheimer's disease - do tauists and baptists finally shake hands? Trends Neurosci 25:22–26
Murphy MP (2009) How mitochondria produce reactive oxygen species. Biochem J 417:1–13. doi:10.1042/BJ20081386
Nakane M (2003) Soluble guanylyl cyclase: physiological role as an NO receptor and the potential molecular target for therapeutic application. Clin Chem Lab Med 41:865–870. doi:10.1515/CCLM.2003.131
Naranjo CA, Tremblay LK, Busto UE (2001) The role of the brain reward system in depression. Prog Neuro-Psychopharmacol Biol Psychiatry 25:781–823
Narsapur SL, Naylor GJ (1983) Methylene blue. A possible treatment for manic depressive psychosis J Affect Disord 5:155–161
Naylor GJ, Martin B, Hopwood SE, Watson Y (1986) A two-year double-blind crossover trial of the prophylactic effect of methylene blue in manic-depressive psychosis. Biol Psychiatry 21:915–920
Naylor GJ, Smith AH, Connelly P (1987) A controlled trial of methylene blue in severe depressive illness. Biol Psychiatry 22:657–659
Naylor GJ, Smith AH, Connelly P (1988) Methylene blue in mania. Biol Psychiatry 24:941–942
Necula M, Breydo L, Milton S, Kayed R, van der Veer WE, Tone P, Glabe CG (2007) Methylene blue inhibits amyloid Aβ oligomerization by promoting fibrillization. Biochemistry 46:8850–8860. doi:10.1021/bi700411k
Ohlow MJ, Moosmann B (2011) Phenothiazine: the seven lives of pharmacology's first lead structure. Drug Discov Today 16:119–131. doi:10.1016/j.drudis.2011.01.001
Ohmori H, Kanayama N (2005) Immunogenicity of an inflammation-associated product, tyrosine nitrated self-proteins. Autoimmun Rev 4:224–229. doi:10.1016/j.autrev.2004.11.011
O'Neil MJ (2006) The Merck index: an encyclopedia of chemicals, drugs, and biologicals, 14th edn. Merck, New Jersey
Ordway GA, Farley JT, Dilley GE, Overholser JC, Meltzer HY, Balraj EK, Stockmeier CA, Klimek V (1999) Quantitative distribution of monoamine oxidase a in brainstem monoamine nuclei is normal in major depression. Brain Res 847:71–79
Overstreet DH, Russell RW, Crocker AD, Schiller GD (1984) Selective breeding for differences in cholinergic function: pre- and postsynaptic mechanisms involved in sensitivity to the anticholinesterase, DFP. Brain Res 294:327–332
Overstreet DH, Russell RW, Helps SC, Messenger M (1979) Selective breeding for sensitivity to the anticholinesterase DFP. Psychopharmacology 65:15–20
Overstreet DH, Wegener G (2013) The flinders sensitive line rat model of depression-25 years and still producing. Pharmacol Rev 65:143–155. doi:10.1124/pr.111.005397
Oxenkrug GF, McCauley RB, Fontana DJ, McIntyre IM, Commissaris RL (1986a) Possible melatonin involvement in the hypotensive effect of MAO inhibitors. J Neural Transm 66:271–280
Oxenkrug GF, McIntyre IM, Balon R, Jain AK, Appel D, McCauley RB (1986b) Single dose of tranylcypromine increases human plasma melatonin. Biol Psychiatry 21:1085–1089
Oxenkrug GF, Sablin SO, Requintina PJ (2007) Effect of methylene blue and related redox dyes on monoamine oxidase activity; rat pineal content of N-acetylserotonin, melatonin, and related indoles; and righting reflex in melatonin-primed frogs. Ann N Y Acad Sci 1122:245–252. doi:10.1196/annals.1403.017
Oz M, Lorke DE, Hasan M, Petroianu GA (2011) Cellular and molecular actions of methylene blue in the nervous system. Med Res Rev 31:93–117. doi:10.1002/med.20177
Oz M, Lorke DE, Petroianu GA (2009) Methylene blue and Alzheimer's disease. Biochem Pharmacol 78:927–932. doi:10.1016/j.bcp.2009.04.034
Pascual A, Henry M, Briolant S, Charras S, Baret E, Amalvict R, Huyghues des Etages E, Feraud M, Rogier C, Pradines B (2011) In vitro activity of proveblue (methylene blue) on plasmodium falciparum strains resistant to standard antimalarial drugs. Antimicrob Agents Chemother 55:2472–2474. doi:10.1128/AAC.01466-10
Paul IA (2001) Antidepressant activity and calcium signaling cascades. Hum Psychopharmacol 16:71–80. doi:10.1002/hup.186
Pedrosa DJ, Timmermann L (2013) Review: management of Parkinson's disease. Neuropsychiatr Dis Treat 9:321–340. doi:10.2147/NDT.S32302
Perlis ML, Smith MT, Orff HJ, Andrews PJ, Gillin JC, Giles DE (2002) The effects of an orally administered cholinergic agonist on REM sleep in major depression. Biol Psychiatry 51:457–462
Peter C, Hongwan D, Kupfer A, Lauterburg BH (2000) Pharmacokinetics and organ distribution of intravenous and oral methylene blue. Eur J Clin Pharmacol 56:247–250
Petty F (1995) GABA and mood disorders: a brief review and hypothesis. J Affect Disord 34:275–281
Petty F, Kramer GL, Gullion CM, Rush AJ (1992) Low plasma gamma-aminobutyric acid levels in male patients with depression. Biol Psychiatry 32:354–363
Petzer A, Harvey BH, Petzer JP (2014) The interactions of azure B, a metabolite of methylene blue, with acetylcholinesterase and butyrylcholinesterase. Toxicol Appl Pharmacol 274:488–493. doi:10.1016/j.taap.2013.10.014
Petzer A, Harvey BH, Wegener G, Petzer JP (2012) Azure B, a metabolite of methylene blue, is a high-potency, reversible inhibitor of monoamine oxidase. Toxicol Appl Pharmacol 258:403–409. doi:10.1016/j.taap.2011.12.005
Petzer A, Pienaar A, Petzer JP (2013) The inhibition of monoamine oxidase by esomeprazole. Drug Res (Stuttg) 63:462–467. doi:10.1055/s-0033-1345163
Pfaffendorf M, Bruning TA, Batnik HD, van Zwieten PA (1997) The interaction between methylene blue and the cholinergic system. Br J Pharmacol 122:95–98. doi:10.1038/sj.bjp.0701355
Pogun S, Dawson V, Kuhar MJ (1994) Nitric oxide inhibits 3H-glutamate transport in synaptosomes. Synapse 18:21–26. doi:10.1002/syn.890180104
Porter RJ, Gallagher P, Thompson JM, Young AH (2003) Neurocognitive impairment in drug-free patients with major depressive disorder. Br J Psychiatry 182:214–220
Poteet E, Winters A, Yan LJ, Shufelt K, Green KN, Simpkins JW, Wen Y, Yang SH (2012) Neuroprotective actions of methylene blue and its derivatives. PLoS One 7:e48279. doi:10.1371/journal.pone.0048279
Prange AJ Jr, Wilson IC, Lynn CW, Alltop LB, Stikeleather RA (1974) L-tryptophan in mania. Contribution to a permissive hypothesis of affective disorders. Arch Gen Psychiatry 30:56–62
Prast H, Philippu A (2001) Nitric oxide as modulator of neuronal function. Prog Neurobiol 64:51–68
Provost JC, Funck-Brentano C, Rovei V, D'Estanque J, Ego D, Jaillon P (1992) Pharmacokinetic and pharmacodynamic interaction between toloxatone, a new reversible monoamine oxidase-a inhibitor, and oral tyramine in healthy subjects. Clin Pharmacol Ther 52:384–393
Ramsay RR, Dunford C, Gillman PK (2007) Methylene blue and serotonin toxicity: inhibition of monoamine oxidase a (MAO a) confirms a theoretical prediction. Br J Pharmacol 152:946–951. doi:10.1038/sj.bjp.0707430
Ramsay RR, Singer TP (1986) Energy-dependent uptake of N-methyl-4-phenylpyridinium, the neurotoxic metabolite of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, by mitochondria. J Biol Chem 261:7585–7587
Rezin GT, Cardoso MR, Goncalves CL, Scaini G, Fraga DB, Riegel RE, Comim CM, Quevedo J, Streck EL (2008) Inhibition of mitochondrial respiratory chain in brain of rats subjected to an experimental model of depression. Neurochem Int 53:395–400. doi:10.1016/j.neuint.2008.09.012
Richards A, Marshall H, McQuary A (2011) Evaluation of methylene blue, thiamine, and/or albumin in the prevention of ifosfamide-related neurotoxicity. J Oncol Pharm Pract 17:372–380. doi:10.1177/1078155210385159
Robakis D, Fahn S (2015) Defining the role of the monoamine oxidase-B inhibitors for Parkinson's disease. CNS Drugs 29:433–441. doi:10.1007/s40263-015-0249-8
Rojas JC, Bruchey AK, Gonzalez-Lima F (2012) Neurometabolic mechanisms for memory enhancement and neuroprotection of methylene blue. Prog Neurobiol 96:32–45. doi:10.1016/j.pneurobio.2011.10.007
Rojas JC, Simola N, Kermath BA, Kane JR, Schallert T, Gonzalez-Lima F (2009) Striatal neuroprotection with methylene blue. Neuroscience 163:877–889. doi:10.1016/j.neuroscience.2009.07.012
Rudic RD, Sessa WC (1999) Nitric oxide in endothelial dysfunction and vascular remodeling: clinical correlates and experimental links. Am J Hum Genet 64:673–677. doi:10.1086/302304
Russell RW, Overstreet DH, Messenger M, Helps SC (1982) Selective breeding for sensitivity to DFP: generalization of effects beyond criterion variables. Pharmacol Biochem Behav 17:885–891
Salaris SC, Babbs CF, Voorhees WD 3rd (1991) Methylene blue as an inhibitor of superoxide generation by xanthine oxidase. A potential new drug for the attenuation of ischemia/reperfusion injury. Biochem Pharmacol 42:499–506
Samdani AF, Dawson TM, Dawson VL (1997) Nitric oxide synthase in models of focal ischemia. Stroke 28:1283–1288
Sanacora G, Mason GF, Rothman DL, Krystal JH (2002) Increased occipital cortex GABA concentrations in depressed patients after therapy with selective serotonin reuptake inhibitors. Am J Psychiatry 159:663–665. doi:10.1176/appi.ajp.159.4.663
Sarandol A, Sarandol E, Eker SS, Erdinc S, Vatansever E, Kirli S (2007) Major depressive disorder is accompanied with oxidative stress: short-term antidepressant treatment does not alter oxidative-antioxidative systems. Hum Psychopharmacol 22:67–73. doi:10.1002/hup.829
Saura J, Kettler R, Da Prada M, Richards JG (1992) Quantitative enzyme radioautography with 3H-Ro 41-1049 and 3H-Ro 19-6327 in vitro: localization and abundance of MAO-A and MAO-B in rat CNS, peripheral organs, and human brain. J Neurosci 12:1977–1999
Sayre LM, Singh MP, Arora PK, Wang F, McPeak RJ, Hoppel CL (1990) Inhibition of mitochondrial respiration by analogues of the dopaminergic neurotoxin 1-methyl-4-phenylpyridinium: structural requirements for accumulation-dependent enhanced inhibitory potency on intact mitochondria. Arch Biochem Biophys 280:274–283
Schildkraut JJ (1965) The catecholamine hypothesis of affective disorders: a review of supporting evidence. Am J Psychiatry 122:509–522. doi:10.1176/ajp.122.5.509
Schirmer RH, Adler H, Pickhardt M, Mandelkow E (2011) Lest we forget you-methylene blue. Neurobiol Aging 32:2325.e7–2325.e16. doi:10.1016/j.neurobiolaging.2010.12.012
Schneider F, Lutun P, Hasselmann M, Stoclet JC, Tempe JD (1992) Methylene blue increases systemic vascular resistance in human septic shock. Preliminary observations. Intensive Care Med 18:309–311
Schofield L, Grau GE (2005) Immunological processes in malaria pathogenesis. Nat Rev Immunol 5:722–735. doi:10.1038/nri1686
Segovia G, Porras A, Mora F (1994) Effects of a nitric oxide donor on glutamate and GABA release in striatum and hippocampus of the conscious rat. Neuroreport 5:1937–1940
Shao L, Martin MV, Watson SJ, Schatzberg A, Akil H, Myers RM, Jones EG, Bunney WE, Vawter MP (2008) Mitochondrial involvement in psychiatric disorders. Ann Med 40:281–295. doi:10.1080/07853890801923753
Shesely EG, Maeda N, Kim HS, Desai KM, Krege JH, Laubach VE, Sherman PA, Sessa WC, Smithies O (1996) Elevated blood pressures in mice lacking endothelial nitric oxide synthase. Proc Natl Acad Sci U S A 93:13176–13181
Shiah IS, Yatham LN (1998) GABA function in mood disorders: an update and critical review. Life Sci 63:1289–1303
Shytle RD, Silver AA, Lukas RJ, Newman MB, Sheehan DV, Sanberg PR (2002) Nicotinic acetylcholine receptors as targets for antidepressants. Mol Psychiatry 7:525–535. doi:10.1038/sj.mp.4001035
Skolnick P (1999) Antidepressants for the new millennium. Eur J Pharmacol 375:31–40
Slyepchenko A, Maes M, Kohler CA, Anderson G, Quevedo J, Alves GS, Berk M, Fernandes BS, Carvalho AF (2016) T helper 17 cells may drive neuroprogression in major depressive disorder: proposal of an integrative model. Neurosci Biobehav Rev 64:83–100. doi:10.1016/j.neubiorev.2016.02.002
Smith RP, Thron CD (1972) Hemoglobin, methylene blue and oxygen interactions in human red cells. J Pharmacol Exp Ther 183:549–558
Son SY, Ma J, Kondou Y, Yoshimura M, Yamashita E, Tsukihara T (2008) Structure of human monoamine oxidase a at 2.2 a resolution: the control of opening the entry for substrates/inhibitors. Proc Natl Acad Sci U S A 105:5739–5744. doi:10.1073/pnas.0710626105
Squires RF, Saederup E (1991) A review of evidence for GABergic predominance/glutamatergic deficit as a common etiological factor in both schizophrenia and affective psychoses: more support for a continuum hypothesis of "functional" psychosis. Neurochem Res 16:1099–1111
Stanford SC, Stanford BJ, Gillman PK (2010) Risk of severe serotonin toxicity following co-administration of methylene blue and serotonin reuptake inhibitors: an update on a case report of post-operative delirium. J Psychopharmacol 24:1433–1438. doi:10.1177/0269881109105450
Stocchi F, Fossati C, Torti M (2015) Rasagiline for the treatment of Parkinson's disease: an update. Expert Opin Pharmacother 16:2231–2241. doi:10.1517/14656566.2015.1086748
Strasser A, McCarron RM, Ishii H, Stanimirovic D, Spatz M (1994) L-arginine induces dopamine release from the striatum in vivo. Neuroreport 5:2298–2300
Sullivan M (2008) Phase II findings in AD drug trial ‘not all bad’. Clin Psychiatry News 36:34–35
Sulser F (1987) Serotonin-norepinephrine receptor interactions in the brain: implications for the pharmacology and pathophysiology of affective disorders. J Clin Psychiatry 48(Suppl):12–18
Suzuki E, Yagi G, Nakaki T, Kanba S, Asai M (2001) Elevated plasma nitrate levels in depressive states. J Affect Disord 63:221–224
Sweet G, Standiford SB (2007) Methylene-blue-associated encephalopathy. J Am Coll Surg 204:454–458. doi:10.1016/j.jamcollsurg.2006.12.030
Szabo C, Modis K (2010) Pathophysiological roles of peroxynitrite in circulatory shock. Shock 34(Suppl 1):4–14. doi:10.1097/SHK.0b013e3181e7e9ba
Takasu K, Shimogama T, Saiin C, Kim HS, Wataya Y, Brun R, Ihara M (2005) Synthesis and evaluation of beta-carbolinium cations as new antimalarial agents based on pi-delocalized lipophilic cation (DLC) hypothesis. Chem Pharm Bull (Tokyo) 53:653–661
Taniguchi S, Suzuki N, Masuda M, Hisanaga S, Iwatsubo T, Goedert M, Hasegawa M (2005) Inhibition of heparin-induced tau filament formation by phenothiazines, polyphenols, and porphyrins. J Biol Chem 280:7614–7623. doi:10.1074/jbc.M408714200
Tao R, Auerbach SB (2000) Regulation of serotonin release by GABA and excitatory amino acids. J Psychopharmacol 14:100–113
Teng B, Murthy KS, Kuemmerle JF, Grider JR, Sase K, Michel T, Makhlouf GM (1998) Expression of endothelial nitric oxide synthase in human and rabbit gastrointestinal smooth muscle cells. Am J Phys 275:G342–G351
Tretter L, Horvath G, Holgyesi A, Essek F, Adam-Vizi V (2014) Enhanced hydrogen peroxide generation accompanies the beneficial bioenergetic effects of methylene blue in isolated brain mitochondria. Free Radic Biol Med 77:317–330. doi:10.1016/j.freeradbiomed.2014.09.024
Tricoire H, Palandri A, Bourdais A, Camadro JM, Monnier V (2014) Methylene blue rescues heart defects in a drosophila model of Friedreich's ataxia. Hum Mol Genet 23:968–979. doi:10.1093/hmg/ddt493
Uretsky AD, Weiss BL, Yunker WK, Chang JP (2003) Nitric oxide produced by a novel nitric oxide synthase isoform is necessary for gonadotropin-releasing hormone-induced growth hormone secretion via a cGMP-dependent mechanism. J Neuroendocrinol 15:667–676
Uys MM, Shahid M, Sallinen J, Harvey BH (2017) The α2C-adrenoceptor antagonist, ORM-10921, exerts antidepressant-like effects in the flinders sensitive line rat. Behav Pharmacol 28:9–18. doi:10.1097/FBP.0000000000000261
Visarius TM, Stucki JW, Lauterburg BH (1997) Stimulation of respiration by methylene blue in rat liver mitochondria. FEBS Lett 412:157–160
Volke V, Soosaar A, Kõks S, Bourin M, Männistö PT, Vasar E (1997) 7-Nitroindazole, a nitric oxide synthase inhibitor, has anxiolytic-like properties in exploratory models of anxiety. Psychopharmacology 131:399–405
Volke V, Wegener G, Vasar E, Rosenberg R (1999) Methylene blue inhibits hippocampal nitric oxide synthase activity in vivo. Brain Res 826:303–305
Vutskits L, Briner A, Klauser P, Gascon E, Dayer AG, Kiss JZ, Muller D, Licker MJ, Morel DR (2008) Adverse effects of methylene blue on the central nervous system. Anesthesiology 108:684–692. doi:10.1097/ALN.0b013e3181684be4
Wagner SJ, Skripchenko A, Robinette D, Foley JW, Cincotta L (1998) Factors affecting virus photoinactivation by a series of phenothiazine dyes. Photochem Photobiol 67:343–349
Waknine-Grinberg JH, Hunt N, Bentura-Marciano A, McQuillan JA, Chan HW, Chan WC, Barenholz Y, Haynes RK, Golenser J (2010) Artemisone effective against murine cerebral malaria. Malar J 9:227. doi:10.1186/1475-2875-9-227
Wallace DC (1999) Mitochondrial diseases in man and mouse. Science 283:1482–1488
Wallace DC (2005) A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine. Annu Rev Genet 39:359–407. doi:10.1146/annurev.genet.39.110304.095751
Warth A, Goeppert B, Bopp C, Schirmacher P, Flechtenmacher C, Burhenne J (2009) Turquoise to dark green organs at autopsy. Virchows Arch 454:341–344. doi:10.1007/s00428-009-0734-x
Wegener G, Harvey BH, Bonefeld B, Muller HK, Volke V, Overstreet DH, Elfving B (2010) Increased stress-evoked nitric oxide signalling in the flinders sensitive line (FSL) rat: a genetic animal model of depression. Int J Neuropsychopharmacol 13:461–473. doi:10.1017/S1461145709990241
Wegener G, Volke V (2010) Nitric oxide synthase inhibitors as antidepressants. Pharmaceuticals 3:273–299. doi:10.3390/ph3010273
Wegener G, Volke V, Harvey BH, Rosenberg R (2003) Local, but not systemic, administration of serotonergic antidepressants decreases hippocampal nitric oxide synthase activity. Brain Res 959:128–134
Wegener G, Volke V, Rosenberg R (2000) Endogenous nitric oxide decreases hippocampal levels of serotonin and dopamine in vivo. Br J Pharmacol 130:575–580. doi:10.1038/sj.bjp.0703349
Weissgerber AJ (2008) Methylene blue for refractory hypotension: a case report. AANA J 76:271–274
Wells BG (2009) Major Depressive Disorder. In: Wells BG, Dipiro JT, Schwinghammer TL, Dipiro CV (eds) Pharmacotherapy handbook, 7th edn. McGraw-Hill, New York, pp 778–798
Wen Y, Li W, Poteet EC, Xie L, Tan C, Yan LJ, Ju X, Liu R, Qian H, Marvin MA, Goldberg MS, She H, Mao Z, Simpkins JW, Yang SH (2011) Alternative mitochondrial electron transfer as a novel strategy for neuroprotection. J Biol Chem 286:16504–16515. doi:10.1074/jbc.M110.208447
Whitton PS, Maione S, Biggs CS, Fowler LJ (1994a) N-methyl-D-aspartate receptors modulate extracellular dopamine concentration and metabolism in rat hippocampus and striatum in vivo. Brain Res 635:312–316
Whitton PS, Richards DA, Biggs CS, Fowler LJ (1994b) N-methyl-D-aspartate receptors modulate extracellular 5-hydroxytryptamine concentration in rat hippocampus and striatum in vivo. Neurosci Lett 169:215–218
Wischik CM, Bentham P, Wischik DJ, Seng KM (2008) O3-04-07: tau aggregation inhibitor (TAI) therapy with rember™ arrests disease progression in mild and moderate Alzheimer's disease over 50 weeks. Alzheimer’s Demen The J Alzheimer’s Assoc 4:T167
Wischik CM, Edwards PC, Lai RY, Roth M, Harrington CR (1996) Selective inhibition of Alzheimer disease-like tau aggregation by phenothiazines. Proc Natl Acad Sci U S A 93:11213–11218
Wischik CM, Staff RT, Wischik DJ, Bentham P, Murray AD, Storey JM, Kook KA, Harrington CR (2015) Tau aggregation inhibitor therapy: an exploratory phase 2 study in mild or moderate Alzheimer's disease. J Alzheimers Dis 44:705–720. doi:10.3233/JAD-142874
Wolin MS, Cherry PD, Rodenburg JM, Messina EJ, Kaley G (1990) Methylene blue inhibits vasodilation of skeletal muscle arterioles to acetylcholine and nitric oxide via the extracellular generation of superoxide anion. J Pharmacol Exp Ther 254:872–876
Wong-Riley MT (1989) Cytochrome oxidase: an endogenous metabolic marker for neuronal activity. Trends Neurosci 12:94–101
Wright RO, Lewander WJ, Woolf AD (1999) Methemoglobinemia: etiology, pharmacology, and clinical management. Ann Emerg Med 34:646–656
Wrubel KM, Riha PD, Maldonado MA, McCollum D, Gonzalez-Lima F (2007) The brain metabolic enhancer methylene blue improves discrimination learning in rats. Pharmacol Biochem Behav 86:712–717. doi:10.1016/j.pbb.2007.02.018
Xie Q, Nathan C (1994) The high-output nitric oxide pathway: role and regulation. J Leukoc Biol 56:576–582
Youdim MB, Bakhle YS (2006) Monoamine oxidase: isoforms and inhibitors in Parkinson's disease and depressive illness. Br J Pharmacol 147(Suppl 1):S287–S296. doi:10.1038/sj.bjp.0706464
Youdim MB, Edmondson D, Tipton KF (2006) The therapeutic potential of monoamine oxidase inhibitors. Nat Rev Neurosci 7:295–309. doi:10.1038/nrn1883
Youdim MB, Weinstock M (2004) Therapeutic applications of selective and non-selective inhibitors of monoamine oxidase a and B that do not cause significant tyramine potentiation. Neurotoxicology 25:243–250. doi:10.1016/S0161-813X(03)00103-7
Zarate CA Jr, Du J, Quiroz J, Gray NA, Denicoff KD, Singh J, Charney DS, Manji HK (2003) Regulation of cellular plasticity cascades in the pathophysiology and treatment of mood disorders: role of the glutamatergic system. Ann N Y Acad Sci 1003:273–291
Zhang J, Huang XY, Ye ML, Luo CX, Wu HY, Hu Y, Zhou QG, Wu DL, Zhu LJ, Zhu DY (2010) Neuronal nitric oxide synthase alteration accounts for the role of 5-HT1A receptor in modulating anxiety-related behaviors. J Neurosci 30:2433–2441. doi:10.1523/JNEUROSCI.5880-09.2010
Zhang X, Rojas JC, Gonzalez-Lima F (2006) Methylene blue prevents neurodegeneration caused by rotenone in the retina. Neurotox Res 9:47–57
Zoungrana A, Coulibaly B, Sie A, Walter-Sack I, Mockenhaupt FP, Kouyate B, Schirmer RH, Klose C, Mansmann U, Meissner P, Muller O (2008) Safety and efficacy of methylene blue combined with artesunate or amodiaquine for uncomplicated falciparum malaria: a randomized controlled trial from Burkina Faso. PLoS One 3:e1630. doi:10.1371/journal.pone.0001630
Acknowledgements
We gratefully acknowledge financial support by the Medical Research Council of South Africa and the National Research Foundation (BHH grant number: 77323). The grant-holder acknowledges that opinions, findings and conclusions or recommendations expressed in any publication generated by NRF supported research are those of the authors, and that the NRF accepts no liability whatsoever in this regard.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no direct conflicts of interest. BHH declares that over the past three years, he has participated in advisory boards and received honoraria from Servier®, and has received research funding from Servier® and Lundbeck®. BHH declares that, except for income from the primary employer and research funding from the above-mentioned organisations and agencies, no financial support or compensation has been received from any individual or corporate entity over the past three years for research or professional services, and there are no personal financial holdings that could be perceived as constituting a potential conflict of interest.
Rights and permissions
About this article
Cite this article
Delport, A., Harvey, B.H., Petzer, A. et al. Methylene blue and its analogues as antidepressant compounds. Metab Brain Dis 32, 1357–1382 (2017). https://doi.org/10.1007/s11011-017-0081-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11011-017-0081-6