Metabolic Brain Disease

, Volume 32, Issue 6, pp 1767–1783 | Cite as

MicroRNA expression signature of methamphetamine use and addiction in the rat nucleus accumbens

  • Maw Shin SimEmail author
  • Tomoko Soga
  • Vijayapandi Pandy
  • Yuan Seng Wu
  • Ishwar S. Parhar
  • Zahurin MohamedEmail author
Original Article


Methamphetamine (METH) is a highly addictive psycho-stimulant that induces behavioral changes due to high level of METH-induced dopamine in the brain. Nucleus accumbens (NAc) plays an important role in these changes, especially in drug addiction. However, little is known about the underlying molecular mechanisms of METH-induced addiction. The objective of this study was to establish a behavioral model of METH use and addiction using escalating doses of METH over 15 days and to determine the global miRNA expression profiling in NAc of METH-addicted rats. In the behavioral study, the experimental rats were divided into 3 groups of 9 each: a control group, a single dose METH (5 mg/kg) treatment group and a continuous 15 alternate days METH (0.25, 0.5, 1, 2, 3, 4, 5 mg/kg) treatment group. Following that, six rats in each group were randomly selected for global miRNA profiling. Addiction behavior in rats was established using Conditioned Place Preference task. The analysis of the miRNA profiling in the NAc was performed using Affymetric microarray GeneChip® System. The findings indicated that a continuous 15 alternate days METH treatment rats showed a preference for the drug-paired compartment of the CPP. However, a one-time acute treatment with 5 mg/kg METH did not show any significant difference in preference when compared with controls. Differential profiling of miRNAs indicated that 166 miRNAs were up-regulated and 4 down-regulated in the chronic METH-treatment group when compared to controls. In comparing the chronic treatment group with the acute treatment group, 52 miRNAs were shown to be up-regulated and 7 were down-regulated. MiRNAs including miR-496-3p, miR-194-5p, miR-200b-3p and miR-181a-5p, were found to be significantly associated with METH addiction. Canonical pathway analysis revealed that a high number of METH addiction-related miRNAs play important roles in the MAPK, CREB, G-Protein Couple Receptor and GnRH Signaling pathways. Our results suggest that dynamic changes occur in the expression of miRNAs following METH exposure and addiction.


Methamphetamine addiction microRNA profiling nucleus accumbens 





standard error of the mean


real-time polymerase chain reaction


RNA Integrity Number


mitogen-activated protein kinases


cAMP response element-binding protein


Gonadotropin-releasing hormone


brain-derived neurotrophic factor


protein kinase A


protein kinase C


Compliance with ethical standards

Ethical approval

All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted.

Financial disclosure

This work was supported by Research University Grant RG443/12HTM from the University of Malaya and High Impact Research (HIR) Ministry of Higher Education (MOHE) Grant H20001-E000025. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Statement of interest

All the authors declare that they have no conflicts of interest to report that could inappropriately influence, or be perceived to influence, this work. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Supplementary material

11011_2017_61_MOESM1_ESM.doc (149 kb)
Supplementary Table 1 (DOC 149 kb)
11011_2017_61_MOESM2_ESM.doc (144 kb)
Supplementary Table 2 (DOC 144 kb)


  1. Armstrong BD, Noguchi KK (2004) The neurotoxic effects of 3,4-methylenedioxymethamphetamine (MDMA) and methamphetamine on serotonin, dopamine, and GABA-ergic terminals: an in-vitro autoradiographic study in rats. Neurotoxicology 25:905–914. doi: 10.1016/j.neuro.2004.06.003 CrossRefPubMedGoogle Scholar
  2. Ashraf SI, McLoon AL, Sclarsic SM, Kunes S (2006) Synaptic protein synthesis associated with memory is regulated by the RISC pathway in Drosophila. Cell 124:191–205. doi: 10.1016/j.cell.2005.12.017 CrossRefPubMedGoogle Scholar
  3. Bali P, Kenny PJ (2013) MicroRNAs and Drug Addiction. Front Genet 4:43. doi: 10.3389/fgene.2013.00043 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Baron B, Fernandez MA, Carignon S, Toledo F, Buttin G, Debatisse M (1996) GNAI3, GNAT2, AMPD2, GSTM are clustered in 120 kb of Chinese hamster chromosome 1q Mamm. Genome 7:429–432Google Scholar
  5. Beveridge NJ et al (2008) Dysregulation of miRNA 181b in the temporal cortex in schizophrenia. Hum Mol Genet 17:1156–1168. doi: 10.1093/hmg/ddn005 CrossRefPubMedGoogle Scholar
  6. Bosch PJ, Benton MC, Macartney-Coxson D, Kivell BM (2015) mRNA and microRNA analysis reveals modulation of biochemical pathways related to addiction in the ventral tegmental area of methamphetamine self-administering rats. BMC Neurosci 16:43. doi: 10.1186/s12868-015-0186-y CrossRefPubMedPubMedCentralGoogle Scholar
  7. Brauer LH, de Wit H (1996) Subjective responses to d-amphetamine alone and after pimozide pretreatment in normal, healthy volunteers. Biol Psychiatry 39:26–32. doi: 10.1016/0006-3223(95)00110-7 CrossRefPubMedGoogle Scholar
  8. Cadet JL, Krasnova IN (2009) Molecular bases of methamphetamine-induced neurodegeneration. Int Rev Neurobiol 88:101–119. doi: 10.1016/S0074-7742(09)88005-7 CrossRefPubMedGoogle Scholar
  9. Chandrasekar V, Dreyer JL (2009) microRNAs miR-124, let-7d and miR-181a regulate cocaine-induced plasticity. Mol Cell Neurosci 42:350–362. doi: 10.1016/j.mcn.2009.08.009 CrossRefPubMedGoogle Scholar
  10. Chandrasekar V, Dreyer JL (2011) Regulation of MiR-124, Let-7d, and MiR-181a in the accumbens affects the expression, extinction, and reinstatement of cocaine-induced conditioned place preference. Neuropsychopharmacology 36:1149–1164. doi: 10.1038/npp.2010.250 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Chartoff EH, Papadopoulou M, Konradi C, Carlezon WA Jr (2003) Dopamine-dependent increases in phosphorylation of cAMP response element binding protein (CREB) during precipitated morphine withdrawal in primary cultures of rat striatum. J Neurochem 87:107–118CrossRefPubMedPubMedCentralGoogle Scholar
  12. Chen CL, Liu H, Guan X (2013) Changes in microRNA expression profile in hippocampus during the acquisition and extinction of cocaine-induced conditioned place preference in rats. J Biomed Sci 20:96. doi: 10.1186/1423-0127-20-96 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Conaco C, Otto S, Han JJ, Mandel G (2006) Reciprocal actions of REST and a microRNA promote neuronal identity. Proc Natl Acad Sci U S A 103:2422–2427. doi: 10.1073/pnas.0511041103 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Cook CE et al (1993) Pharmacokinetics of methamphetamine self-administered to human subjects by smoking S-(+)-methamphetamine hydrochloride. Drug Metab Dispos 21:717–723PubMedGoogle Scholar
  15. Coolen M, Bally-Cuif L (2015) MicroRNAs in brain development. In: Sen CK (ed) MicroRNA in regenerative medicine. Elsevier B.V., p 447–488. doi: 10.1016/B978-0-12-405544-5.00018-6
  16. Corominas M, Roncero C, Ribases M, Castells X, Casas M (2007) Brain-derived neurotrophic factor and its intracellular signaling pathways in cocaine addiction. Neuropsychobiology 55:2–13. doi: 10.1159/000103570 CrossRefPubMedGoogle Scholar
  17. Davidson C, Gow AJ, Lee TH, Ellinwood EH (2001) Methamphetamine neurotoxicity: necrotic and apoptotic mechanisms and relevance to human abuse and treatment. Brain Res Brain Res Rev 36:1–22CrossRefPubMedGoogle Scholar
  18. Di Chiara G (2002) Nucleus accumbens shell and core dopamine: differential role in behavior and addiction. Behav Brain Res 137:75–114CrossRefPubMedGoogle Scholar
  19. Eipper-Mains JE, Kiraly DD, Palakodeti D, Mains RE, Eipper BA, Graveley BR (2011) microRNA-Seq reveals cocaine-regulated expression of striatal. microRNAs RNA 17:1529–1543. doi: 10.1261/rna.2775511 PubMedGoogle Scholar
  20. Fasciano J, Hatzidimitriou G, Yuan J, Katz JL, Ricaurte GA (1997) N-methylation dissociates methamphetamine's neurotoxic and behavioral pharmacologic effects. Brain Res 771:115–120CrossRefPubMedGoogle Scholar
  21. Ferguson D et al (2013) Essential role of SIRT1 signaling in the nucleus accumbens in cocaine and morphine action. J Neurosci 33:16088–16098. doi: 10.1523/JNEUROSCI.1284-13.2013 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Fiore R, Schratt G (2007) MicroRNAs in synapse development: tiny molecules to remember. Expert Opin Biol Ther 7:1823–1831. doi: 10.1517/14712598.7.12.1823 CrossRefPubMedGoogle Scholar
  23. Flanagin BA, Cook EH Jr, de Wit H (2006) An association study of the brain-derived neurotrophic factor Val66Met polymorphism and amphetamine response. Am J Med Genet B Neuropsychiatr Genet 141B:576–583. doi: 10.1002/ajmg.b.30327 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Gao J et al (2010) A novel pathway regulates memory and plasticity via SIRT1 and miR-134. Nature 466:1105–1109. doi: 10.1038/nature09271 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Hamamoto DT, Rhodus NL (2009) Methamphetamine abuse and dentistry. Oral Dis 15:27–37. doi: 10.1111/j.1601-0825.2008.01459.x CrossRefPubMedGoogle Scholar
  26. Hashimoto T et al (2005) A functional glutathione S-transferase P1 gene polymorphism is associated with methamphetamine-induced psychosis in Japanese population. Am J Med Genet B Neuropsychiatr Genet 135B:5–9. doi: 10.1002/ajmg.b.30164 CrossRefPubMedGoogle Scholar
  27. He Y, Yang C, Kirkmire CM, Wang ZJ (2010) Regulation of opioid tolerance by let-7 family microRNA targeting the mu opioid receptor. J Neurosci 30:10251–10258. doi: 10.1523/JNEUROSCI.2419-10.2010 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Hollander JA et al (2010) Striatal microRNA controls cocaine intake through CREB signalling. Nature 466:197–202. doi: 10.1038/nature09202 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Hsieh JH, Stein DJ, Howells FM (2014) The neurobiology of methamphetamine induced psychosis. Front Hum Neurosci 8:537. doi: 10.3389/fnhum.2014.00537 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Huang W, Li MD (2009a) Differential allelic expression of dopamine D1 receptor gene (DRD1) is modulated by microRNA miR-504. Biol Psychiatry 65:702–705. doi: 10.1016/j.biopsych.2008.11.024 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Huang W, Li MD (2009b) Nicotine modulates expression of miR-140*, which targets the 3′-untranslated region of dynamin 1 gene (Dnm1). Int J Neuropsychopharmacol 12:537–546. doi: 10.1017/S1461145708009528 CrossRefPubMedGoogle Scholar
  32. Ignacio C, Mooney SM, Middleton FA (2014) Effects of acute prenatal exposure to ethanol on microRNA expression are ameliorated by social enrichment. Front Pediatr 2:103. doi: 10.3389/fped.2014.00103 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Im HI, Hollander JA, Bali P, Kenny PJ (2010) MeCP2 controls BDNF expression and cocaine intake through homeostatic interactions with microRNA-212. Nat Neurosci 13:1120–1127. doi: 10.1038/nn.2615 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Jeong H et al (2011) Sirt1 mediates neuroprotection from mutant huntingtin by activation of the TORC1 and CREB transcriptional pathway. Nat Med 18:159–165. doi: 10.1038/nm.2559 CrossRefPubMedGoogle Scholar
  35. Johnson R, Zuccato C, Belyaev ND, Guest DJ, Cattaneo E, Buckley NJ (2008) A microRNA-based gene dysregulation pathway in Huntington's disease. Neurobiol Dis 29:438–445. doi: 10.1016/j.nbd.2007.11.001 CrossRefPubMedGoogle Scholar
  36. Jones S, Bonci A (2005) Synaptic plasticity and drug addiction. Curr Opin Pharmacol 5:20–25. doi: 10.1016/j.coph.2004.08.011 CrossRefPubMedGoogle Scholar
  37. Kalivas PW, Volkow ND (2005) The neural basis of addiction: a pathology of motivation and choice. Am J Psychiatry 162:1403–1413. doi: 10.1176/appi.ajp.162.8.1403 CrossRefPubMedGoogle Scholar
  38. Karch SB, Drummer O (2001) Karch’s pathology of drug abuse, 3rd edn. CRC Press, New YorkGoogle Scholar
  39. Kim HS, Jang CG (1997) MK-801 inhibits methamphetamine-induced conditioned place preference and behavioral sensitization to apomorphine in mice. Brain Res Bull 44:221–227CrossRefPubMedGoogle Scholar
  40. Koob GF (1992) Drugs of abuse: anatomy, pharmacology and function of reward pathways. Trends Pharmacol Sci 13:177–184CrossRefPubMedGoogle Scholar
  41. Kosik KS (2006) The neuronal microRNA system. Nat Rev Neurosci 7:911–920. doi: 10.1038/nrn2037 CrossRefPubMedGoogle Scholar
  42. LaPlant Q et al (2010) Dnmt3a regulates emotional behavior and spine plasticity in the nucleus accumbens. Nat Neurosci 13:1137–1143. doi: 10.1038/nn.2619 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Larson EB et al (2011) Overexpression of CREB in the nucleus accumbens shell increases cocaine reinforcement in self-administering rats. J Neurosci 31:16447–16457. doi: 10.1523/JNEUROSCI.3070-11.2011 CrossRefPubMedPubMedCentralGoogle Scholar
  44. Le Foll B, Diaz J, Sokoloff P (2005) A single cocaine exposure increases BDNF and D3 receptor expression: implications for drug-conditioning. Neuroreport 16:175–178CrossRefPubMedGoogle Scholar
  45. Le Moal M, Simon H (1991) Mesocorticolimbic dopaminergic network: functional and regulatory roles. Physiol Rev 71:155–234PubMedGoogle Scholar
  46. Lee S, Woo J, Kim YS, Im HI (2015) Integrated miRNA-mRNA analysis in the habenula nuclei of mice intravenously self-administering nicotine. Sci Rep 5:12909. doi: 10.1038/srep12909 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Leshner AI (1999) Science-based views of drug addiction and its treatment. JAMA 282:1314–1316CrossRefPubMedGoogle Scholar
  48. Lewohl JM, Nunez YO, Dodd PR, Tiwari GR, Harris RA, Mayfield RD (2011) Up-regulation of microRNAs in brain of human alcoholics. Alcohol Clin Exp Res 35:1928–1937. doi: 10.1111/j.1530-0277.2011.01544.x CrossRefPubMedPubMedCentralGoogle Scholar
  49. Li CY, Mao X, Wei L (2008) Genes and (common) pathways underlying drug addiction. PLoS Comput Biol 4:e2. doi: 10.1371/journal.pcbi.0040002 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Machiyama Y (1992) Chronic methamphetamine intoxication model of schizophrenia in animals. Schizophr Bull 18:107–113CrossRefPubMedGoogle Scholar
  51. Makeyev EV, Zhang J, Carrasco MA, Maniatis T (2007) The MicroRNA miR-124 promotes neuronal differentiation by triggering brain-specific alternative pre-mRNA splicing. Mol Cell 27:435–448. doi: 10.1016/j.molcel.2007.07.015 CrossRefPubMedPubMedCentralGoogle Scholar
  52. Mannoury la Cour C, El Mestikawy S, Hanoun N, Hamon M, Lanfumey L (2006) Regional differences in the coupling of 5-hydroxytryptamine-1A receptors to G proteins in the rat brain. Mol Pharmacol 70:1013–1021. doi: 10.1124/mol.106.022756 CrossRefPubMedGoogle Scholar
  53. McPherson CS, Lawrence AJ (2007) The nuclear transcription factor CREB: involvement in addiction, deletion models and looking forward. Curr Neuropharmacol 5:202–212. doi: 10.2174/157015907781695937 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Nagy JI, Li W, Hertzberg EL, Marotta CA (1996) Elevated connexin43 immunoreactivity at sites of amyloid plaques in Alzheimer's disease. Brain Res 717:173–178CrossRefPubMedGoogle Scholar
  55. Nakase T, Naus CC (2004) Gap junctions and neurological disorders of the central nervous system. Biochim Biophys Acta 1662:149–158. doi: 10.1016/j.bbamem.2004.01.009 CrossRefPubMedGoogle Scholar
  56. National Anti-Drug Agency, Ministry of Home Affairs (2015) Drugs information 2014. Available at: Accessed 3 March 2016
  57. National Institute on Drug Abuse (2015) DrugFacts: nationwide trends. Available: Accessed 3 March 2016
  58. Nelson PT, Baldwin DA, Kloosterman WP, Kauppinen S, Plasterk RH, Mourelatos Z (2006) RAKE and LNA-ISH reveal microRNA expression and localization in archival human brain. RNA 12:187–191. doi: 10.1261/rna.2258506 CrossRefPubMedPubMedCentralGoogle Scholar
  59. Nestler EJ (2001) Molecular basis of long-term plasticity underlying addiction. Nat Rev Neurosci 2:119–128. doi: 10.1038/35053570 CrossRefPubMedGoogle Scholar
  60. Nestler EJ (2005) Is there a common molecular pathway for addiction? Nat Neurosci 8:1445–1449. doi: 10.1038/nn1578 CrossRefPubMedGoogle Scholar
  61. Niwa R, Zhou F, Li C, Slack FJ (2008) The expression of the Alzheimer's amyloid precursor protein-like gene is regulated by developmental timing microRNAs and their targets in Caenorhabditis elegans. Dev Biol 315:418–425. doi: 10.1016/j.ydbio.2007.12.044 CrossRefPubMedPubMedCentralGoogle Scholar
  62. Nunez YO, Mayfield RD (2012) Understanding alcoholism through microRNA signatures in brains of human alcoholics. Front Genet 3:43. doi: 10.3389/fgene.2012.00043 CrossRefPubMedPubMedCentralGoogle Scholar
  63. Pandey A et al (2015) Critical role of the miR-200 family in regulating differentiation and proliferation of neurons. J Neurochem 133:640–652. doi: 10.1111/jnc.13089 CrossRefPubMedGoogle Scholar
  64. Perkins DO et al (2007) microRNA expression in the prefrontal cortex of individuals with schizophrenia and schizoaffective disorder. Genome Biol 8:R27. doi: 10.1186/gb-2007-8-2-r27 CrossRefPubMedPubMedCentralGoogle Scholar
  65. Pietrzykowski AZ et al (2008) Posttranscriptional regulation of BK channel splice variant stability by miR-9 underlies neuroadaptation to alcohol. Neuron 59:274–287. doi: 10.1016/j.neuron.2008.05.032 CrossRefPubMedPubMedCentralGoogle Scholar
  66. Prus AJ, James JR, Rosecrans JA (2009) Methods of behavior analysis in neuroscience. 2nd edition. In: Buccafusco JJ (ed) Chapter 4. Conditioned place preference. CRC Press, Boca RatonGoogle Scholar
  67. Reichel CM, Schwendt M, McGinty JF, Olive MF, See RE (2011) Loss of object recognition memory produced by extended access to methamphetamine self-administration is reversed by positive allosteric modulation of metabotropic glutamate receptor 5. Neuropsychopharmacology 36:782–792. doi: 10.1038/npp.2010.212 CrossRefPubMedGoogle Scholar
  68. Robinson TE, Becker JB (1986) Enduring changes in brain and behavior produced by chronic amphetamine administration: a review and evaluation of animal models of amphetamine psychosis. Brain Res 396:157–198CrossRefPubMedGoogle Scholar
  69. Rogers JL, De Santis S, See RE (2008) Extended methamphetamine self-administration enhances reinstatement of drug seeking and impairs novel object recognition in rats. Psychopharmacology 199:615–624. doi: 10.1007/s00213-008-1187-7 CrossRefPubMedPubMedCentralGoogle Scholar
  70. Rufer M, Wirth SB, Hofer A, Dermietzel R, Pastor A, Kettenmann H, Unsicker K (1996) Regulation of connexin-43, GFAP, and FGF-2 is not accompanied by changes in astroglial coupling in MPTP-lesioned, FGF-2-treated parkinsonian mice. J Neurosci Res 46:606–617. doi: 10.1002/(SICI)1097-4547(19961201)46:5<606::AID-JNR9>3.0.CO;2-N CrossRefPubMedGoogle Scholar
  71. Russo SJ, Mazei-Robison MS, Ables JL, Nestler EJ (2009) Neurotrophic factors and structural plasticity in addiction. Neuropharmacology 56(Suppl 1):73–82. doi: 10.1016/j.neuropharm.2008.06.059 CrossRefPubMedGoogle Scholar
  72. Saba R, Storchel PH, Aksoy-Aksel A, Kepura F, Lippi G, Plant TD, Schratt GM (2012) Dopamine-regulated microRNA MiR-181a controls GluA2 surface expression in hippocampal neurons. Mol Cell Biol 32:619–632. doi: 10.1128/MCB.05896-11 CrossRefPubMedPubMedCentralGoogle Scholar
  73. Schechter MD, Calcagnetti DJ (1993) Trends in place preference conditioning with a cross-indexed bibliography; 1957-1991. Neurosci Biobehav Rev 17:21–41CrossRefPubMedGoogle Scholar
  74. Schmittgen TD, Jiang J, Liu Q, Yang L (2004) A high-throughput method to monitor the expression of microRNA precursors. Nucleic Acids Res 32:e43. doi: 10.1093/nar/gnh040 CrossRefPubMedPubMedCentralGoogle Scholar
  75. Schratt G (2009) microRNAs at the synapse. Nat Rev Neurosci 10:842–849. doi: 10.1038/nrn2763 CrossRefPubMedGoogle Scholar
  76. Schratt GM, Tuebing F, Nigh EA, Kane CG, Sabatini ME, Kiebler M, Greenberg ME (2006) A brain-specific microRNA regulates dendritic spine development. Nature 439:283–289. doi: 10.1038/nature04367 CrossRefPubMedGoogle Scholar
  77. Schwendt M, Rocha A, See RE, Pacchioni AM, McGinty JF, Kalivas PW (2009) Extended methamphetamine self-administration in rats results in a selective reduction of dopamine transporter levels in the prefrontal cortex and dorsal striatum not accompanied by marked monoaminergic depletion. J Pharmacol Exp Ther 331:555–562. doi: 10.1124/jpet.109.155770 CrossRefPubMedPubMedCentralGoogle Scholar
  78. Shaw-Lutchman TZ, Impey S, Storm D, Nestler EJ (2003) Regulation of CRE-mediated transcription in mouse brain by amphetamine. Synapse 48:10–17. doi: 10.1002/syn.10172 CrossRefPubMedGoogle Scholar
  79. Shaw-Lutchman TZ et al (2002) Regional and cellular mapping of cAMP response element-mediated transcription during naltrexone-precipitated morphine withdrawal. J Neurosci 22:3663–3672PubMedGoogle Scholar
  80. Shibata M, Kurokawa D, Nakao H, Ohmura T, Aizawa S (2008) MicroRNA-9 modulates Cajal-Retzius cell differentiation by suppressing Foxg1 expression in mouse medial pallium. J Neurosci 28:10415–10421. doi: 10.1523/JNEUROSCI.3219-08.2008 CrossRefPubMedGoogle Scholar
  81. Shibata M, Nakao H, Kiyonari H, Abe T, Aizawa S (2011) MicroRNA-9 regulates neurogenesis in mouse telencephalon by targeting multiple transcription factors. J Neurosci 31:3407–3422. doi: 10.1523/JNEUROSCI.5085-10.2011 CrossRefPubMedGoogle Scholar
  82. Sim MS, Mohamed Z, Hatim A, Rajagopal VL, Habil MH (2010) Association of brain-derived neurotrophic factor (Val66Met) genetic polymorphism with methamphetamine dependence in a Malaysian population. Brain Res 1357:91–96. doi: 10.1016/j.brainres.2010.08.053 CrossRefPubMedGoogle Scholar
  83. Smith CG, Asch RH (1987) Drug abuse and reproduction. Fertil Steril 48:355–373CrossRefPubMedGoogle Scholar
  84. Straiker AJ, Borden CR, Sullivan JM (2002) G-protein alpha subunit isoforms couple differentially to receptors that mediate presynaptic inhibition at rat hippocampal synapses. J Neurosci 22:2460–2468PubMedGoogle Scholar
  85. Tilbrook AJ, Turner AI, Clarke IJ (2002) Stress and reproduction: central mechanisms and sex differences in non-rodent species. Stress 5:83–100. doi: 10.1080/10253890290027912 CrossRefPubMedGoogle Scholar
  86. Traub RD et al (2001) A possible role for gap junctions in generation of very fast EEG oscillations preceding the onset of, and perhaps initiating, seizures. Epilepsia 42:153–170PubMedGoogle Scholar
  87. Tzschentke TM (1998) Measuring reward with the conditioned place preference paradigm: a comprehensive review of drug effects, recent progress and new issues. Prog Neurobiol 56:613–672CrossRefPubMedGoogle Scholar
  88. Vargas-Perez H et al (2009) Ventral tegmental area BDNF induces an opiate-dependent-like reward state in naive rats. Science 324:1732–1734. doi: 10.1126/science.1168501 CrossRefPubMedPubMedCentralGoogle Scholar
  89. Wallace TL, Gudelsky GA, Vorhees CV (1999) Methamphetamine-induced neurotoxicity alters locomotor activity, stereotypic behavior, and stimulated dopamine release in the rat. J Neurosci 19:9141–9148PubMedGoogle Scholar
  90. Wang JQ, Fibuch EE, Mao L (2007) Regulation of mitogen-activated protein kinases by glutamate receptors. J Neurochem 100:1–11. doi: 10.1111/j.1471-4159.2006.04208.x CrossRefPubMedGoogle Scholar
  91. Wang G et al (2008a) Variation in the miRNA-433 binding site of FGF20 confers risk for Parkinson disease by overexpression of alpha-synuclein. Am J Hum Genet 82:283–289. doi: 10.1016/j.ajhg.2007.09.021 CrossRefPubMedPubMedCentralGoogle Scholar
  92. Wang WX et al (2008b) The expression of microRNA miR-107 decreases early in Alzheimer's disease and may accelerate disease progression through regulation of beta-site amyloid precursor protein-cleaving enzyme 1. J Neurosci 28:1213–1223. doi: 10.1523/JNEUROSCI.5065-07.2008 CrossRefPubMedPubMedCentralGoogle Scholar
  93. Wigg KG et al (2008) Association of ADHD and the Protogenin gene in the chromosome 15q21.3 reading disabilities linkage region. Genes Brain Behav 7:877–886. doi: 10.1111/j.1601-183X.2008.00425.x CrossRefPubMedPubMedCentralGoogle Scholar
  94. Wise RA (2000) Addiction becomes a brain disease. Neuron 26:27–33CrossRefPubMedGoogle Scholar
  95. Yadav S, Pandey A, Shukla A, Talwelkar SS, Kumar A, Pant AB, Parmar D (2011) miR-497 and miR-302b regulate ethanol-induced neuronal cell death through BCL2 protein and cyclin D2. J Biol Chem 286:37347–37357. doi: 10.1074/jbc.M111.235531 CrossRefPubMedPubMedCentralGoogle Scholar
  96. Yao L, McFarland K, Fan P, Jiang Z, Inoue Y, Diamond I (2005) Activator of G protein signaling 3 regulates opiate activation of protein kinase A signaling and relapse of heroin-seeking behavior. Proc Natl Acad Sci U S A 102:8746–8751. doi: 10.1073/pnas.0503419102 CrossRefPubMedPubMedCentralGoogle Scholar
  97. Zhou R et al (2009) Evidence for selective microRNAs and their effectors as common long-term targets for the actions of mood stabilizers. Neuropsychopharmacology 34:1395–1405. doi: 10.1038/npp.2008.131 CrossRefPubMedGoogle Scholar
  98. Zovoilis A et al (2011) microRNA-34c is a novel target to treat dementias. EMBO J 30:4299–4308. doi: 10.1038/emboj.2011.327 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Maw Shin Sim
    • 1
    Email author
  • Tomoko Soga
    • 2
  • Vijayapandi Pandy
    • 1
  • Yuan Seng Wu
    • 1
  • Ishwar S. Parhar
    • 2
  • Zahurin Mohamed
    • 1
    Email author
  1. 1.Department of Pharmacology, Faculty of MedicineUniversity of MalayaKuala LumpurMalaysia
  2. 2.Brain Research Institute, School of Medicine and Health SciencesMonash UniversityBandar SunwayMalaysia

Personalised recommendations