Skip to main content

Advertisement

Log in

Protective effects of curcumin against rotenone-induced rat model of Parkinson’s disease: in vivo electrophysiological and behavioral study

  • Original Article
  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

Curcumin is a naturally occurring phenolic yellow chemical isolated from the rhizomes of the plant Curcuma longa (turmeric), and is a major component of the spice turmeric. Curcumin has protective effects against rotenone-induced neural damage in Parkinson’s disease (PD). The present study aims at providing new evidence for the validity of the rotenone rat model of PD by examining whether neuronal activity in the hippocampus is altered. Male albino rats were treated with rotenone injections (2.5 mg/ml intraperitoneally) for 21 days. We examined the effects of curcumin (200 mg/kg) on behavior and electrophysiology in a rat model of PD induced by rotenone. Motor activity was assessed by cylinder test. The electrical activity of neurons was measured in hippocampus. Rotenone causes significant reduction of neuronal activity. The results show that curcumin can improve the motor impairments and electrophysiological parameters and may be beneficial in the treatment of PD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ahmad B, Lapidus LJ (2012) Curcumin prevents aggregation in α-synuclein by increasing reconfiguration rate. J Biol Chem 287:9193–9199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Akram M, Shahab-uddin AA, Khan U, Hanna A et al (2010) Curcuma longa and curcumin: a review article. Rom J Biol – Plant Biol 55:65–70

    Google Scholar 

  • Almeida MF, Silva CM, D'Unhao AM, Ferrari MF (2016) Aged Lewis rats exposed to low and moderate doses of rotenone are a good model for studying the process of protein aggregation and its effects upon central nervous system cell physiology. Arq Neuropsiquiatr 74(9):737–744

    Article  PubMed  Google Scholar 

  • Arimura N, Kaibuchi K (2007) Neuronal polarity: from extracellular signals to intracellular mechanisms. Nat Rev Neurosci 8:194–205

    Article  CAS  PubMed  Google Scholar 

  • Betarbet R, Sherer TB, MacKenzie G, Garcia-Osuna M, Panov AV, Greenamyre JT (2000) Chronic systemic pesticide exposure reproduces features of Parkinson’s disease. Nat Neurosci 3:1301–1306

    Article  CAS  PubMed  Google Scholar 

  • Blesa J, Juri C, Collantes M, Peñuelas I, Prieto E, Iglesias E et al (2010) Progression of dopaminergic depletion in a model of MPTP-induced Parkinsonism in non-human primates. An (18)F-DOPA and (11)C-DTBZ PET study. Neurobiol Dis 38:456–463

    Article  CAS  PubMed  Google Scholar 

  • Cannon JR, Tapias V, Na HM, Honick AS, Drolet RE, Greenamyre JT (2009) A highly reproducible rotenone model of Parkinson’s disease. Neurobiol Dis 34:279–290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chainani-Wu N (2003) Safety and anti-inflammatory activity of curcumin: a component of tumeric (Curcuma longa). J Altern Complement Med 9(1):161–168

    Article  PubMed  Google Scholar 

  • Chen J, Tang XQ, Zhi JL, Cui Y, Yu HM, Tang EH, Sun SN, Feng JQ, Chen PX (2006) Curcumin protects PC12 cells against 1-methyl-4-phenylpyridinium ion-induced apoptosis by bcl-2-mitochondria-ROS-iNOS pathway. Apoptosis 11:943–953

    Article  CAS  PubMed  Google Scholar 

  • Chinta SJ, Ganesan A, Reis-Rodrigues P, Lithgow GJ, Andersen JK (2013) Anti-inflammatory role of the isoflavone diadzein in lipopolysaccharide-stimulated microglia: implications for Parkinson’s disease. Neurotox Res 23:145–153

    Article  CAS  PubMed  Google Scholar 

  • Choi G-Y, Kim H-B, Hwang E-S, Lee S, Kim M-J, Choi J-Y, Lee S-O, Kim S-S, Park J-H (2017) Curcumin alters neural plasticity and viability of intact hippocampal circuits and attenuates behavioral despair and COX-2 expression in chronically stressed rats. Mediat Inflamm 2017:6280925

  • Cookson MR (2005) The biochemistry of Parkinson’s disease. Annu Rev Biochem 74:29–52

    Article  CAS  PubMed  Google Scholar 

  • Costa C, Belcastro V, Tozzi A et al (2008) Electrophysiology and pharmacology of striatal neuronal dysfunction induced by mitochondrial complex I inhibition. J Neurosci 28:8040–8052

    Article  CAS  PubMed  Google Scholar 

  • Danbolt NC (2000) Sodium- and potassium-dependent amino acid transporters in brain plasma membrane. In: Bjorklund A, Hokfelt T, Ottersen OP, Strom-Mathisen J (eds) Handbook of chemical neuroanatomy. 18Glutamate. Elsevier; Amesterdam, Lausanne, New York, Oxford Shannon, Singapore, Tokyo, p 231–254

  • Danbolt NC (2001) Glutamate uptake (review). Prog Neurobiol 65:1–105

    Article  CAS  PubMed  Google Scholar 

  • Darbinyan LV (2016) Effects of curcumin on hippocampal neural activity in rats. Med Sci Armenia 56(4):84–92

    Google Scholar 

  • Darbinyan LV, Hambardzumyan LE, Simonyan KV, Chavushyan VA, Manukyan LP, Badalyan SA, Sarkisian VH (2016) Activity of hippocampal neurons upon high frequency stimulation of substantia nigra in experimentally induced Parkinson’s disease in rats. Morphol 10(4):29–34

    Google Scholar 

  • Darbinyan LV, Hambardzumyan LE, Simonyan KV, Chavushyan VA, Manukyan LP, Sarkisian VH (2017) Rotenone impairs hippocampal neuronal activity in a rat model of Parkinson’s disease. Pathophysiology 24(1):23–30

    Article  CAS  PubMed  Google Scholar 

  • Diaz-Corrales FJ, Asanuma M, Mizayaki I, Miyoshi K, Ogawa N (2005) Rotenone induces aggregation of gamma-tubulin protein and subsequent disorganization of the centrosome: relevance to formation of inclusion bodies and neurodegeneration. Neuroscience 133:117–135

    Article  CAS  PubMed  Google Scholar 

  • Donzanti BA, Yamamoto BK (1988) An improved and rapid HPLC-EC method for the isocratic separation of amino acid neurotransmitters from brain tissue and microdialysis perfusates. Life Sci 11:913–922

    Article  Google Scholar 

  • Eisenhofer G, Kopin IJ, Goldstein DS (2004) Leaky catecholamine stores: undue waste or a stress response coping mechanism? Ann N Y Acad Sci 1018:224–230

    Article  CAS  PubMed  Google Scholar 

  • Filippov AV, Kotenkov SA, Munavirov B, Antzutkin ON (2014) Effect of curcumin on lateral diffusion of phosphatidylcholines in saturated and unsaturated bilayers. Langmuir 30(35):10686–10690

    Article  CAS  PubMed  Google Scholar 

  • First M, Gil-Ad I, Taler M, Tarasenko I, Novak N, Weizman A (2011) The effects of fluoxetine treatment in a chronic mild stress rat model on depression-related behavior, brain neurotrophins and ERK expression. J Mol Neurosci 45(2):246–255

    Article  CAS  PubMed  Google Scholar 

  • Gao HM, Hong JS, Zhang W, Liu B (2002) Distinct role for microglia in rotenone-induced degeneration of dopaminergic neurons. J Neurosci Off J Soc Neurosci 22:782–790

    CAS  Google Scholar 

  • Gilhotra N, Dhingra D (2010) GABAergic and nitriergic modulation by curcumin for its antianxiety-like activity in mice. Brain Res 1352:167–175

    Article  CAS  PubMed  Google Scholar 

  • Giri RK, Rajagopal V, Kalra VK (2004) Curcumin, the active constituent of turmeric, inhibits amyloid peptide-induced cytochemokine gene expression and CCR5-mediated chemotaxis of THP-1 monocytes by modulating early growth response-1 transcription factor. J Neurochem 91:1199–1210

    Article  CAS  PubMed  Google Scholar 

  • Gubellini P, Eusebio A, Oueslati A, Melon C, Kerkerian-Le Goff L, Salin P (2006) Chronic high frequency stimulation of the sub-thalamic nucleus and L-DOPA treatment in experimental parkinsonism; effects of motor behaviour and striatal glutamate transmission. Eur J Neuro Sci 24:1802–1814

    Article  Google Scholar 

  • Hall H, Reyes S, Landeck N, Bye C, Leanza G, Double K, Thompson L, Halliday G, Kirik D (2014) Hippocampal Lewy pathology and cholinergic dysfunction are associated with dementia in Parkinson’s disease. Brain 137(Pt 9):2493–2508

    Article  PubMed  Google Scholar 

  • Hoglinger GU, Feger J, Prigent A, Michel PP, Parain K, Champy P, Ruberg M, Oertel WH, Hirsch EC (2003) Chronic systemic complex I inhibition induces a hypokinetic multisystem degeneration in rats. J Neurochem 84:491–502

    Article  CAS  PubMed  Google Scholar 

  • Hu X, Huang F, Szymusiak M, Liu Y, Wang ZJ (2015) Curcumin attenuates opioid tolerance and dependence by inhibiting Ca2+/calmodulin-dependent protein kinase II α activity. J Pharmacol Exp Ther 352:420–428

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang HC, Chang P, Lu SY, Zheng BW, Jiang ZF (2015) Protection of curcumin against amyloid-β-induced cell damage and death involves the prevention from NMDA receptor-mediated intracellular Ca2+ elevation. J Recept Signal Transduct Res 35(5):450–457

    Article  CAS  PubMed  Google Scholar 

  • Janezic S, Threlfell S, Dodson PD et al (2013) Deficits in dopaminergic transmission precede neuron loss and dysfunction in a new Parkinson model. Proc Natl Acad Sci U S A 110:E4016–E4025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karlstetter M, Lippe E, Walczak Y, Moehle C, Aslanidis A, Mirza M, Langmann T (2011) Curcumin is a potent modulator of microglial gene expression and migration. J Neuroinflammation 8:125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keating DJ (2008) Mitochondrial dysfunction, oxidative stress, regulation of exocytosis and their relevance to neurodegenerative diseases. J Neurochem 104:298–305

    CAS  PubMed  Google Scholar 

  • Kehagia AA, Barker RA, Robbins TW (2010) Neuropsychological and clinical heterogeneity of cognitive impairment and dementia in patients with Parkinson’s disease. Lancet Neurol 9:1200–1213

    Article  PubMed  Google Scholar 

  • Kim do Y, Vallejo J, Rho JM (2010) Ketones prevent synaptic dysfunction induced by mitochondrial respiratory complex inhibitors. J Neurochem 114:130–141

    PubMed  Google Scholar 

  • Kim SJ, Son TG, Park HR et al (2008) Curcumin stimulates proliferation of embryonic neural progenitor cells and neurogenesis in the adult hippocampus. J Biol Chem 283(21):14497–14505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kulkarni SK, Akula KK (2012) Evaluation of antidepressant-like activity of novel water-soluble curcumin formulations and St. John’s wort in behavioral paradigms of despair. Deshpande J Pharmacol 89(1–2):83–90

    CAS  Google Scholar 

  • Lansbury PT, Brice A (2002) Genetics of Parkinson’s disease and biochemical studies of implicated gene products - commentary. Curr Opin Cell Biol 14:653–660

    Article  CAS  PubMed  Google Scholar 

  • Lavoie S, Chen Y, Dalton TP, Gysin R, Cuénod M, Steullet P, Do KQ (2009) Curcumin, quercetin, and tBHQ modulate glutathione levels in astrocytes and neurons: importance of the glutamate cysteine ligase modifier subunit. J Neurochem 108:1410–1422

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Okamoto K, Hayashi Y, Sheng M (2004) The importance of dendritic mitochondria in the morphogenesis and plasticity of spines and synapses. Cell 119:873–887

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Wong TP, Aarts M (2007) NMDA receptor subunits have differential roles in mediating excitotoxic neuronal death both in vitro and in vivo. J Neurosci 27:2846–2857

    Article  CAS  PubMed  Google Scholar 

  • Liu Z, Yu Y, Li X, Ross CA, Smith WW (2011) Curcumin protects against A53T α-synuclein-induced toxicity in a PC12 inducible cell model for Parkinsonism. Pharmacol Res 63:439–444

    Article  PubMed  Google Scholar 

  • Liu Z, Li T, Yang D, Smith WW (2013) Curcumin protects against rotenone-induced neurotoxicity in cell and drosophila models of Parkinson’s disease. Advances in Parkinson’s Disease 2:18–27

    Article  Google Scholar 

  • Marshall LE, Himes RH (1978) Rotenone inhibition of tubulin self-assembly. Biochim Biophys Acta 543:590–594

    Article  CAS  PubMed  Google Scholar 

  • Matteucci A, Frank C, Domenici MR (2005) Curcumin treatment protects rat retinal neurons against excitotoxicity: effect on N-methyl-D-aspartate-induced intracellular Ca(2+) increase. Exp Brain Res 167:641–648

    Article  CAS  PubMed  Google Scholar 

  • Matteucci A, Cammarota R, Paradisi S, Varano M, Balduzzi M, Leo L, Bellenchi GC, De Nuccio C, Carnovale-Scalzo G, Scorcia G, Frank C, Mallozzi C, Di Stasi AM, Visentin S, Malchiodi-Albedi F (2011) Curcumin protects against NMDA-induced toxicity: a possible role for NR2A subunit. Invest Ophthalmol Vis Sci 52(2):1070–1077

    Article  CAS  PubMed  Google Scholar 

  • Meissner WG, Frasier M, Gasser T, Goetz CG, Lozano A, Piccini P, Obeso JA, Rascol O, Schapira A, Voon V, Weiner DM, Tison F, Bezard E (2011) Priorities in Parkinson’s disease research. Nat Rev Drug Discov 10:377–393

    Article  CAS  PubMed  Google Scholar 

  • Monroy A, Lithgow GJ, Alavez S (2013) Curcumin and neurodegenerative diseases. BioFactors (Oxford, England) 39(1):122–132

    Article  CAS  Google Scholar 

  • Moussa E-HC, Rae C, Bubb WA, Griffin JL, Deters NA, Balcar VJ (2007) Inhibitors of glutamate transport modulate distinct patterns in brain metabolism. J Neurosci Res 85:342–350

    Article  CAS  PubMed  Google Scholar 

  • Moussa CE, Rusnak M, Hailu A, Sidhu A, Fricke ST (2008) Alterations of striatal glutamate transmission in rotenone-treated mice: MRI/MRS in vivo studies. Exp Neurol 209:224–233

    Article  CAS  PubMed  Google Scholar 

  • Mythri RB, Jagatha B, Pradhan N, Andersen J, Bharath MM (2007) Mitochondrial complex I inhibition in Parkinson’s disease: how can curcumin protect mitochondria? Antioxid Redox Signal 9(3):399–408

    Article  CAS  PubMed  Google Scholar 

  • Ortiz-Ortiz MA, Morán JM, Ruiz-Mesa LM, Niso-Santano M, Bravo-SanPedro JM, Gómez-Sánchez R, González-Polo RA, Fuentes JM (2010) Curcumin exposure induces expression of the Parkinson’s disease-associated leucine-rich repeat kinase 2 (LRRK2) in rat mesencephalic cells. Neurosci Lett 468:120–124

    Article  CAS  PubMed  Google Scholar 

  • Ottersen OP, Strom-Mathisen J (2000) Handbook of chemical neuroanatomy. 18Glutamate. Elsevier, Amesterdam

  • Patel BA, Arundell M, Parker KH, Yeoman MS, OHare D (2005) Simple and rapid determination of serotonin and catecholamines in biological tissue using high-performance liquid chromatography with electrochemical detection. J Chromatogr B 818(2):269–276

    Article  CAS  Google Scholar 

  • Paxinos G, Watson CH (2005) The rat brain in stereotaxic coordinates, 5th edn. Academic Press, New York, p 367

    Google Scholar 

  • Qualls Z et al (2014) Protective effects of curcumin against rotenone and salsolinol induced toxicity: implications for Parkinson’s disease. Neurotox Res 25:81–89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ren Y, Feng J (2007) Rotenone selectively kills serotonergic neurons through a microtubule-dependent mechanism. J Neurochem 103:303–311

    CAS  PubMed  Google Scholar 

  • Ren Y, Liu W, Jiang H, Jiang Q, Feng J (2005) Selective vulnerability of dopaminergic neurons to microtubule depolymerization. J Biol Chem 280:34105–34112

    Article  CAS  PubMed  Google Scholar 

  • Roberts PJ, Storm-Mathesin J, Johnson GAR (1981) Glutamate transmitter in the central nervous system. John Wiley and Sons, Chichester

    Google Scholar 

  • Saybasili H, Yuksel M, Haklar G, Yalcin AS (2001) Effect of mitochondrial electron transport chain inhibitors on superoxide radical generation in rat hippocampal and striatal slices. Antioxid Redox Signal 3:1099–1104

    Article  CAS  PubMed  Google Scholar 

  • Schallert T, Tillerson J (1999) Intervention strategies for degeneration of dopamine neurons in Parkinsonism: optimizing behavioral assessment of outcome. In: Emerich DF, Dean RL III, Sanberg PR (eds) Central nervous system diseases. Humana, Totowa, pp 131–151

    Google Scholar 

  • Schallert T, Fleming SM, Leasure JL, Tillerson JL, Bland ST (2000) CNS plasticity and assessment of forelimb sensorimotor outcome in unilateral rat models of stroke, cortical ablation, Parkinsonism and spinal cord injury. Neuropharmacology 39:777–787

    Article  CAS  PubMed  Google Scholar 

  • Schuh RA, Matthews CC, Fishman PS (2008) Interaction of mitochondrial respiratory inhibitors and excitotoxins potentiates cell death in hippocampal slice cultures. J Neurosci Res 86:3306–3313

    Article  CAS  PubMed  Google Scholar 

  • Sims NR, Pulsinelli WA (1987) Altered mitochondrial respiration in selectively vulnerable brain subregions following transient forebrain ischemia in the rat. J Neurochem 49:1367–1374

    Article  CAS  PubMed  Google Scholar 

  • Son HJ, Lee JA, Shin N et al (2012) A novel compound PTIQ protects the nigral dopaminergic neurones in an animal model of Parkinson’s disease induced by MPTP. Brit J Pharmacol 165(7):2213–2227

    Article  CAS  Google Scholar 

  • Sweet ES, Saunier-Rebori B, Yue Z, Blitzer RD (2015) The Parkinson’s disease-associated mutation LRRK2-G2019S impairs synaptic plasticity in mouse hippocampus. J Neurosci 35:11190–11195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Talpade DJ, Greene JG, Higgins DS Jr, Greenamyre JT (2000) In vivo labeling of mitochondrial complex I (NADH:ubiquinone oxidoreductase) in rat brain using [(3)H]dihydrorotenone. J Neurochem 75(6):2611–2621

    Article  CAS  PubMed  Google Scholar 

  • Ulusoy GK, Celik T, Kayir H, Gürsoy M, Isik AT, Uzbay TI (2011) Effects of pioglitazone and retinoic acid in a rotenone model of Parkinson’s disease. Brain Res Bull 85(6):380–384

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Du XX, Jiang H, Xie JX (2009) Curcumin attenuates 6-hydroxydopamine-induced cytotoxicity by anti-oxidation and nuclear factor-kappa B modulation in MES23.5 cells. Biochem Pharmacol 78(2):178–183

    Article  CAS  PubMed  Google Scholar 

  • Wang MS, Boddapati S, Emadi S, Sierks MR (2010) Curcumin reduces α-synuclein induced cytotoxicity in Parkinson’s disease cell model. BMC Neurosci 11:57

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang J, Zhang YJ, Du S (2012) The protective effect of curcumin on Abeta induced aberrant cell cycle reentry on primary cultured rat cortical neurons. Eur Rev Med Pharmacol Sci 16:445–454

    CAS  PubMed  Google Scholar 

  • Weil ZM, Norman GJ (2008) The injured nervous system: a Darwinian perspective. Prog Neurobiol 86:48–59

    Article  PubMed  PubMed Central  Google Scholar 

  • Winner B, Jappelli R, Maji SK, Desplats PA, Boyer L, Aigner S, Hetzer C, Loher T, Vilar M, Campioni S, Tzitzilonis C, Soragni A, Jessberger S, Mira H, Consiglio A, Pham E, Masliah E, Gage FH, Riek R (2011) In vivo demonstration that α-synuclein oligomers are toxic. Proc Natl Acad Sci U S A 108:4194–4199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu YN, Johnson SW (2009) Rotenone reduces Mg2+− dependent block of NMDA currents in substantianigra dopamine neurons. Neurotoxicology 30:320–325

    Article  PubMed  Google Scholar 

  • Xu G, Perez-Pinzon MA, Sick TJ (2003) Mitochondrial complex I inhibition produces selective damage to hippocampal subfield CA1 in organotypic slice cultures. Neurotox Res 5:529–538

    Article  PubMed  Google Scholar 

  • Ye J, Zhang Y (2012) Curcumin protects against intracellular amyloid toxicity in rat primary neurons. Int J Clin Exp Med 5:44–49

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yenkoyan K, Safaryan K, Chavushyan V, Meliksetyan I, Navasardyan G, Sarkissian J, Galoyan A, Aghajanov M (2011) Neuroprotective action of proline-rich polypeptide-1 in β -amyloid induced neurodegeneration in rats. Brain Res Bull 86:262–271

    Article  CAS  PubMed  Google Scholar 

  • Yu S, Zheng W, Xin N, Chi ZH, Wang NQ, Nie YX, Feng WY, Wang ZY (2010) Curcumin prevents dopaminergic neuronal death through inhibition of the c-Jun N-terminal kinase pathway. Rejuvenation Res 13:55–64

    Article  CAS  PubMed  Google Scholar 

  • Zbarsky V, Datla KP, Parkar S, Rai DK, Aruoma OI, Dexter DT (2005) Neuroprotective properties of the natural phenolic antioxidants curcumin and naringenin but not quercetin and fisetin in a 6-OHDA model of Parkinson’s disease. Free Radic Res 39:10

    Article  Google Scholar 

  • Zhou M, Baudry M (2006) Developmental changes in NMDA neurotoxicity reflect developmental changes in subunit composition of NMDA receptors. J Neurosci 26:2956–2963

    Article  CAS  PubMed  Google Scholar 

  • Zola-Morgan S, Squire RE, Amaral DG (1986) Human amnesia and medial temporal region: Enduring memory impairment following bilateral lesion limited to CA1 of the hippocampus. J Neurosci 6(10):2950–2967

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This article was extracted as part of the Ph.D. thesis of Lilit Darbinyan. We thank Neuroendocrine Relationships Lab for technical support.

Authors’ information

K. Simonyan, PhD.

L. Darbinyan, PhD student.

L. Hambardzumyan, PhD.

L. Manukyan, PhD.

V. Sarkisian, PhD, DSc, professor.

V. Chavushyan, PhD, DSc.

N. Khalaji, PhD.

S. Badalyan, PhD, DSc.

Author information

Authors and Affiliations

Authors

Contributions

KVS, LVD, LEH conducted the experiments. All authors contributed to analyzing and discussing the results. LVD, VHS, KVS wrote the paper. All authors have read and approved of the final manuscript.

Corresponding author

Correspondence to K. V. Simonyan.

Ethics declarations

Funding

The authors declare that they obtained no funding for this study.

Availability of data and material

The datasets supporting the conclusions of this article are included within the article.

Competing interests

The authors declare that they have no competing interests.

Consent for publication

Not applicable.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Darbinyan, L.V., Hambardzumyan, L.E., Simonyan, K.V. et al. Protective effects of curcumin against rotenone-induced rat model of Parkinson’s disease: in vivo electrophysiological and behavioral study. Metab Brain Dis 32, 1791–1803 (2017). https://doi.org/10.1007/s11011-017-0060-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11011-017-0060-y

Keywords

Navigation