Skip to main content

Advertisement

Log in

Methylene blue and its analogues as antidepressant compounds

  • Review Article
  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

Methylene Blue (MB) is considered to have diverse medical applications and is a well-described treatment for methemoglobinemias and ifosfamide-induced encephalopathy. In recent years the focus has shifted to MB as an antimalarial agent and as a potential treatment for neurodegenerative disorders such as Alzheimer’s disease. Of interest are reports that MB possesses antidepressant and anxiolytic activity in pre-clinical models and has shown promise in clinical trials for schizophrenia and bipolar disorder. MB is a noteworthy inhibitor of monoamine oxidase A (MAO-A), which is a well-established target for antidepressant action. MB is also recognized as a non-selective inhibitor of nitric oxide synthase (NOS) and guanylate cyclase. Dysfunction of the nitric oxide (NO)-cyclic guanosine monophosphate (cGMP) cascade is strongly linked to the neurobiology of mood, anxiety and psychosis, while the inhibition of NOS and/or guanylate cyclase has been associated with an antidepressant response. This action of MB may contribute significantly to its psychotropic activity. However, these disorders are also characterised by mitochondrial dysfunction and redox imbalance. By acting as an alternative electron acceptor/donor MB restores mitochondrial function, improves neuronal energy production and inhibits the formation of superoxide, effects that also may contribute to its therapeutic activity. Using MB in depression co-morbid with neurodegenerative disorders, like Alzheimer’s and Parkinson’s disease, also represents a particularly relevant strategy. By considering their physicochemical and pharmacokinetic properties, analogues of MB may provide therapeutic potential as novel multi-target strategies in the treatment of depression. In addition, low MAO-A active analogues may provide equal or improved response with a lower risk of adverse effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

5HIAA:

5-Hydroxyindoleacetic acid

5-HT:

5-Hydroxytryptamine/ serotonin

AChE:

Acetylcholinesterase

ADP:

Adenosine diphosphate

APP:

Amyloid precursor protein

ATP:

Adenosine triphosphate

Aβ:

Amyloid beta

BuChE:

Butyrylcholinesterase

cAMP:

Cyclic adenosine monophosphate

cGMP:

Cyclic guanosine monophosphate

Cmax :

Maximal concentration in plasma

CNS:

Central nervous system

DLC:

Delocalized lipophilic cation

DPAG:

Dorsal periaqueductal grey matter

ETC:

Ethylthioninium chloride

FAD:

Flavin adenine dinucleotide

FADH2 :

Reduced flavin adenine dinucleotide

FSL:

Flinders sensitive line

FST:

Forced swim test

GABA:

γ-Aminobutyric acid

GC:

Guanylate cyclase

i.p.:

Intraperitoneal

i.v.:

Intravenous

LeucoMB:

Reduced methylene blue

MAO:

Monoamine oxidase

MB:

Methylene blue

MG:

Methylene green

MPP+ :

1-Methyl-4-phenylpyridinium

NAD+ :

Nicotinamide adenine dinucleotide

NADH:

Reduced nicotinamide adenine dinucleotide

NADPH:

Reduced nicotinamide adenine dinucleotide phosphate

NMDA:

N-Methyl-D-aspartate

NO:

Nitric oxide

NOS:

Nitric oxide synthase

RNS:

Reactive nitrogen species

ROS:

Reactive oxygen species

SRI:

Serotonin reuptake inhibitor

ST:

Serotonin toxicity

λmax :

Wavelength of maximal absorption

References

  • aan het Rot M, Collins KA, Murrough JW, Perez AM, Reich DL, Charney DS, Mathew SJ (2010) Safety and efficacy of repeated-dose intravenous ketamine for treatment-resistant depression. Biol Psychiatry 67:139–145. doi:10.1016/j.biopsych.2009.08.038

    Article  CAS  PubMed  Google Scholar 

  • Adler G, Mautes AE (2014) Improvement in behavioral symptoms, motor impairment and activities of daily living in a patient with the behavioral variant of frontotemporal dementia under treatment with methylene blue. Geriatr Ment Health Care 2:1–2

    Article  Google Scholar 

  • Aeschlimann C, Cerny T, Kupfer A (1996) Inhibition of monoamine oxidase activity and prevention of ifosfamide encephalopathy by methylene blue. Drug Metab Dispos 24:1336–1339

    CAS  PubMed  Google Scholar 

  • Ajithkumar T, Parkinson C, Shamshad F, Murray P (2007) Ifosfamide encephalopathy. Clin Oncol 19:108–114

    Article  CAS  Google Scholar 

  • Akiskal HS, Djenderedjian AM, Rosenthal RH, Khani MK (1977) Cyclothymic disorder: validating criteria for inclusion in the bipolar affective group. Am J Psychiatry 134:1227–1233. doi:10.1176/ajp.134.11.1227

    Article  CAS  PubMed  Google Scholar 

  • Alda M, MacQueen GM, McKinnon M, Garnham J, MacLellan S, Hajek T, O’Donovan C, Sokolenko J (2011) P.2.E.001 methylene blue for residual symptoms and for cognitive dysfunction in bipolar disorder: results of a double-blind trial. Eur Neuropsychopharmacol 21:S417–S418

    Article  Google Scholar 

  • Alici-Evcimen Y, Breitbart WS (2007) Ifosfamide neuropsychiatric toxicity in patients with cancer. Psychooncology 16:956–960. doi:10.1002/pon.1161

    Article  PubMed  Google Scholar 

  • Allexsaht WJ (1938) The use of methylene blue in the treatment of catatonic dementia praecox patients. Psych Quar 12:245–252

    Article  Google Scholar 

  • Almeida RC, Felisbino CS, Lopez MG, Rodrigues AL, Gabilan NH (2006) Evidence for the involvement of L-arginine-nitric oxide-cyclic guanosine monophosphate pathway in the antidepressant-like effect of memantine in mice. Behav Brain Res 168:318–322. doi:10.1016/j.bbr.2005.11.023

    Article  CAS  PubMed  Google Scholar 

  • Andreazza AC, Young LT (2014) The neurobiology of bipolar disorder: identifying targets for specific agents and synergies for combination treatment. Int J Neuropsychopharmacol 17:1039–1052. doi:10.1017/S1461145713000096

    Article  CAS  PubMed  Google Scholar 

  • Angst J (2007) The bipolar spectrum. Br J Psychiatry 190:189–191. doi:10.1192/bjp.bp.106.030957

    Article  PubMed  Google Scholar 

  • Arnold WP, Mittal CK, Katsuki S, Murad F (1977) Nitric oxide activates guanylate cyclase and increases guanosine 3′,5′-cyclic monophosphate levels in various tissue preparations. Proc Natl Acad Sci U S A 74:3203–3207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ashcroft GW, Eccleston D, Murray LG, Glen AIM, Crawford TBB, Pullar IA, Shields PJ, Walter DS, Blackburn IM, Connechan J, Lonergan M (1972) Modified amine hypothesis for the aetiology of affective illness. Lancet 2:573–577

    Google Scholar 

  • Ashurst J, Wasson M (2011) Methemoglobinemia: a systematic review of the pathophysiology, detection, and treatment. Del Med J 83:203–208

    PubMed  Google Scholar 

  • Austin MP, Mitchell P, Goodwin GM (2001) Cognitive deficits in depression: possible implications for functional neuropathology. Br J Psychiatry 178:200–206

    Article  CAS  PubMed  Google Scholar 

  • Bach KK, Lindsay FW, Berg LS, Howard RS (2004) Prolonged postoperative disorientation after methylene blue infusion during parathyroidectomy. Anesth Analg 99:1573–1574. doi:10.1213/01.ANE.0000134860.73875.CF

    Article  PubMed  Google Scholar 

  • Baddeley TC, McCaffrey J, Storey JM, Cheung JK, Melis V, Horsley D, Harrington CR, Wischik CM (2015) Complex disposition of methylthioninium redox forms determines efficacy in tau aggregation inhibitor therapy for Alzheimer's disease. J Pharmacol Exp Ther 352:110–118. doi:10.1124/jpet.114.219352

  • Baldessarini RJ (2001) Drugs and the treatment of psychiatric disorders: depression and anxiety disorders. In: Hardman JG, Limbird LE, Goodman Gilman A (eds) Goodman and Gilman’s the pharmacological basis of therapeutics, 10th edn. McGraw-Hill, New York, pp 447–483

    Google Scholar 

  • Balu DT, Lucki I (2009) Adult hippocampal neurogenesis: regulation, functional implications, and contribution to disease pathology. Neurosci Biobehav Rev 33:232–252. doi:10.1016/j.neubiorev.2008.08.007

    Article  PubMed  Google Scholar 

  • Belmaker RH, Agam G (2008) Major depressive disorder. N Engl J Med 358:55–68. doi:10.1056/NEJMra073096

    Article  CAS  PubMed  Google Scholar 

  • Benazzi F (2006) The continuum/spectrum concept of mood disorders: is mixed depression the basic link? Eur Arch Psychiatry Clin Neurosci 256:512–515. doi:10.1007/s00406-006-0672-4

    Article  PubMed  Google Scholar 

  • Bennett MC, Diamond DM, Stryker SL, Parks JK, Parker WD Jr (1992) Cytochrome oxidase inhibition: a novel animal model of Alzheimer's disease. J Geriatr Psychiatry Neurol 5:93–101

    CAS  PubMed  Google Scholar 

  • Ben-Shachar D, Karry R (2008) Neuroanatomical pattern of mitochondrial complex I pathology varies between schizophrenia, bipolar disorder and major depression. PLoS One 3:e3676. doi:10.1371/journal.pone.0003676

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Berk M, Dean OM, Cotton SM, Jeavons S, Tanious M, Kohlmann K, Hewitt K, Moss K, Allwang C, Schapkaitz I, Robbins J, Cobb H, Ng F, Dodd S, Bush AI, Malhi GS (2014) The efficacy of adjunctive N-acetylcysteine in major depressive disorder: a double-blind, randomized, placebo-controlled trial. J Clin Psychiatry 75:628–636. doi:10.4088/JCP.13m08454

    Article  CAS  PubMed  Google Scholar 

  • Berk M, Plein H, Ferreira D (2001) Platelet glutamate receptor supersensitivity in major depressive disorder. Clin Neuropharmacol 24:129–132

    Article  CAS  PubMed  Google Scholar 

  • Bernstein HG, Stanarius A, Baumann B, Henning H, Krell D, Danos P, Falkai P, Bogerts B (1998) Nitric oxide synthase-containing neurons in the human hypothalamus: reduced number of immunoreactive cells in the paraventricular nucleus of depressive patients and schizophrenics. Neuroscience 83:867–875

    Article  CAS  PubMed  Google Scholar 

  • Bilici M, Efe H, Koroglu MA, Uydu HA, Bekaroglu M, Deger O (2001) Antioxidative enzyme activities and lipid peroxidation in major depression: alterations by antidepressant treatments. J Affect Disord 64:43–51

    Article  CAS  PubMed  Google Scholar 

  • Blass N, Fung D (1976) Dyed but not dead-methylene blue overdose. Anesthesiology 45:458–459

    Article  CAS  PubMed  Google Scholar 

  • Bonnet U (2003) Moclobemide: therapeutic use and clinical studies. CNS Drug Rev 9:97–140

    Article  CAS  PubMed  Google Scholar 

  • Bortolato B, Miskowiak KW, Kohler CA, Maes M, Fernandes BS, Berk M, Carvalho AF (2016) Cognitive remission: a novel objective for the treatment of major depression? BMC Med 14:9. doi:10.1186/s12916-016-0560-3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bradberry SM (2003) Occupational methaemoglobinaemia. Mechanisms of production, features, diagnosis and management including the use of methylene blue. Toxicol Rev 22:13–27

    Article  CAS  PubMed  Google Scholar 

  • Brand SJ, Moller M, Harvey BH (2015) A review of biomarkers in mood and psychotic disorders: a dissection of clinical vs. preclinical correlates. Curr Neuropharmacol 13:324–368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brand L, van Zyl J, Minnaar EL, Viljoen F, du Preez JL, Wegener G, Harvey BH (2012) Corticolimbic changes in acetylcholine and cyclic guanosine monophosphate in the flinders sensitive line rat: a genetic model of depression. Acta Neuropsychiatr 24:215–225. doi:10.1111/j.1601-5215.2011.00622.x

    Article  PubMed  Google Scholar 

  • Brandon MC, Lott MT, Nguyen KC, Spolim S, Navathe SB, Baldi P, Wallace DC (2005) MITOMAP: a human mitochondrial genome database-2004 update. Nucleic Acids Res 33:D611–D613. doi:10.1093/nar/gki079

    Article  CAS  PubMed  Google Scholar 

  • Bredt DS (1999) Endogenous nitric oxide synthesis: biological functions and pathophysiology. Free Radic Res 31:577–596

    Article  CAS  PubMed  Google Scholar 

  • Brink CB, Clapton JD, Eagar BE, Harvey BH (2008) Appearance of antidepressant-like effect by sildenafil in rats after central muscarinic receptor blockade: evidence from behavioural and neuro-receptor studies. J Neural Transm (Vienna) 115:117–125. doi:10.1007/s00702-007-0806-5

    Article  CAS  Google Scholar 

  • Bruchey AK, Gonzalez-Lima F (2008) Behavioral, physiological and biochemical hormetic responses to the autoxidizable dye methylene blue. Am J Pharmacol Toxicol 3:72–79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buchholz K, Schirmer RH, Eubel JK, Akoachere MB, Dandekar T, Becker K, Gromer S (2008) Interactions of methylene blue with human disulfide reductases and their orthologues from plasmodium falciparum. Antimicrob Agents Chemother 52:183–191. doi:10.1128/AAC.00773-07

    Article  CAS  PubMed  Google Scholar 

  • Calabrese V, Butterfield DA, Scapagnini G, Stella AM, Maines MD (2006) Redox regulation of heat shock protein expression by signaling involving nitric oxide and carbon monoxide: relevance to brain aging, neurodegenerative disorders, and longevity. Antioxid Redox Signal 8:444–477. doi:10.1089/ars.2006.8.444

    Article  CAS  PubMed  Google Scholar 

  • Callaway NL, Riha PD, Bruchey AK, Munshi Z, Gonzalez-Lima F (2004) Methylene blue improves brain oxidative metabolism and memory retention in rats. Pharmacol Biochem Behav 77:175–181

    Article  CAS  PubMed  Google Scholar 

  • Callaway NL, Riha PD, Wrubel KM, McCollum D, Gonzalez-Lima F (2002) Methylene blue restores spatial memory retention impaired by an inhibitor of cytochrome oxidase in rats. Neurosci Lett 332:83–86

    Article  CAS  PubMed  Google Scholar 

  • Cameron HA, McEwen BS, Gould E (1995) Regulation of adult neurogenesis by excitatory input and NMDA receptor activation in the dentate gyrus. J Neurosci 15:4687–4692

    CAS  PubMed  Google Scholar 

  • Cavalli A, Bolognesi ML, Minarini A, Rosini M, Tumiatti V, Recanatini M, Melchiorre C (2008) Multi-target-directed ligands to combat neurodegenerative diseases. J Med Chem 51:347–372. doi:10.1021/jm7009364

    Article  CAS  PubMed  Google Scholar 

  • Cenene J, Schoonheydt A (1988) Visible spectroscopy of methylene blue on hectorite, laponite B, and barasym in aqueous suspension. Clay Clay Miner 36:214–224

    Article  Google Scholar 

  • Cesura AM, Pletscher A (1992) The new generation of monoamine oxidase inhibitors. Prog Drug Res 38:171–297

    CAS  PubMed  Google Scholar 

  • Clark L, Chamberlain SR, Sahakian BJ (2009) Neurocognitive mechanisms in depression: implications for treatment. Annu Rev Neurosci 32:57–74. doi:10.1146/annurev.neuro.31.060407.125618

    Article  CAS  PubMed  Google Scholar 

  • Clay HB, Sillivan S, Konradi C (2011) Mitochondrial dysfunction and pathology in bipolar disorder and schizophrenia. Int J Dev Neurosci 29:311–324. doi:10.1016/j.ijdevneu.2010.08.007

    Article  CAS  PubMed  Google Scholar 

  • Congdon EE, Wu JW, Myeku N, Figueroa YH, Herman M, Marinec PS, Gestwicki JE, Dickey CA, Yu WH, Duff KE (2012) Methylthioninium chloride (methylene blue) induces autophagy and attenuates tauopathy in vitro and in vivo. Autophagy 8:609–622. doi:10.4161/auto.19048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Conradi HJ, Ormel J, de Jonge P (2011) Presence of individual (residual) symptoms during depressive episodes and periods of remission: a 3-year prospective study. Psychol Med 41:1165–1174. doi:10.1017/S0033291710001911

    Article  CAS  PubMed  Google Scholar 

  • Coyle JT, Puttfarcken P (1993) Oxidative stress, glutamate, and neurodegenerative disorders. Science 262:689–695

    Article  CAS  PubMed  Google Scholar 

  • Craddock N, Owen MJ (2005) The beginning of the end for the Kraepelinian dichotomy. Br J Psychiatry 186:364–366. doi:10.1192/bjp.186.5.364

    Article  PubMed  Google Scholar 

  • Culo F, Sabolovic D, Somogyi L, Marusic M, Berbiguier N, Galey L (1991) Anti-tumoral and anti-inflammatory effects of biological stains. Agents Actions 34:424–428

    Article  CAS  PubMed  Google Scholar 

  • Da Prada M, Zurcher G, Wuthrich I, Haefely WE (1988) On tyramine, food, beverages and the reversible MAO inhibitor moclobemide. J Neural Transm Suppl 26:31–56

    PubMed  Google Scholar 

  • D'Aquila PS, Collu M, Gessa GL, Serra G (2000) The role of dopamine in the mechanism of action of antidepressant drugs. Eur J Pharmacol 405:365–373

    Article  PubMed  Google Scholar 

  • Dawson TM, Snyder SH (1994) Gases as biological messengers: nitric oxide and carbon monoxide in the brain. J Neurosci 14:5147–5159

    CAS  PubMed  Google Scholar 

  • De Paermentier F, Mauger JM, Lowther S, Crompton MR, Katona CL, Horton RW (1997) Brain alpha-adrenoceptors in depressed suicides. Brain Res 757:60–68

    Article  PubMed  Google Scholar 

  • Delport A, Harvey BH, Petzer A, Petzer JP (2014) Azure B and a synthetic structural analogue of methylene blue, ethylthioninium chloride, present with antidepressant-like properties. Life Sci 117:56–66. doi:10.1016/j.lfs.2014.10.005

    Article  CAS  PubMed  Google Scholar 

  • Delport A (2017) Evaluation of methylene blue and selected synthetic analogues as antidepressant agents. North-West University, Thesis

    Google Scholar 

  • Delport A, Harvey BH, Petzer A, Petzer JP (2017) The monoamine oxidase inhibition properties of selected structural analogues of methylene blue. Toxicol Appl Pharmacol 325:1–8. doi:10.1016/j.taap.2017.03.026

    Article  CAS  PubMed  Google Scholar 

  • de-Oliveira RW, Guimarães FS (1999) Anxiolytic effect of methylene blue microinjected into the dorsal periaqueductal gray matter. Braz J Med Biol Res 32:1529–1532

  • Deutsch JA (1971) The cholinergic synapse and the site of memory. Science 174:788–794

    Article  CAS  PubMed  Google Scholar 

  • Deutsch SI, Rosse RB, Paul SM, Tomasino V, Koetzner L, Morn CB, Mastropaolo J (1996) 7-Nitroindazole and methylene blue, inhibitors of neuronal nitric oxide synthase and NO-stimulated guanylate cyclase, block MK-801-elicited behaviors in mice. Neuropsychopharmacology 15:37–43. doi:10.1016/0893-133X(95)00153-5

    Article  CAS  PubMed  Google Scholar 

  • Deutsch SI, Rosse RB, Schwartz BL, Fay-McCarthy M, Rosenberg PB, Fearing K (1997) Methylene blue adjuvant therapy of schizophrenia. Clin Neuropharmacol 20:357–363

    Article  CAS  PubMed  Google Scholar 

  • Di Monte DA, DeLanney LE, Irwin I, Royland JE, Chan P, Jakowec MW, Langston JW (1996) Monoamine oxidase-dependent metabolism of dopamine in the striatum and substantia nigra of L-DOPA-treated monkeys. Brain Res 738:53–59

    Article  PubMed  Google Scholar 

  • DiSanto AR, Wagner JG (1972) Pharmacokinetics of highly ionized drugs. II. Methylene blue-absorption, metabolism, and excretion in man and dog after oral administration. J Pharm Sci 61:1086–1090

    Article  CAS  PubMed  Google Scholar 

  • Dormoi J, Briolant S, Desgrouas C, Pradines B (2013) Efficacy of proveblue (methylene blue) in an experimental cerebral malaria murine model. Antimicrob Agents Chemother 57:3412–3414. doi:10.1128/AAC.02381-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Drevets WC, Furey ML (2010) Replication of scopolamine's antidepressant efficacy in major depressive disorder: a randomized, placebo-controlled clinical trial. Biol Psychiatry 67:432–438. doi:10.1016/j.biopsych.2009.11.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ehrhardt K, Davioud-Charvet E, Ke H, Vaidya AB, Lanzer M, Deponte M (2013) The antimalarial activities of methylene blue and the 1,4-naphthoquinone 3-[4-(trifluoromethyl)benzyl]-menadione are not due to inhibition of the mitochondrial electron transport chain. Antimicrob Agents Chemother 57:2114–2120. doi:10.1128/AAC.02248-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eroglu L, Caglayan B (1997) Anxiolytic and antidepressant properties of methylene blue in animal models Pharmacol Res 36:381–385. doi:10.1006/phrs.1997.0245

  • Farris W, Leissring MA, Hemming ML, Chang AY, Selkoe DJ (2005) Alternative splicing of human insulin-degrading enzyme yields a novel isoform with a decreased ability to degrade insulin and amyloid beta-protein. Biochemistry 44:6513–6525. doi:10.1021/bi0476578

    Article  CAS  PubMed  Google Scholar 

  • Fattal O, Budur K, Vaughan AJ, Franco K (2006) Review of the literature on major mental disorders in adult patients with mitochondrial diseases. Psychosomatics 47:1–7. doi:10.1176/appi.psy.47.1.1

    Article  PubMed  Google Scholar 

  • Fedele E, Raiteri M (1999) In vivo studies of the cerebral glutamate receptor/NO/cGMP pathway. Prog Neurobiol 58:89–120

    Article  CAS  PubMed  Google Scholar 

  • Finberg JP, Gillman K (2011) Selective inhibitors of monoamine oxidase type B and the "cheese effect". Int Rev Neurobiol 100:169–190. doi:10.1016/B978-0-12-386467-3.00009-1

    Article  CAS  PubMed  Google Scholar 

  • Finberg JP, Rabey JM (2016) Inhibitors of MAO-A and MAO-B in psychiatry and neurology. Front Pharmacol 7:340

    Article  PubMed  PubMed Central  Google Scholar 

  • Finberg JP, Wang J, Bankiewicz K, Harvey-White J, Kopin IJ, Goldstein DS (1998) Increased striatal dopamine production from L-DOPA following selective inhibition of monoamine oxidase B by R(+)-N-propargyl-1-aminoindan (rasagiline) in the monkey. J Neural Transm Suppl 52:279–285

    Article  CAS  PubMed  Google Scholar 

  • Finkel MS, Laghrissi-Thode F, Pollock BG, Rong J (1996) Paroxetine is a novel nitric oxide synthase inhibitor. Psychopharmacol Bull 32:653–658

    CAS  PubMed  Google Scholar 

  • Finley PR (1994) Selective serotonin reuptake inhibitors: pharmacologic profiles and potential therapeutic distinctions. Ann Pharmacother 28:1359–1369

    Article  CAS  PubMed  Google Scholar 

  • Flott B, Seifert W (1991) Characterization of glutamate uptake systems in astrocyte primary cultures from rat brain. Glia 4:293–304. doi:10.1002/glia.440040307

    Article  CAS  PubMed  Google Scholar 

  • Forstermann U, Schmidt HH, Pollock JS, Sheng H, Mitchell JA, Warner TD, Nakane M, Murad F (1991) Isoforms of nitric oxide synthase. Characterization and purification from different cell types. Biochem Pharmacol 42:1849–1857

    Article  CAS  PubMed  Google Scholar 

  • Furey ML, Drevets WC (2006) Antidepressant efficacy of the antimuscarinic drug scopolamine: a randomized, placebo-controlled clinical trial. Arch Gen Psychiatry 63:1121–1129. doi:10.1001/archpsyc.63.10.1121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Furey ML, Khanna A, Hoffman EM, Drevets WC (2010) Scopolamine produces larger antidepressant and antianxiety effects in women than in men. Neuropsychopharmacology 35:2479–2488. doi:10.1038/npp.2010.131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gabrielli D, Belisle E, Severino D, Kowaltowski AJ, Baptista MS (2004) Binding, aggregation and photochemical properties of methylene blue in mitochondrial suspensions. Photochem Photobiol 79:227–232

    Article  CAS  PubMed  Google Scholar 

  • Garthwaite J (1991) Glutamate, nitric oxide and cell-cell signalling in the nervous system. Trends Neurosci 14:60–67

    Article  CAS  PubMed  Google Scholar 

  • Gardner A, Boles RG (2011) Beyond the serotonin hypothesis: mitochondria, inflammation and neurodegeneration in major depression and affective spectrum disorders. Prog Neuro-Psychopharmacol Biol Psychiatry 35:730–743. doi:10.1016/j.pnpbp.2010.07.030

    Article  CAS  Google Scholar 

  • Gardner A, Johansson A, Wibom R, Nennesmo I, von Dobeln U, Hagenfeldt L, Hallstrom T (2003) Alterations of mitochondrial function and correlations with personality traits in selected major depressive disorder patients. J Affect Disord 76:55–68

    Article  CAS  PubMed  Google Scholar 

  • Gerner RH, Hare TA (1981) CSF GABA in normal subjects and patients with depression, schizophrenia, mania, and anorexia nervosa. Am J Psychiatry 138:1098–1101. doi:10.1176/ajp.138.8.1098

    Article  CAS  PubMed  Google Scholar 

  • Gillman PK (2006a) A review of serotonin toxicity data: implications for the mechanisms of antidepressant drug action. Biol Psychiatry 59:1046–1051. doi:10.1016/j.biopsych.2005.11.016

    Article  CAS  PubMed  Google Scholar 

  • Gillman PK (2006b) Methylene blue implicated in potentially fatal serotonin toxicity. Anaesthesia 61:1013–1014. doi:10.1111/j.1365-2044.2006.04808.x

    Article  CAS  PubMed  Google Scholar 

  • Goldman ME, Erickson CK (1983) Effects of acute and chronic administration of antidepressant drugs on the central cholinergic nervous system. Comparison with anticholinergic drugs Neuropharmacology 22:1215–1222

    CAS  PubMed  Google Scholar 

  • Gonzalez AM, Pascual J, Meana JJ, Barturen F, del Arco C, Pazos A, Garcia-Sevilla JA (1994) Autoradiographic demonstration of increased alpha 2-adrenoceptor agonist binding sites in the hippocampus and frontal cortex of depressed suicide victims. J Neurochem 63:256–265

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez-Lima F, Valla J, Matos-Collazo S (1997) Quantitative cytochemistry of cytochrome oxidase and cellular morphometry of the human inferior colliculus in control and Alzheimer's patients. Brain Res 752:117–126

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez-Lima F, Bruchey AK (2004) Extinction memory improvement by the metabolic enhancer methylene blue. Learn Mem 11:633–640. doi:10.1101/lm.82404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gould E, Cameron HA, McEwen BS (1994) Blockade of NMDA receptors increases cell death and birth in the developing rat dentate gyrus. J Comp Neurol 340:551–565. doi:10.1002/cne.903400408

    Article  CAS  PubMed  Google Scholar 

  • Goy MF (1991) cGMP: the wayward child of the cyclic nucleotide family. Trends Neurosci 14:293–299

    Article  CAS  PubMed  Google Scholar 

  • Greig NH, Utsuki T, Ingram DK, Wang Y, Pepeu G, Scali C, Yu QS, Mamczarz J, Holloway HW, Giordano T, Chen D, Furukawa K, Sambamurti K, Brossi A, Lahiri DK (2005) Selective butyrylcholinesterase inhibition elevates brain acetylcholine, augments learning and lowers Alzheimer beta-amyloid peptide in rodent. Proc Natl Acad Sci U S A 102:17213–17218. doi:10.1073/pnas.0508575102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gruetter CA, Kadowitz PJ, Ignarro LJ (1981) Methylene blue inhibits coronary arterial relaxation and guanylate cyclase activation by nitroglycerin, sodium nitrite, and amyl nitrite. Can J Physiol Pharmacol 59:150–156

    Article  CAS  PubMed  Google Scholar 

  • Guimarães FS, de Aguiar JC, Del Bel EA, Ballejo G (1994) Anxiolytic effect of nitric oxide synthase inhibitors microinjected into the dorsal central grey. Neuroreport 5:1929–1932

    Article  PubMed  Google Scholar 

  • Guix FX, Uribesalgo I, Coma M, Munoz FJ (2005) The physiology and pathophysiology of nitric oxide in the brain. Prog Neurobiol 76:126–152. doi:10.1016/j.pneurobio.2005.06.001

    Article  CAS  PubMed  Google Scholar 

  • Guttmann P, Ehrlich P (1891) Über die wirkung des methylenblau bei malaria. Berlin Klin Wochenschr 28:953–956

    Google Scholar 

  • Halliwell B, Gutteridge JMC (2007) Free radicals in biology and medicine. Clarendon Press, Oxford

    Google Scholar 

  • Harkin A, Connor TJ, Burns MP, Kelly JP (2004) Nitric oxide synthase inhibitors augment the effects of serotonin re-uptake inhibitors in the forced swimming test. Eur Neuropsychopharmacol 14:274–281. doi:10.1016/j.euroneuro.2003.08.010

    Article  CAS  PubMed  Google Scholar 

  • Harkin AJ, Bruce KH, Craft B, Paul IA (1999) Nitric oxide synthase inhibitors have antidepressant-like properties in mice. 1. Acute treatments are active in the forced swim test. Eur J Pharmacol 372:207–213

    Article  CAS  PubMed  Google Scholar 

  • Harrington CR, Storey JM, Clunas S, Harrington KA, Horsley D, Ishaq A, Kemp SJ, Larch CP, Marshall C, Nicoll SL, Rickard JE, Simpson M, Sinclair JP, Storey LJ, Wischik CM (2015) Cellular models of aggregation-dependent template-directed proteolysis to characterize tau aggregation inhibitors for treatment of Alzheimer disease. J Biol Chem 290:10862–10875. doi:10.1074/jbc.M114.616029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harvey BH (1996) Affective disorders and nitric oxide: a role in pathways to relapse and refractoriness. Hum Psychopharmacol 11:309–319

    Article  CAS  Google Scholar 

  • Harvey BH (2008) Is major depressive disorder a metabolic encephalopathy? Hum Psychopharmacol 23:371–384

  • Harvey BH, Bester A (2000) Withdrawal-associated changes in peripheral nitrogen oxides and striatal cyclic GMP after chronic haloperidol treatment. Behav Brain Res 111:203–211

    Article  CAS  PubMed  Google Scholar 

  • Harvey BH, Duvenhage I, Viljoen F, Scheepers N, Malan SF, Wegener G, Brink CB, Petzer JP (2010) Role of monoamine oxidase, nitric oxide synthase and regional brain monoamines in the antidepressant-like effects of methylene blue and selected structural analogues. Biochem Pharmacol 80:1580–1591. doi:10.1016/j.bcp.2010.07.037

    Article  CAS  PubMed  Google Scholar 

  • Harvey BH, Joubert C, du Preez JL, Berk M (2008) Effect of chronic N-acetyl cysteine administration on oxidative status in the presence and absence of induced oxidative stress in rat striatum. Neurochem Res 33:508–517. doi:10.1007/s11064-007-9466-y

    Article  CAS  PubMed  Google Scholar 

  • Harvey BH, McEwen BS, Stein DJ (2003) Neurobiology of antidepressant withdrawal: implications for the longitudinal outcome of depression. Biol Psychiatry 54:1105–1117

    Article  CAS  PubMed  Google Scholar 

  • Harvey BH, Retief R, Korff A, Wegener G (2006) Increased hippocampal nitric oxide synthase activity and stress responsiveness after imipramine discontinuation: role of 5HT 2A/C-receptors. Metab Brain Dis 21:211–220. doi:10.1007/s11011-006-9018-1

    Article  CAS  PubMed  Google Scholar 

  • Haynes RK, Chan WC, Wong HN, Li KY, Wu WK, Fan KM, Sung HH, Williams ID, Prosperi D, Melato S, Coghi P, Monti D (2010) Facile oxidation of leucomethylene blue and dihydroflavins by artemisinins: relationship with flavoenzyme function and antimalarial mechanism of action. ChemMedChem 5:1282–1299. doi:10.1002/cmdc.201000225

    Article  CAS  PubMed  Google Scholar 

  • Heiberg IL, Wegener G, Rosenberg R (2002) Reduction of cGMP and nitric oxide has antidepressant-like effects in the forced swimming test in rats. Behav Brain Res 134:479–484

    Article  CAS  PubMed  Google Scholar 

  • Howland RH (2009) The antidepressant effects of anticholinergic drugs. J Psychosoc Nurs Ment Health Serv 47:17–20

    Google Scholar 

  • Hroudova J, Fisar Z, Kitzlerova E, Zverova M, Raboch J (2013) Mitochondrial respiration in blood platelets of depressive patients. Mitochondrion 13:795–800. doi:10.1016/j.mito.2013.05.005

    Article  CAS  PubMed  Google Scholar 

  • Hu Y, Wu DL, Luo CX, Zhu LJ, Zhang J, Wu HY, Zhu DY (2012) Hippocampal nitric oxide contributes to sex difference in affective behaviors. Proc Natl Acad Sci U S A 109:14224–14229. doi:10.1073/pnas.1207461109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hubálek F, Binda C, Khalil A, Li M, Mattevi A, Castagnoli N, Edmondson DE (2005) Demonstration of isoleucine 199 as a structural determinant for the selective inhibition of human monoamine oxidase B by specific reversible inhibitors. J Biol Chem 280:15761–15766. doi:10.1074/jbc.M500949200

    Article  PubMed  CAS  Google Scholar 

  • Iadecola C (1997) Bright and dark sides of nitric oxide in ischemic brain injury. Trends Neurosci 20:132–139

    Article  CAS  PubMed  Google Scholar 

  • Iadecola C, Li J, Ebner TJ, Xu X (1995) Nitric oxide contributes to functional hyperemia in cerebellar cortex. Am J Phys 268:R1153–R1162

    CAS  Google Scholar 

  • Ignarro LJ (2002) Nitric oxide as a unique signaling molecule in the vascular system: a historical overview. J Physiol Pharmacol 53:503–514

    CAS  PubMed  Google Scholar 

  • Ignarro LJ, Kadowitz PJ (1985) The pharmacological and physiological role of cyclic GMP in vascular smooth muscle relaxation. Annu Rev Pharmacol Toxicol 25:171–191. doi:10.1146/annurev.pa.25.040185.001131

    Article  CAS  PubMed  Google Scholar 

  • Impert O, Katafias A, Kita P, Mills A, Pietkiewicz-Graczyk A, Wrzeszcz G (2003) Kinetics and mechanism of a fast leuco-methylene blue oxidation by copper(II)-halide species in acidic aqueous media. Dalton Trans 2003:348–353

    Article  CAS  Google Scholar 

  • Isbister GK, Hackett LP, Dawson AH, Whyte IM, Smith AJ (2003) Moclobemide poisoning: toxicokinetics and occurrence of serotonin toxicity. Br J Clin Pharmacol 56:441–450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Janowsky DS, el-Yousef MK, Davis JM (1974) Acetylcholine and depression. Psychosom Med 36:248–257

    Article  CAS  PubMed  Google Scholar 

  • Janowsky DS, el-Yousef MK, Davis JM, Sekerke HJ (1972) A cholinergic-adrenergic hypothesis of mania and depression. Lancet 2:632–635

    Article  CAS  PubMed  Google Scholar 

  • Kaehler ST, Singewald N, Sinner C, Philippu A (1999) Nitric oxide modulates the release of serotonin in the rat hypothalamus. Brain Res 835:346–349

    Article  CAS  PubMed  Google Scholar 

  • Kato T (2005) Mitochondrial dysfunction in bipolar disorder: from 31P-magnetic resonance spectroscopic findings to their molecular mechanisms. Int Rev Neurobiol 63:21–40. doi:10.1016/S0074-7742(05)63002-4

    Article  CAS  PubMed  Google Scholar 

  • Kelner MJ, Bagnell R, Hale B, Alexander NM (1988) Potential of methylene blue to block oxygen radical generation in reperfusion injury. Basic Life Sci 49:895–898

    CAS  PubMed  Google Scholar 

  • Kerns EH, Di L (2008) Lipophilicity. In: kerns EH, di L (ed) drug-like properties: structure, design and methods from ADME and toxicity optimization, 2nd edn. Academic press, pp 43-47

  • Khajavi D, Farokhnia M, Modabbernia A, Ashrafi M, Abbasi SH, Tabrizi M, Akhondzadeh S (2012) Oral scopolamine augmentation in moderate to severe major depressive disorder: a randomized, double-blind, placebo-controlled study. J Clin Psychiatry 73:1428–1433. doi:10.4088/JCP.12m07706

    Article  CAS  PubMed  Google Scholar 

  • Kim SJ, Ha DJ, Koo TS (2014) Simultaneous quantification of methylene blue and its major metabolite, azure B, in plasma by LC-MS/MS and its application for a pharmacokinetic study. Biomed Chromatogr 28:518–524. doi:10.1002/bmc.3063

    Article  CAS  PubMed  Google Scholar 

  • Klamer D, Engel JA, Svensson L (2004) Phencyclidine-induced behaviour in mice prevented by methylene blue. Basic Clin Pharmacol Toxicol 94:65–72

    Article  CAS  PubMed  Google Scholar 

  • Klerman GL (1981) The spectrum of mania. Compr Psychiatry 22:11–20

    Article  CAS  PubMed  Google Scholar 

  • Kretschmer E (2015) Constitution and character: research on the constitution and the doctrine of temperaments (1921). Vertex 26:303–317

    PubMed  Google Scholar 

  • Krumenacker JS, Hanafy KA, Murad F (2004) Regulation of nitric oxide and soluble guanylyl cyclase. Brain Res Bull 62:505–515. doi:10.1016/S0361-9230(03)00102-3

    Article  CAS  PubMed  Google Scholar 

  • Kupfer A, Aeschlimann C, Cerny T (1996) Methylene blue and the neurotoxic mechanisms of ifosfamide encephalopathy. Eur J Clin Pharmacol 50:249–252

    Article  CAS  PubMed  Google Scholar 

  • Kurt M, Bilge SS, Aksoz E, Kukula O, Celik S, Kesim Y (2004) Effect of sildenafil on anxiety in the plus-maze test in mice. Pol J Pharmacol 56:353–357

    CAS  PubMed  Google Scholar 

  • Lanni C, Govoni S, Lucchelli A, Boselli C (2009) Depression and antidepressants: molecular and cellular aspects. Cell Mol Life Sci 66:2985–3008. doi:10.1007/s00018-009-0055-x

    Article  CAS  PubMed  Google Scholar 

  • Lee SK, Mills A (2003) Novel photochemistry of leuco-methylene blue. Chem Commun 18:2366–2367

    Article  CAS  Google Scholar 

  • Lehr E (2002) Potential antidepressant properties of pramipexole detected in locomotor and operant behavioral investigations in mice. Psychopharmacology 163:495–500. doi:10.1007/s00213-002-1199-7

    Article  CAS  PubMed  Google Scholar 

  • Lemke MR, Fuchs G, Gemende I, Herting B, Oehlwein C, Reichmann H, Rieke J, Volkmann J (2004) Depression and Parkinson's disease. J Neurol 251 Suppl 6:VI/24-27

  • Leonard BE (1993) The comparative pharmacology of new antidepressants. J Clin Psychiatry 54(Suppl):3–15

    PubMed  Google Scholar 

  • Leonard BE (1995) Mechanisms of action of antidepressants. CNS Drugs 4:1–12

    Article  CAS  Google Scholar 

  • Liebenberg N, Harvey BH, Brand L, Brink CB (2010) Antidepressant-like properties of phosphodiesterase type 5 inhibitors and cholinergic dependency in a genetic rat model of depression. Behav Pharmacol 21:540–547. doi:10.1097/FBP.0b013e32833befe5

    Article  CAS  PubMed  Google Scholar 

  • Lin AL, Poteet E, Du F, Gourav RC, Liu R, Wen Y, Bresnen A, Huang S, Fox PT, Yang SH, Duong TQ (2012) Methylene blue as a cerebral metabolic and hemodynamic enhancer. PLoS One 7:e46585. doi:10.1371/journal.pone.0046585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lo JC, Darracq MA, Clark RF (2014) A review of methylene blue treatment for cardiovascular collapse. J Emerg Med 46:670–679. doi:10.1016/j.jemermed.2013.08.102

    Article  PubMed  Google Scholar 

  • Lorrain DS, Hull EM (1993) Nitric oxide increases dopamine and serotonin release in the medial preoptic area. Neuroreport 5:87–89

    Article  CAS  PubMed  Google Scholar 

  • Loscalzo J (1995) Nitric oxide and vascular disease. N Engl J Med 333:251–253. doi:10.1056/NEJM199507273330410

    Article  CAS  PubMed  Google Scholar 

  • Lu J, Goula D, Sousa N, Almeida OF (2003) Ionotropic and metabotropic glutamate receptor mediation of glucocorticoid-induced apoptosis in hippocampal cells and the neuroprotective role of synaptic N-methyl-D-aspartate receptors. Neuroscience 121:123–131

    Article  CAS  PubMed  Google Scholar 

  • Lu YC, Liu S, Gong QZ, Hamm RJ, Lyeth BG (1997) Inhibition of nitric oxide synthase potentiates hypertension and increases mortality in traumatically brain-injured rats. Mol Chem Neuropathol 30:125–137

    Article  CAS  PubMed  Google Scholar 

  • Luo D, Das S, Vincent SR (1995) Effects of methylene blue and LY83583 on neuronal nitric oxide synthase and NADPH-diaphorase. Eur J Pharmacol 290:247–251

    Article  CAS  PubMed  Google Scholar 

  • Luo D, Knezevich S, Vincent SR (1993) N-methyl-D-aspartate-induced nitric oxide release: an in vivo microdialysis study. Neuroscience 57:897–900

    Article  CAS  PubMed  Google Scholar 

  • Machado-Vieira R, Salvadore G, Diazgranados N, Zarate CA Jr (2009) Ketamine and the next generation of antidepressants with a rapid onset of action. Pharmacol Ther 123:143–150. doi:10.1016/j.pharmthera.2009.02.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maes M (1995) Evidence for an immune response in major depression: a review and hypothesis. Prog Neuro-Psychopharmacol Biol Psychiatry 19:11–38

    Article  CAS  Google Scholar 

  • Maes M (2008) The cytokine hypothesis of depression: inflammation, oxidative & nitrosative stress (IO&NS) and leaky gut as new targets for adjunctive treatments in depression. Neuro Endocrinol Lett 29:287–291

    CAS  PubMed  Google Scholar 

  • Maes M, Galecki P, Chang YS, Berk M (2011) A review on the oxidative and nitrosative stress (O&NS) pathways in major depression and their possible contribution to the neurodegenerative processes in that illness. Prog Neuro-Psychopharmacol Biol Psychiatry 35:676–692. doi:10.1016/j.pnpbp.2010.05.004

    Article  CAS  Google Scholar 

  • Maes M, Verkerk R, Vandoolaeghe E, Lin A, Scharpe S (1998) Serum levels of excitatory amino acids, serine, glycine, histidine, threonine, taurine, alanine and arginine in treatment-resistant depression: modulation by treatment with antidepressants and prediction of clinical responsivity. Acta Psychiatr Scand 97:302–308

    Article  CAS  PubMed  Google Scholar 

  • Maes M, Yirmyia R, Noraberg J, Brene S, Hibbeln J, Perini G, Kubera M, Bob P, Lerer B, Maj M (2009) The inflammatory & neurodegenerative (I&ND) hypothesis of depression: leads for future research and new drug developments in depression. Metab Brain Dis 24:27–53. doi:10.1007/s11011-008-9118-1

    Article  CAS  PubMed  Google Scholar 

  • Magarinos AM, McEwen BS (1995) Stress-induced atrophy of apical dendrites of hippocampal CA3c neurons: comparison of stressors. Neuroscience 69:83–88

    Article  CAS  PubMed  Google Scholar 

  • Maier W, Zobel A, Wagner M (2006) Schizophrenia and bipolar disorder: differences and overlaps. Curr Opin Psychiatry 19:165–170. doi:10.1097/01.yco.0000214342.52249.82

    Article  PubMed  Google Scholar 

  • Martinez JL Jr, Jensen RA, Vasquez BJ, McGuinness T, McGaugh JL (1978) Methylene blue alters retention of inhibitory avoidance responses. Physiol Psychol 6:387–390

    Article  CAS  Google Scholar 

  • Mayer B, Brunner F, Schmidt K (1993) Inhibition of nitric oxide synthesis by methylene blue. Biochem Pharmacol 45:367–374

    Article  CAS  PubMed  Google Scholar 

  • Mayes PA (1993) Biologic oxidation. In: Murray RK, Granner DK, Mayes PA, Rodwell VW (eds) Harper’s biochemistry, 23rd edn. Appleton & Lange, East Norwalk, pp 112–118

    Google Scholar 

  • McGrath J, Saha S, Chant D, Welham J (2008) Schizophrenia: a concise overview of incidence, prevalence, and mortality. Epidemiol Rev 30:67–76. doi:10.1093/epirev/mxn001

    Article  PubMed  Google Scholar 

  • McIntyre RS, Cha DS, Soczynska JK, Woldeyohannes HO, Gallaugher LA, Kudlow P, Alsuwaidan M, Baskaran A (2013) Cognitive deficits and functional outcomes in major depressive disorder: determinants, substrates, and treatment interventions. Depress Anxiety 30:515–527. doi:10.1002/da.22063

    Article  PubMed  Google Scholar 

  • Melis V, Magbagbeolu M, Rickard JE, Horsley D, Davidson K, Harrington KA, Goatman K, Goatman EA, Deiana S, Close SP, Zabke C, Stamer K, Dietze S, Schwab K, Storey JM, Harrington CR, Wischik CM, Theuring F, Riedel G (2015) Effects of oxidized and reduced forms of methylthioninium in two transgenic mouse tauopathy models. Behav Pharmacol 26:353–368. doi:10.1097/FBP.0000000000000133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Millan MJ (2004) The role of monoamines in the actions of established and "novel" antidepressant agents: a critical review. Eur J Pharmacol 500:371–384. doi:10.1016/j.ejphar.2004.07.038

    Article  CAS  PubMed  Google Scholar 

  • Millan MJ (2009) Dual- and triple-acting agents for treating core and co-morbid symptoms of major depression: novel concepts, new drugs. Neurotherapeutics 6:53–77. doi:10.1016/j.nurt.2008.10.039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller AH, Maletic V, Raison CL (2009) Inflammation and its discontents: the role of cytokines in the pathophysiology of major depression. Biol Psychiatry 65:732–741. doi:10.1016/j.biopsych.2008.11.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller KJ, Hoffman BJ (1994) Adenosine A3 receptors regulate serotonin transport via nitric oxide and cGMP. J Biol Chem 269:27351–27356

    CAS  PubMed  Google Scholar 

  • Mitsuhata H, Saitoh J, Hasome N, Takeuchi H, Horiguchi Y, Shimizu R (1995) Nitric oxide synthase inhibition is detrimental to cardiac function and promotes bronchospasm in anaphylaxis in rabbits. Shock 4:143–148

    Article  CAS  PubMed  Google Scholar 

  • Möller M, Du Preez JL, Viljoen FP, Berk M, Harvey BH (2013) N-acetyl cysteine reverses social isolation rearing induced changes in cortico-striatal monoamines in rats. Metab Brain Dis 28:687–696. doi:10.1007/s11011-013-9433-z

    Article  PubMed  CAS  Google Scholar 

  • Moore PK, Handy RL (1997) Selective inhibitors of neuronal nitric oxide synthase-is no NOS really good NOS for the nervous system? Trends Pharmacol Sci 18:204–211

    CAS  PubMed  Google Scholar 

  • Morava E, Gardeitchik T, Kozicz T, de Boer L, Koene S, de Vries MC, McFarland R, Roobol T, Rodenburg RJ, Verhaak CM (2010) Depressive behaviour in children diagnosed with a mitochondrial disorder. Mitochondrion 10:528–533. doi:10.1016/j.mito.2010.05.011

    Article  CAS  PubMed  Google Scholar 

  • Moylan S, Maes M, Wray NR, Berk M (2013) The neuroprogressive nature of major depressive disorder: pathways to disease evolution and resistance, and therapeutic implications. Mol Psychiatry 18:595–606. doi:10.1038/mp.2012.33

    Article  CAS  PubMed  Google Scholar 

  • Mudher A, Lovestone S (2002) Alzheimer's disease - do tauists and baptists finally shake hands? Trends Neurosci 25:22–26

    Article  CAS  PubMed  Google Scholar 

  • Murphy MP (2009) How mitochondria produce reactive oxygen species. Biochem J 417:1–13. doi:10.1042/BJ20081386

    Article  CAS  PubMed  Google Scholar 

  • Nakane M (2003) Soluble guanylyl cyclase: physiological role as an NO receptor and the potential molecular target for therapeutic application. Clin Chem Lab Med 41:865–870. doi:10.1515/CCLM.2003.131

    Article  CAS  PubMed  Google Scholar 

  • Naranjo CA, Tremblay LK, Busto UE (2001) The role of the brain reward system in depression. Prog Neuro-Psychopharmacol Biol Psychiatry 25:781–823

    Article  CAS  Google Scholar 

  • Narsapur SL, Naylor GJ (1983) Methylene blue. A possible treatment for manic depressive psychosis J Affect Disord 5:155–161

    Article  CAS  PubMed  Google Scholar 

  • Naylor GJ, Martin B, Hopwood SE, Watson Y (1986) A two-year double-blind crossover trial of the prophylactic effect of methylene blue in manic-depressive psychosis. Biol Psychiatry 21:915–920

    Article  CAS  PubMed  Google Scholar 

  • Naylor GJ, Smith AH, Connelly P (1987) A controlled trial of methylene blue in severe depressive illness. Biol Psychiatry 22:657–659

    Article  CAS  PubMed  Google Scholar 

  • Naylor GJ, Smith AH, Connelly P (1988) Methylene blue in mania. Biol Psychiatry 24:941–942

    Article  CAS  PubMed  Google Scholar 

  • Necula M, Breydo L, Milton S, Kayed R, van der Veer WE, Tone P, Glabe CG (2007) Methylene blue inhibits amyloid Aβ oligomerization by promoting fibrillization. Biochemistry 46:8850–8860. doi:10.1021/bi700411k

    Article  CAS  PubMed  Google Scholar 

  • Ohlow MJ, Moosmann B (2011) Phenothiazine: the seven lives of pharmacology's first lead structure. Drug Discov Today 16:119–131. doi:10.1016/j.drudis.2011.01.001

    Article  CAS  PubMed  Google Scholar 

  • Ohmori H, Kanayama N (2005) Immunogenicity of an inflammation-associated product, tyrosine nitrated self-proteins. Autoimmun Rev 4:224–229. doi:10.1016/j.autrev.2004.11.011

    Article  CAS  PubMed  Google Scholar 

  • O'Neil MJ (2006) The Merck index: an encyclopedia of chemicals, drugs, and biologicals, 14th edn. Merck, New Jersey

    Google Scholar 

  • Ordway GA, Farley JT, Dilley GE, Overholser JC, Meltzer HY, Balraj EK, Stockmeier CA, Klimek V (1999) Quantitative distribution of monoamine oxidase a in brainstem monoamine nuclei is normal in major depression. Brain Res 847:71–79

    Article  CAS  PubMed  Google Scholar 

  • Overstreet DH, Russell RW, Crocker AD, Schiller GD (1984) Selective breeding for differences in cholinergic function: pre- and postsynaptic mechanisms involved in sensitivity to the anticholinesterase, DFP. Brain Res 294:327–332

    Article  CAS  PubMed  Google Scholar 

  • Overstreet DH, Russell RW, Helps SC, Messenger M (1979) Selective breeding for sensitivity to the anticholinesterase DFP. Psychopharmacology 65:15–20

    Article  CAS  PubMed  Google Scholar 

  • Overstreet DH, Wegener G (2013) The flinders sensitive line rat model of depression-25 years and still producing. Pharmacol Rev 65:143–155. doi:10.1124/pr.111.005397

    Article  CAS  PubMed  Google Scholar 

  • Oxenkrug GF, McCauley RB, Fontana DJ, McIntyre IM, Commissaris RL (1986a) Possible melatonin involvement in the hypotensive effect of MAO inhibitors. J Neural Transm 66:271–280

    Article  CAS  PubMed  Google Scholar 

  • Oxenkrug GF, McIntyre IM, Balon R, Jain AK, Appel D, McCauley RB (1986b) Single dose of tranylcypromine increases human plasma melatonin. Biol Psychiatry 21:1085–1089

    Article  CAS  PubMed  Google Scholar 

  • Oxenkrug GF, Sablin SO, Requintina PJ (2007) Effect of methylene blue and related redox dyes on monoamine oxidase activity; rat pineal content of N-acetylserotonin, melatonin, and related indoles; and righting reflex in melatonin-primed frogs. Ann N Y Acad Sci 1122:245–252. doi:10.1196/annals.1403.017

    Article  CAS  PubMed  Google Scholar 

  • Oz M, Lorke DE, Hasan M, Petroianu GA (2011) Cellular and molecular actions of methylene blue in the nervous system. Med Res Rev 31:93–117. doi:10.1002/med.20177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oz M, Lorke DE, Petroianu GA (2009) Methylene blue and Alzheimer's disease. Biochem Pharmacol 78:927–932. doi:10.1016/j.bcp.2009.04.034

    Article  CAS  PubMed  Google Scholar 

  • Pascual A, Henry M, Briolant S, Charras S, Baret E, Amalvict R, Huyghues des Etages E, Feraud M, Rogier C, Pradines B (2011) In vitro activity of proveblue (methylene blue) on plasmodium falciparum strains resistant to standard antimalarial drugs. Antimicrob Agents Chemother 55:2472–2474. doi:10.1128/AAC.01466-10

  • Paul IA (2001) Antidepressant activity and calcium signaling cascades. Hum Psychopharmacol 16:71–80. doi:10.1002/hup.186

    Article  CAS  PubMed  Google Scholar 

  • Pedrosa DJ, Timmermann L (2013) Review: management of Parkinson's disease. Neuropsychiatr Dis Treat 9:321–340. doi:10.2147/NDT.S32302

    Article  PubMed  PubMed Central  Google Scholar 

  • Perlis ML, Smith MT, Orff HJ, Andrews PJ, Gillin JC, Giles DE (2002) The effects of an orally administered cholinergic agonist on REM sleep in major depression. Biol Psychiatry 51:457–462

    Article  CAS  PubMed  Google Scholar 

  • Peter C, Hongwan D, Kupfer A, Lauterburg BH (2000) Pharmacokinetics and organ distribution of intravenous and oral methylene blue. Eur J Clin Pharmacol 56:247–250

    Article  CAS  PubMed  Google Scholar 

  • Petty F (1995) GABA and mood disorders: a brief review and hypothesis. J Affect Disord 34:275–281

    Article  CAS  PubMed  Google Scholar 

  • Petty F, Kramer GL, Gullion CM, Rush AJ (1992) Low plasma gamma-aminobutyric acid levels in male patients with depression. Biol Psychiatry 32:354–363

    Article  CAS  PubMed  Google Scholar 

  • Petzer A, Harvey BH, Petzer JP (2014) The interactions of azure B, a metabolite of methylene blue, with acetylcholinesterase and butyrylcholinesterase. Toxicol Appl Pharmacol 274:488–493. doi:10.1016/j.taap.2013.10.014

    Article  CAS  PubMed  Google Scholar 

  • Petzer A, Harvey BH, Wegener G, Petzer JP (2012) Azure B, a metabolite of methylene blue, is a high-potency, reversible inhibitor of monoamine oxidase. Toxicol Appl Pharmacol 258:403–409. doi:10.1016/j.taap.2011.12.005

    Article  CAS  PubMed  Google Scholar 

  • Petzer A, Pienaar A, Petzer JP (2013) The inhibition of monoamine oxidase by esomeprazole. Drug Res (Stuttg) 63:462–467. doi:10.1055/s-0033-1345163

    Article  CAS  Google Scholar 

  • Pfaffendorf M, Bruning TA, Batnik HD, van Zwieten PA (1997) The interaction between methylene blue and the cholinergic system. Br J Pharmacol 122:95–98. doi:10.1038/sj.bjp.0701355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pogun S, Dawson V, Kuhar MJ (1994) Nitric oxide inhibits 3H-glutamate transport in synaptosomes. Synapse 18:21–26. doi:10.1002/syn.890180104

    Article  CAS  PubMed  Google Scholar 

  • Porter RJ, Gallagher P, Thompson JM, Young AH (2003) Neurocognitive impairment in drug-free patients with major depressive disorder. Br J Psychiatry 182:214–220

    Article  PubMed  Google Scholar 

  • Poteet E, Winters A, Yan LJ, Shufelt K, Green KN, Simpkins JW, Wen Y, Yang SH (2012) Neuroprotective actions of methylene blue and its derivatives. PLoS One 7:e48279. doi:10.1371/journal.pone.0048279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prange AJ Jr, Wilson IC, Lynn CW, Alltop LB, Stikeleather RA (1974) L-tryptophan in mania. Contribution to a permissive hypothesis of affective disorders. Arch Gen Psychiatry 30:56–62

    Article  PubMed  Google Scholar 

  • Prast H, Philippu A (2001) Nitric oxide as modulator of neuronal function. Prog Neurobiol 64:51–68

    Article  CAS  PubMed  Google Scholar 

  • Provost JC, Funck-Brentano C, Rovei V, D'Estanque J, Ego D, Jaillon P (1992) Pharmacokinetic and pharmacodynamic interaction between toloxatone, a new reversible monoamine oxidase-a inhibitor, and oral tyramine in healthy subjects. Clin Pharmacol Ther 52:384–393

    Article  CAS  PubMed  Google Scholar 

  • Ramsay RR, Dunford C, Gillman PK (2007) Methylene blue and serotonin toxicity: inhibition of monoamine oxidase a (MAO a) confirms a theoretical prediction. Br J Pharmacol 152:946–951. doi:10.1038/sj.bjp.0707430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramsay RR, Singer TP (1986) Energy-dependent uptake of N-methyl-4-phenylpyridinium, the neurotoxic metabolite of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, by mitochondria. J Biol Chem 261:7585–7587

    CAS  PubMed  Google Scholar 

  • Rezin GT, Cardoso MR, Goncalves CL, Scaini G, Fraga DB, Riegel RE, Comim CM, Quevedo J, Streck EL (2008) Inhibition of mitochondrial respiratory chain in brain of rats subjected to an experimental model of depression. Neurochem Int 53:395–400. doi:10.1016/j.neuint.2008.09.012

    Article  CAS  PubMed  Google Scholar 

  • Richards A, Marshall H, McQuary A (2011) Evaluation of methylene blue, thiamine, and/or albumin in the prevention of ifosfamide-related neurotoxicity. J Oncol Pharm Pract 17:372–380. doi:10.1177/1078155210385159

    Article  CAS  PubMed  Google Scholar 

  • Robakis D, Fahn S (2015) Defining the role of the monoamine oxidase-B inhibitors for Parkinson's disease. CNS Drugs 29:433–441. doi:10.1007/s40263-015-0249-8

    Article  CAS  PubMed  Google Scholar 

  • Rojas JC, Bruchey AK, Gonzalez-Lima F (2012) Neurometabolic mechanisms for memory enhancement and neuroprotection of methylene blue. Prog Neurobiol 96:32–45. doi:10.1016/j.pneurobio.2011.10.007

    Article  CAS  PubMed  Google Scholar 

  • Rojas JC, Simola N, Kermath BA, Kane JR, Schallert T, Gonzalez-Lima F (2009) Striatal neuroprotection with methylene blue. Neuroscience 163:877–889. doi:10.1016/j.neuroscience.2009.07.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rudic RD, Sessa WC (1999) Nitric oxide in endothelial dysfunction and vascular remodeling: clinical correlates and experimental links. Am J Hum Genet 64:673–677. doi:10.1086/302304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Russell RW, Overstreet DH, Messenger M, Helps SC (1982) Selective breeding for sensitivity to DFP: generalization of effects beyond criterion variables. Pharmacol Biochem Behav 17:885–891

    Article  CAS  PubMed  Google Scholar 

  • Salaris SC, Babbs CF, Voorhees WD 3rd (1991) Methylene blue as an inhibitor of superoxide generation by xanthine oxidase. A potential new drug for the attenuation of ischemia/reperfusion injury. Biochem Pharmacol 42:499–506

    Article  CAS  PubMed  Google Scholar 

  • Samdani AF, Dawson TM, Dawson VL (1997) Nitric oxide synthase in models of focal ischemia. Stroke 28:1283–1288

    Article  CAS  PubMed  Google Scholar 

  • Sanacora G, Mason GF, Rothman DL, Krystal JH (2002) Increased occipital cortex GABA concentrations in depressed patients after therapy with selective serotonin reuptake inhibitors. Am J Psychiatry 159:663–665. doi:10.1176/appi.ajp.159.4.663

    Article  PubMed  Google Scholar 

  • Sarandol A, Sarandol E, Eker SS, Erdinc S, Vatansever E, Kirli S (2007) Major depressive disorder is accompanied with oxidative stress: short-term antidepressant treatment does not alter oxidative-antioxidative systems. Hum Psychopharmacol 22:67–73. doi:10.1002/hup.829

    Article  CAS  PubMed  Google Scholar 

  • Saura J, Kettler R, Da Prada M, Richards JG (1992) Quantitative enzyme radioautography with 3H-Ro 41-1049 and 3H-Ro 19-6327 in vitro: localization and abundance of MAO-A and MAO-B in rat CNS, peripheral organs, and human brain. J Neurosci 12:1977–1999

    CAS  PubMed  Google Scholar 

  • Sayre LM, Singh MP, Arora PK, Wang F, McPeak RJ, Hoppel CL (1990) Inhibition of mitochondrial respiration by analogues of the dopaminergic neurotoxin 1-methyl-4-phenylpyridinium: structural requirements for accumulation-dependent enhanced inhibitory potency on intact mitochondria. Arch Biochem Biophys 280:274–283

    Article  CAS  PubMed  Google Scholar 

  • Schildkraut JJ (1965) The catecholamine hypothesis of affective disorders: a review of supporting evidence. Am J Psychiatry 122:509–522. doi:10.1176/ajp.122.5.509

    Article  CAS  PubMed  Google Scholar 

  • Schirmer RH, Adler H, Pickhardt M, Mandelkow E (2011) Lest we forget you-methylene blue. Neurobiol Aging 32:2325.e7–2325.e16. doi:10.1016/j.neurobiolaging.2010.12.012

    Article  CAS  Google Scholar 

  • Schneider F, Lutun P, Hasselmann M, Stoclet JC, Tempe JD (1992) Methylene blue increases systemic vascular resistance in human septic shock. Preliminary observations. Intensive Care Med 18:309–311

    Article  CAS  PubMed  Google Scholar 

  • Schofield L, Grau GE (2005) Immunological processes in malaria pathogenesis. Nat Rev Immunol 5:722–735. doi:10.1038/nri1686

    Article  CAS  PubMed  Google Scholar 

  • Segovia G, Porras A, Mora F (1994) Effects of a nitric oxide donor on glutamate and GABA release in striatum and hippocampus of the conscious rat. Neuroreport 5:1937–1940

    Article  CAS  PubMed  Google Scholar 

  • Shao L, Martin MV, Watson SJ, Schatzberg A, Akil H, Myers RM, Jones EG, Bunney WE, Vawter MP (2008) Mitochondrial involvement in psychiatric disorders. Ann Med 40:281–295. doi:10.1080/07853890801923753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shesely EG, Maeda N, Kim HS, Desai KM, Krege JH, Laubach VE, Sherman PA, Sessa WC, Smithies O (1996) Elevated blood pressures in mice lacking endothelial nitric oxide synthase. Proc Natl Acad Sci U S A 93:13176–13181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shiah IS, Yatham LN (1998) GABA function in mood disorders: an update and critical review. Life Sci 63:1289–1303

    Article  CAS  PubMed  Google Scholar 

  • Shytle RD, Silver AA, Lukas RJ, Newman MB, Sheehan DV, Sanberg PR (2002) Nicotinic acetylcholine receptors as targets for antidepressants. Mol Psychiatry 7:525–535. doi:10.1038/sj.mp.4001035

    Article  CAS  PubMed  Google Scholar 

  • Skolnick P (1999) Antidepressants for the new millennium. Eur J Pharmacol 375:31–40

    Article  CAS  PubMed  Google Scholar 

  • Slyepchenko A, Maes M, Kohler CA, Anderson G, Quevedo J, Alves GS, Berk M, Fernandes BS, Carvalho AF (2016) T helper 17 cells may drive neuroprogression in major depressive disorder: proposal of an integrative model. Neurosci Biobehav Rev 64:83–100. doi:10.1016/j.neubiorev.2016.02.002

    Article  CAS  PubMed  Google Scholar 

  • Smith RP, Thron CD (1972) Hemoglobin, methylene blue and oxygen interactions in human red cells. J Pharmacol Exp Ther 183:549–558

    CAS  PubMed  Google Scholar 

  • Son SY, Ma J, Kondou Y, Yoshimura M, Yamashita E, Tsukihara T (2008) Structure of human monoamine oxidase a at 2.2 a resolution: the control of opening the entry for substrates/inhibitors. Proc Natl Acad Sci U S A 105:5739–5744. doi:10.1073/pnas.0710626105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Squires RF, Saederup E (1991) A review of evidence for GABergic predominance/glutamatergic deficit as a common etiological factor in both schizophrenia and affective psychoses: more support for a continuum hypothesis of "functional" psychosis. Neurochem Res 16:1099–1111

    Article  CAS  PubMed  Google Scholar 

  • Stanford SC, Stanford BJ, Gillman PK (2010) Risk of severe serotonin toxicity following co-administration of methylene blue and serotonin reuptake inhibitors: an update on a case report of post-operative delirium. J Psychopharmacol 24:1433–1438. doi:10.1177/0269881109105450

    Article  CAS  PubMed  Google Scholar 

  • Stocchi F, Fossati C, Torti M (2015) Rasagiline for the treatment of Parkinson's disease: an update. Expert Opin Pharmacother 16:2231–2241. doi:10.1517/14656566.2015.1086748

    Article  PubMed  CAS  Google Scholar 

  • Strasser A, McCarron RM, Ishii H, Stanimirovic D, Spatz M (1994) L-arginine induces dopamine release from the striatum in vivo. Neuroreport 5:2298–2300

    Article  CAS  PubMed  Google Scholar 

  • Sullivan M (2008) Phase II findings in AD drug trial ‘not all bad’. Clin Psychiatry News 36:34–35

    Article  Google Scholar 

  • Sulser F (1987) Serotonin-norepinephrine receptor interactions in the brain: implications for the pharmacology and pathophysiology of affective disorders. J Clin Psychiatry 48(Suppl):12–18

    CAS  PubMed  Google Scholar 

  • Suzuki E, Yagi G, Nakaki T, Kanba S, Asai M (2001) Elevated plasma nitrate levels in depressive states. J Affect Disord 63:221–224

    Article  CAS  PubMed  Google Scholar 

  • Sweet G, Standiford SB (2007) Methylene-blue-associated encephalopathy. J Am Coll Surg 204:454–458. doi:10.1016/j.jamcollsurg.2006.12.030

    Article  PubMed  Google Scholar 

  • Szabo C, Modis K (2010) Pathophysiological roles of peroxynitrite in circulatory shock. Shock 34(Suppl 1):4–14. doi:10.1097/SHK.0b013e3181e7e9ba

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takasu K, Shimogama T, Saiin C, Kim HS, Wataya Y, Brun R, Ihara M (2005) Synthesis and evaluation of beta-carbolinium cations as new antimalarial agents based on pi-delocalized lipophilic cation (DLC) hypothesis. Chem Pharm Bull (Tokyo) 53:653–661

    Article  CAS  Google Scholar 

  • Taniguchi S, Suzuki N, Masuda M, Hisanaga S, Iwatsubo T, Goedert M, Hasegawa M (2005) Inhibition of heparin-induced tau filament formation by phenothiazines, polyphenols, and porphyrins. J Biol Chem 280:7614–7623. doi:10.1074/jbc.M408714200

    Article  CAS  PubMed  Google Scholar 

  • Tao R, Auerbach SB (2000) Regulation of serotonin release by GABA and excitatory amino acids. J Psychopharmacol 14:100–113

    Article  CAS  PubMed  Google Scholar 

  • Teng B, Murthy KS, Kuemmerle JF, Grider JR, Sase K, Michel T, Makhlouf GM (1998) Expression of endothelial nitric oxide synthase in human and rabbit gastrointestinal smooth muscle cells. Am J Phys 275:G342–G351

    CAS  Google Scholar 

  • Tretter L, Horvath G, Holgyesi A, Essek F, Adam-Vizi V (2014) Enhanced hydrogen peroxide generation accompanies the beneficial bioenergetic effects of methylene blue in isolated brain mitochondria. Free Radic Biol Med 77:317–330. doi:10.1016/j.freeradbiomed.2014.09.024

    Article  CAS  PubMed  Google Scholar 

  • Tricoire H, Palandri A, Bourdais A, Camadro JM, Monnier V (2014) Methylene blue rescues heart defects in a drosophila model of Friedreich's ataxia. Hum Mol Genet 23:968–979. doi:10.1093/hmg/ddt493

    Article  CAS  PubMed  Google Scholar 

  • Uretsky AD, Weiss BL, Yunker WK, Chang JP (2003) Nitric oxide produced by a novel nitric oxide synthase isoform is necessary for gonadotropin-releasing hormone-induced growth hormone secretion via a cGMP-dependent mechanism. J Neuroendocrinol 15:667–676

    Article  CAS  PubMed  Google Scholar 

  • Uys MM, Shahid M, Sallinen J, Harvey BH (2017) The α2C-adrenoceptor antagonist, ORM-10921, exerts antidepressant-like effects in the flinders sensitive line rat. Behav Pharmacol 28:9–18. doi:10.1097/FBP.0000000000000261

    Article  CAS  PubMed  Google Scholar 

  • Visarius TM, Stucki JW, Lauterburg BH (1997) Stimulation of respiration by methylene blue in rat liver mitochondria. FEBS Lett 412:157–160

    Article  CAS  PubMed  Google Scholar 

  • Volke V, Soosaar A, Kõks S, Bourin M, Männistö PT, Vasar E (1997) 7-Nitroindazole, a nitric oxide synthase inhibitor, has anxiolytic-like properties in exploratory models of anxiety. Psychopharmacology 131:399–405

    Article  CAS  PubMed  Google Scholar 

  • Volke V, Wegener G, Vasar E, Rosenberg R (1999) Methylene blue inhibits hippocampal nitric oxide synthase activity in vivo. Brain Res 826:303–305

    Article  CAS  PubMed  Google Scholar 

  • Vutskits L, Briner A, Klauser P, Gascon E, Dayer AG, Kiss JZ, Muller D, Licker MJ, Morel DR (2008) Adverse effects of methylene blue on the central nervous system. Anesthesiology 108:684–692. doi:10.1097/ALN.0b013e3181684be4

    Article  CAS  PubMed  Google Scholar 

  • Wagner SJ, Skripchenko A, Robinette D, Foley JW, Cincotta L (1998) Factors affecting virus photoinactivation by a series of phenothiazine dyes. Photochem Photobiol 67:343–349

    Article  CAS  PubMed  Google Scholar 

  • Waknine-Grinberg JH, Hunt N, Bentura-Marciano A, McQuillan JA, Chan HW, Chan WC, Barenholz Y, Haynes RK, Golenser J (2010) Artemisone effective against murine cerebral malaria. Malar J 9:227. doi:10.1186/1475-2875-9-227

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wallace DC (1999) Mitochondrial diseases in man and mouse. Science 283:1482–1488

    Article  CAS  PubMed  Google Scholar 

  • Wallace DC (2005) A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine. Annu Rev Genet 39:359–407. doi:10.1146/annurev.genet.39.110304.095751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Warth A, Goeppert B, Bopp C, Schirmacher P, Flechtenmacher C, Burhenne J (2009) Turquoise to dark green organs at autopsy. Virchows Arch 454:341–344. doi:10.1007/s00428-009-0734-x

    Article  PubMed  Google Scholar 

  • Wegener G, Harvey BH, Bonefeld B, Muller HK, Volke V, Overstreet DH, Elfving B (2010) Increased stress-evoked nitric oxide signalling in the flinders sensitive line (FSL) rat: a genetic animal model of depression. Int J Neuropsychopharmacol 13:461–473. doi:10.1017/S1461145709990241

    Article  CAS  PubMed  Google Scholar 

  • Wegener G, Volke V (2010) Nitric oxide synthase inhibitors as antidepressants. Pharmaceuticals 3:273–299. doi:10.3390/ph3010273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wegener G, Volke V, Harvey BH, Rosenberg R (2003) Local, but not systemic, administration of serotonergic antidepressants decreases hippocampal nitric oxide synthase activity. Brain Res 959:128–134

    Article  CAS  PubMed  Google Scholar 

  • Wegener G, Volke V, Rosenberg R (2000) Endogenous nitric oxide decreases hippocampal levels of serotonin and dopamine in vivo. Br J Pharmacol 130:575–580. doi:10.1038/sj.bjp.0703349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weissgerber AJ (2008) Methylene blue for refractory hypotension: a case report. AANA J 76:271–274

    PubMed  Google Scholar 

  • Wells BG (2009) Major Depressive Disorder. In: Wells BG, Dipiro JT, Schwinghammer TL, Dipiro CV (eds) Pharmacotherapy handbook, 7th edn. McGraw-Hill, New York, pp 778–798

    Google Scholar 

  • Wen Y, Li W, Poteet EC, Xie L, Tan C, Yan LJ, Ju X, Liu R, Qian H, Marvin MA, Goldberg MS, She H, Mao Z, Simpkins JW, Yang SH (2011) Alternative mitochondrial electron transfer as a novel strategy for neuroprotection. J Biol Chem 286:16504–16515. doi:10.1074/jbc.M110.208447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Whitton PS, Maione S, Biggs CS, Fowler LJ (1994a) N-methyl-D-aspartate receptors modulate extracellular dopamine concentration and metabolism in rat hippocampus and striatum in vivo. Brain Res 635:312–316

    Article  CAS  PubMed  Google Scholar 

  • Whitton PS, Richards DA, Biggs CS, Fowler LJ (1994b) N-methyl-D-aspartate receptors modulate extracellular 5-hydroxytryptamine concentration in rat hippocampus and striatum in vivo. Neurosci Lett 169:215–218

    Article  CAS  PubMed  Google Scholar 

  • Wischik CM, Bentham P, Wischik DJ, Seng KM (2008) O3-04-07: tau aggregation inhibitor (TAI) therapy with rember™ arrests disease progression in mild and moderate Alzheimer's disease over 50 weeks. Alzheimer’s Demen The J Alzheimer’s Assoc 4:T167

    Article  Google Scholar 

  • Wischik CM, Edwards PC, Lai RY, Roth M, Harrington CR (1996) Selective inhibition of Alzheimer disease-like tau aggregation by phenothiazines. Proc Natl Acad Sci U S A 93:11213–11218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wischik CM, Staff RT, Wischik DJ, Bentham P, Murray AD, Storey JM, Kook KA, Harrington CR (2015) Tau aggregation inhibitor therapy: an exploratory phase 2 study in mild or moderate Alzheimer's disease. J Alzheimers Dis 44:705–720. doi:10.3233/JAD-142874

    CAS  PubMed  Google Scholar 

  • Wolin MS, Cherry PD, Rodenburg JM, Messina EJ, Kaley G (1990) Methylene blue inhibits vasodilation of skeletal muscle arterioles to acetylcholine and nitric oxide via the extracellular generation of superoxide anion. J Pharmacol Exp Ther 254:872–876

    CAS  PubMed  Google Scholar 

  • Wong-Riley MT (1989) Cytochrome oxidase: an endogenous metabolic marker for neuronal activity. Trends Neurosci 12:94–101

    Article  CAS  PubMed  Google Scholar 

  • Wright RO, Lewander WJ, Woolf AD (1999) Methemoglobinemia: etiology, pharmacology, and clinical management. Ann Emerg Med 34:646–656

    Article  CAS  PubMed  Google Scholar 

  • Wrubel KM, Riha PD, Maldonado MA, McCollum D, Gonzalez-Lima F (2007) The brain metabolic enhancer methylene blue improves discrimination learning in rats. Pharmacol Biochem Behav 86:712–717. doi:10.1016/j.pbb.2007.02.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie Q, Nathan C (1994) The high-output nitric oxide pathway: role and regulation. J Leukoc Biol 56:576–582

    CAS  PubMed  Google Scholar 

  • Youdim MB, Bakhle YS (2006) Monoamine oxidase: isoforms and inhibitors in Parkinson's disease and depressive illness. Br J Pharmacol 147(Suppl 1):S287–S296. doi:10.1038/sj.bjp.0706464

    CAS  PubMed  PubMed Central  Google Scholar 

  • Youdim MB, Edmondson D, Tipton KF (2006) The therapeutic potential of monoamine oxidase inhibitors. Nat Rev Neurosci 7:295–309. doi:10.1038/nrn1883

    Article  CAS  PubMed  Google Scholar 

  • Youdim MB, Weinstock M (2004) Therapeutic applications of selective and non-selective inhibitors of monoamine oxidase a and B that do not cause significant tyramine potentiation. Neurotoxicology 25:243–250. doi:10.1016/S0161-813X(03)00103-7

    Article  CAS  PubMed  Google Scholar 

  • Zarate CA Jr, Du J, Quiroz J, Gray NA, Denicoff KD, Singh J, Charney DS, Manji HK (2003) Regulation of cellular plasticity cascades in the pathophysiology and treatment of mood disorders: role of the glutamatergic system. Ann N Y Acad Sci 1003:273–291

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Huang XY, Ye ML, Luo CX, Wu HY, Hu Y, Zhou QG, Wu DL, Zhu LJ, Zhu DY (2010) Neuronal nitric oxide synthase alteration accounts for the role of 5-HT1A receptor in modulating anxiety-related behaviors. J Neurosci 30:2433–2441. doi:10.1523/JNEUROSCI.5880-09.2010

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Rojas JC, Gonzalez-Lima F (2006) Methylene blue prevents neurodegeneration caused by rotenone in the retina. Neurotox Res 9:47–57

    Article  PubMed  Google Scholar 

  • Zoungrana A, Coulibaly B, Sie A, Walter-Sack I, Mockenhaupt FP, Kouyate B, Schirmer RH, Klose C, Mansmann U, Meissner P, Muller O (2008) Safety and efficacy of methylene blue combined with artesunate or amodiaquine for uncomplicated falciparum malaria: a randomized controlled trial from Burkina Faso. PLoS One 3:e1630. doi:10.1371/journal.pone.0001630

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge financial support by the Medical Research Council of South Africa and the National Research Foundation (BHH grant number: 77323). The grant-holder acknowledges that opinions, findings and conclusions or recommendations expressed in any publication generated by NRF supported research are those of the authors, and that the NRF accepts no liability whatsoever in this regard.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacobus P. Petzer.

Ethics declarations

Conflict of interest

The authors declare that they have no direct conflicts of interest. BHH declares that over the past three years, he has participated in advisory boards and received honoraria from Servier®, and has received research funding from Servier® and Lundbeck®. BHH declares that, except for income from the primary employer and research funding from the above-mentioned organisations and agencies, no financial support or compensation has been received from any individual or corporate entity over the past three years for research or professional services, and there are no personal financial holdings that could be perceived as constituting a potential conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Delport, A., Harvey, B.H., Petzer, A. et al. Methylene blue and its analogues as antidepressant compounds. Metab Brain Dis 32, 1357–1382 (2017). https://doi.org/10.1007/s11011-017-0081-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11011-017-0081-6

Keywords

Navigation