Skip to main content

Advertisement

Log in

Assessment of gender and age effects on serum and hair trace element levels in children with autism spectrum disorder

  • Original Article
  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

The primary objective of the present study was to investigate the levels of essential trace elements in hair and serum in children with autism spectrum disorder (ASD) and investigate the age and gender effects. Children with ASD were characterized by significantly higher levels of copper (Cu) (+8%), iron (Fe) (+5%), and selenium (Se) (+13%) levels in hair and only 8% higher serum Cu levels. After stratification for gender, ASD boys were characterized by significantly increased hair Cu (+ 25%), Fe (+ 25%), and Se (+ 9%) levels, whereas in girls only Se content was elevated (+ 15%). Boys and girls suffering from ASD were characterized by significantly higher serum manganese (Mn) (+20%) and Cu (+18%) as compared to the control values, respectively. In the group of younger children (2–5 years), no significant group difference in hair trace element levels was detected, whereas serum Cu levels were significantly higher (+7%). In turn, the serum concentration of Se in ASD children was 11% lower than that in neurotypical children. In the group of older children with ASD (6–10 years), hair Fe and Se levels were 21% and 16% higher, whereas in serum only Cu levels were increased (+12%) as compared to the controls. Correlation analysis also revealed a different relationship between serum and hair trace element levels with respect to gender and age. Therefore, it is highly recommended to assess several bioindicative matrices for critical evaluation of trace element status in patients with ASD in order to develop adequate personalized nutritional correction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • American Psychiatric Association (2013) Diagnostic and Statistical Manual of Mental Disorders, 5th Edition (DSM-5), Diagnostic Stat. Man. Ment. Disord. 4th Ed. TR. 280

  • Adams J, Holloway C, George F, Quig D (2006) Analyses of toxic metals and essential minerals in the hair of Arizona children with autism and associated conditions, and their mothers. Biol Trace Elem Res 110:193–209

    Article  CAS  PubMed  Google Scholar 

  • Adams JB et al (2011) Nutritional and metabolic status of children with autism vs. neurotypical children, and the association with autism severity. Nutr Metab (Lond) 8:34. doi:10.1186/1743-7075-8-34

    Article  PubMed Central  Google Scholar 

  • Akyuzlu DK, Kayaalti Z, Soylemez E, Soylemezoglu T (2014) Association between autism and arsenic, lead, cadmium, manganese levels in hair and urine. J Pharm Pharmacol 2:140

    Google Scholar 

  • Al-Ayadhi LY (2005) Heavy metals and trace elements in hair samples of autistic children in central Saudi Arabia. Neurosciences (Riyadh) 10:213–218

    Google Scholar 

  • Al-Farsi YM et al (2013) Levels of heavy metals and essential minerals in hair samples of children with autism in Oman: a case-control study. Biol Trace Elem Res 151:181–186. doi:10.1007/s12011-012-9553-z

    Article  CAS  PubMed  Google Scholar 

  • Bencko V, Arbetová D, Skupeňová V, Pápayová A (1981) Biological monitoring of exposure to manganese by Mn hair content. In: Gut I, Cikrt M, Plaa GL (eds) Industrial and Environmental Xenobiotics. Springer Berlin, Heidelberg, pp 69–70

  • Bertrand J, Mars A, Boyle C, Bove F, Yeargin-Allsopp M, Decoufle P (2001) Prevalence of autism in a United States population: the Brick Township, New Jersey, investigation. Pediatrics 108:1155–1161

    Article  CAS  PubMed  Google Scholar 

  • Bjørklund G (2013) The role of zinc and copper in autism spectrum disorders. Acta Neurobiol Exp 73:225–236

    Google Scholar 

  • Bjørklund G, Aaseth J, Ajsuvakova OP, Nikonorov AA, Skalny AV, Skalnaya MG, Tinkov AA (2017) Molecular interaction between mercury and selenium in neurotoxicity. Coord Chem Rev 332:30–37

    Article  Google Scholar 

  • Bjørklund G, Chartrand M (2016) Nutritional and environmental influences on autism spectrum disorder. J Nutr Disorders The 6:e123

    Google Scholar 

  • Bjørklund G, Saad K, Chirumbolo S, Kern JK, Geier DA, Geier MR, Urbina MA (2016) Immune dysfunction and neuroinflammation in autism spectrum disorder. Acta Neurobiol Exp 76:257–268

    Google Scholar 

  • Blaurock-Busch E, Amin OR, Rabah T (2011) Heavy metals and trace elements in hair and urine of a sample of arab children with autistic spectrum disorder. Maedica (Buchar) 6:247–257

    Google Scholar 

  • Bouchard M, Laforest F, Vandelac L, Bellinger D, Mergler D (2007) Hair manganese and hyperactive behaviors: pilot study of school-age children exposed through tap water. Environ Health Perspect 115:122–127

    Article  CAS  PubMed  Google Scholar 

  • Caroli S, Senofonte O, Violante N, Fornarelli L, Powar A (1992) Assessment of reference values for elements in hair of urban normal subjects. Microchem J 46:174–183

    Article  CAS  Google Scholar 

  • Carter CS (2007) Sex differences in oxytocin and vasopressin: implications for autism spectrum disorders? Behav Brain Res 176:170–186. doi:10.1016/j.bbr.2006.08.025

    Article  CAS  PubMed  Google Scholar 

  • Chauhan A, Chauhan V (2006) Oxidative stress in autism. Pathophysiology 13:171–181. doi:10.1016/j.pathophys.2006.05.007

    Article  CAS  PubMed  Google Scholar 

  • Chojnacka K, Zielinska A, Gorecka H, Dobrzanski Z, Gorecki H (2010) Reference values for hair minerals of Polish students. Environ Toxicol Pharmacol 29:314–319. doi:10.1016/j.etap.2010.03.010

    Article  CAS  PubMed  Google Scholar 

  • Crăciun EC, Bjørklund G, Tinkov AA, Urbina MA, Skalny AV, Rad F, Dronca E (2016) Evaluation of whole blood zinc and copper levels in children with autism spectrum disorder. Metab Brain Dis 31:887–890

    Article  PubMed  Google Scholar 

  • De Palma G, Catalani S, Franco A, Brighenti M, Apostoli P (2012) Lack of correlation between metallic elements analyzed in hair by ICP-MS and autism. J Autism Dev Disord 42:342–353

    Article  PubMed  Google Scholar 

  • Dusek P, Roos PM, Litwin T, Schneider SA, Flaten TP, Aaseth J (2015) The neurotoxicity of iron, copper and manganese in Parkinson’s and Wilson’s diseases. J Trace Elem Med Biol 31:193–203

    Article  CAS  PubMed  Google Scholar 

  • El-Ansary A, Bjørklund G, Tinkov AA, Skalny AV, Al Dera H (2017) Relationship between selenium, lead, and mercury in red blood cells of Saudi autistic children. Metab Brain Dis. doi:10.1007/s11011-017-9996-1

  • Esteban M, Castano A (2009) Non-invasive matrices in human biomonitoring: a review. Environ Int 35:438–449. doi:10.1016/j.envint.2008.09.003

    Article  CAS  PubMed  Google Scholar 

  • Faber S, Zinn GM, Kern Ii JC, Skip Kingston H (2009) The plasma zinc/serum copper ratio as a biomarker in children with autism spectrum disorders. Biomarkers 14:171–180

    Article  CAS  PubMed  Google Scholar 

  • Fido A, Al-Saad S (2005) Toxic trace elements in the hair of children with autism. Autism 9:290–298. doi:10.1177/1362361305053255

    Article  PubMed  Google Scholar 

  • Frye RE, James SJ (2014) Metabolic pathology of autism in relation to redox metabolism. Biomark Med 8:321–330. doi:10.2217/bmm.13.158

    Article  CAS  PubMed  Google Scholar 

  • Ghanizadeh A (2012) Malondialdehyde, Bcl-2, superoxide dismutase and glutathione peroxidase may mediate the association of sonic hedgehog protein and oxidative stress in autism. Neurochem Res 37:899–901

    Article  CAS  PubMed  Google Scholar 

  • Gorini F, Muratori F, Morales MA (2014) The role of heavy metal pollution in neurobehavioral disorders: a focus on autism. Rev J Autism Dev Disord 1:354–372

    Article  Google Scholar 

  • Grabrucker AM (2012) Environmental factors in autism. Front Psychol 3:118. doi:10.3389/fpsyt.2012.00118

    Google Scholar 

  • Henn BC et al (2010) Early postnatal blood manganese levels and children’s neurodevelopment. Epidemiology:21–433

  • Hergüner S, Keleşoğlu FM, Tanıdır C, Çöpür M (2012) Ferritin and iron levels in children with autistic disorder. Eur J Pediatr 171:143–146

    Article  PubMed  Google Scholar 

  • Hoet P, Roels HA (2014) Significance and Usefulness of Biomarkers of Exposure to Manganese. In: Manganese in Health and Disease. Royal Society of Chemistry, pp 355-401

  • Hyman SL et al (2012) Nutrient intake from food in children with autism. Pediatrics 130(Suppl 2):S145–S153. doi:10.1542/peds.2012-0900L

    Article  PubMed  PubMed Central  Google Scholar 

  • Jory J, McGinnis WR (2008) Red-cell trace minerals in children with autism. Am J Biochem Biotechnol 4:101–104

    Article  CAS  Google Scholar 

  • Karki P, Lee E, Aschner M (2013) Manganese neurotoxicity: a focus on glutamate transporters. Ann Occup Environ Med 25:4. doi:10.1186/2052-4374-25-4

    Article  PubMed  PubMed Central  Google Scholar 

  • Kern JK et al (2015) Systematic assessment of research on autism spectrum disorder and mercury reveals conflicts of interest and the need for transparency in autism research. Sci Eng Ethics:1–30. doi:10.1007/s11948-015-9713-6

  • Kern JK, Geier DA, Sykes LK, Haley BE, Geier MR (2016) The relationship between mercury and autism: a comprehensive review and discussion. J Trace Elem Med Biol 37:8–24

    Article  CAS  PubMed  Google Scholar 

  • Khaled EM et al (2016) Altered urinary porphyrins and mercury exposure as biomarkers for autism severity in Egyptian children with autism spectrum disorder. Metab Brain Dis 31:1419–1426

    Article  CAS  PubMed  Google Scholar 

  • Khan K et al (2012) Manganese exposure from drinking water and children’s academic achievement. Neurotoxicology 33:91–97. doi:10.1016/j.neuro.2011.12.002

    Article  CAS  PubMed  Google Scholar 

  • Kosanovic M, Jokanovic M (2011) Quantitative analysis of toxic and essential elements in human hair. Clinical validity of results. Environ Monit Assess 174:635–643. doi:10.1007/s10661-010-1484-6

    Article  CAS  PubMed  Google Scholar 

  • Lai MC et al (2013) Biological sex affects the neurobiology of autism. Brain 136:2799–2815. doi:10.1093/brain/awt216

    Article  PubMed  PubMed Central  Google Scholar 

  • Lan AP, Chen J, Chai ZF, Hu Y (2016) The neurotoxicity of iron, copper and cobalt in Parkinson’s disease through ROS-mediated mechanisms. Biometals 29:665–678

    Article  CAS  PubMed  Google Scholar 

  • Li SO, Wang JL, Bjorklund G, Zhao WN, Yin CH (2014) Serum copper and zinc levels in individuals with autism spectrum disorders. Neuroreport 25:1216–1220. doi:10.1097/WNR.0000000000000251

    Article  CAS  PubMed  Google Scholar 

  • Lubkowska A, Sobieraj W (2009) Concentrations of magnesium, calcium, iron, selenium, zinc and copper in the hair of autistic children. Trace Elem Electroly 26(2):72–77

  • Macedoni-Lukšič M et al (2015) Levels of metals in the blood and specific porphyrins in the urine in children with autism spectrum disorders. Biol Trace Elem Res 163:2–10

    Article  PubMed  Google Scholar 

  • Magos L, Clarkson TW (2008) The assessment of the contribution of hair to methyl mercury excretion. Toxicol Lett 182:48–49. doi:10.1016/j.toxlet.2008.08.010

    Article  CAS  PubMed  Google Scholar 

  • Marger L, Schubert CR, Bertrand D (2014) Zinc: an underappreciated modulatory factor of brain function. Biochem Pharmacol 91:426–435. doi:10.1016/j.bcp.2014.08.002

    Article  CAS  PubMed  Google Scholar 

  • Martinez-Finley EJ, Gavin CE, Aschner M, Gunter TE (2013) Manganese neurotoxicity and the role of reactive oxygen species. Free Radic Biol Med 62:65–75. doi:10.1016/j.freeradbiomed.2013.01.032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matelski L, Van de Water J (2016) Risk factors in autism: thinking outside the brain. J Autoimmun 67:1–7. doi:10.1016/j.jaut.2015.11.003

    Article  PubMed  Google Scholar 

  • McGinnis WR (2004) Oxidative stress in autism. Altern Ther Health Med 10:22–36 quiz 37, 92

    PubMed  Google Scholar 

  • Meguid NA, Anwar M, Bjorklund G, Hashish A, Chirumbolo S, Hemimi M, Sultan E (2017) Dietary adequacy of Egyptian children with autism spectrum disorder compared to healthy developing children. Metab Brain Dis 32:607–615. doi:10.1007/s11011-016-9948-1

    Article  PubMed  Google Scholar 

  • Ming X, Johnson WG, Stenroos ES, Mars A, Lambert GH, Buyske S (2010) Genetic variant of glutathione peroxidase 1 in autism. Brain and Development 32:105–109. doi:10.1016/j.braindev.2008.12.017

    Article  PubMed  Google Scholar 

  • Mostafa GA, Bjørklund G, Urbina MA, Al-Ayadhi LY (2016) The positive association between elevated blood lead levels and brain-specific autoantibodies in autistic children from low lead-polluted areas. Metab Brain Dis 31:1047–1054

    Article  CAS  PubMed  Google Scholar 

  • Padhye U (2003) Excess dietary iron is the root cause for increase in childhood autism and allergies. Med Hypotheses 61:220–222

    Article  CAS  PubMed  Google Scholar 

  • Priya MDL, Geetha A (2011) Level of trace elements (copper, zinc, magnesium and selenium) and toxic elements (lead and mercury) in the hair and nail of children with autism. Biol Trace Elem Res 142:148–158

    Article  Google Scholar 

  • Pyrzyńska K (2002) Determination of selenium species in environmental samples. Microchim Acta 140:55–62

    Article  Google Scholar 

  • Racette BA, Aschner M, Guilarte TR, Dydak U, Criswell SR, Zheng W (2012) Pathophysiology of manganese-associated neurotoxicity. Neurotoxicology 33:881–886. doi:10.1016/j.neuro.2011.12.010

    Article  CAS  PubMed  Google Scholar 

  • Rahbar MH et al (2014) Blood manganese concentrations in Jamaican children with and without autism spectrum disorders. Environ Health 13:69

    Article  PubMed  PubMed Central  Google Scholar 

  • Rahbar MH et al (2015) Synergic effect of GSTP1 and blood manganese concentrations in Autism Spectrum Disorder. Res Autism Spectr Disord 18:73–82. doi:10.1016/j.rasd.2015.08.001

    Article  PubMed  PubMed Central  Google Scholar 

  • Rehmani N, Zafar A, Arif H, Hadi SM, Wani AA (2017) Copper-mediated DNA damage by the neurotransmitter dopamine and L-DOPA: a pro-oxidant mechanism. Toxicol in Vitro 40:336–346

    Article  CAS  PubMed  Google Scholar 

  • Reynolds A et al (2012) Iron status in children with autism spectrum disorder. Pediatrics 130(Suppl 2):S154–S159. doi:10.1542/peds.2012-0900M

    Article  PubMed  PubMed Central  Google Scholar 

  • Rivet TT, Matson JL (2011) Review of gender differences in core symptomatology in autism spectrum disorders. Res Autism Spect Dis 5:957–976

    Article  Google Scholar 

  • Sahin C et al (2015) Measurement of hair iron concentration as a marker of body iron content. Biomed Rep 3:383–387

    PubMed  PubMed Central  Google Scholar 

  • Schaafsma SM, Pfaff DW (2014) Etiologies underlying sex differences in Autism Spectrum Disorders. Front Neuroendocrinol 35:255–271. doi:10.1016/j.yfrne.2014.03.006

    Article  PubMed  Google Scholar 

  • Schlegel-Zawadzka M (1992) Chromium content in the hair of children and students in southern Poland. Biol Trace Elem Res 32:79–84

    Article  CAS  PubMed  Google Scholar 

  • Scheiber IF, Mercer JF, Dringen R (2014) Metabolism and functions of copper in brain. Prog Neurobiol 116:33–57

    Article  CAS  PubMed  Google Scholar 

  • Sezgin C, Kaya S, Keskin S (2010) Comparison of blood toxic and plasma essential elements of the autistic Turkish infants. FEBS J 277:88

    Google Scholar 

  • Shaw CA, Tomljenovic L (2013) Aluminum in the central nervous system (CNS): toxicity in humans and animals, vaccine adjuvants, and autoimmunity. Immunol Res 56:304–316. doi:10.1007/s12026-013-8403-1

    Article  CAS  PubMed  Google Scholar 

  • Skalny AV et al (2017) Hair toxic and essential trace elements in children with autism spectrum disorder. Metab Brain Dis 32:195–202. doi:10.1007/s11011-016-9899-6

    Article  CAS  PubMed  Google Scholar 

  • Skalny AV et al (2016) Assessment of serum trace elements and electrolytes in children with childhood and atypical autism. J Trace Elem Med Biol. doi:10.1016/j.jtemb.2016.09.009

  • Söğüt S et al (2003) Changes in nitric oxide levels and antioxidant enzyme activities may have a role in the pathophysiological mechanisms involved in autism. Clin Chim Acta 331:111–117

    Article  PubMed  Google Scholar 

  • Sturaro A, Parvoli G, Doretti L, Allegri G, Costa C (1994) The influence of color, age, and sex on the content of zinc, copper, nickel, manganese, and lead in human hair. Biol Trace Elem Res 40:1–8

    Article  CAS  PubMed  Google Scholar 

  • Szynkowska M, Pawlaczyk A, Wojciechowska E, Sypniewski S, Paryjczak T (2009) Human hair as a biomarker in assessing exposure to toxic metals. Pol J Environ Stud 18:1151–1161

    CAS  Google Scholar 

  • Tabatadze T, Zhorzholiani L, Kherkheulidze M, Kandelaki E, Ivanashvili T (2015) Hair heavy metal and essential trace element concentration in children with autism spectrum disorder. Georgian Med News:77–82

  • Tordjman S et al (2014) Gene x Environment interactions in autism spectrum disorders: role of epigenetic mechanisms. Front Psych 5:53. doi:10.3389/fpsyt.2014.00053

    Google Scholar 

  • van De Sande MM, van Buul VJ, Brouns FJ (2014) Autism and nutrition: the role of the gut-brain axis. Nutr Res Rev 27:199–214. doi:10.1017/S0954422414000110

    Article  Google Scholar 

  • Vogelaar A (2000) Studying the effects of essential nutrients and environmental factors on autistic behavior. DAN!(Defeat Autism Now!) Think Tank. Autism Research Institute, San Diego

    Google Scholar 

  • Wright RO, Amarasiriwardena C, Woolf AD, Jim R, Bellinger DC (2006) Neuropsychological correlates of hair arsenic, manganese, and cadmium levels in school-age children residing near a hazardous waste site. Neurotoxicology 27:210–216. doi:10.1016/j.neuro.2005.10.001

    Article  CAS  PubMed  Google Scholar 

  • Yassa HA (2014) Autism: a form of lead and mercury toxicity. Environ Toxicol Pharmacol 38:1016–1024. doi:10.1016/j.etap.2014.10.005

    Article  CAS  PubMed  Google Scholar 

  • Yasuda H, Yonashiro T, Yoshida K, Ishii T, Tsutsui T (2005) Mineral imbalance in children with autistic disorders. Biomed Res Trace Elem 16:285–292

    CAS  Google Scholar 

  • Yasuda H, Yoshida K, Yasuda Y, Tsutsui T (2011) Infantile zinc deficiency: association with autism spectrum disorders. Sci Rep 1:129. doi:10.1038/srep00129

    Article  PubMed  PubMed Central  Google Scholar 

  • Yorbik O, Kurt I, Hasimi A, Ozturk O (2010) Chromium, cadmium, and lead levels in urine of children with autism and typically developing controls. Biol Trace Elem Res 135:10–15. doi:10.1007/s12011-009-8494-7

    Article  CAS  PubMed  Google Scholar 

  • Yorbik O, Sayal A, Akay C, Akbiyik DI, Sohmen T (2002) Investigation of antioxidant enzymes in children with autistic disorder. Prostaglandins Leukot Essent Fatty Acids 67:341–343

    Article  CAS  PubMed  Google Scholar 

  • Yorbık Ö, Sayal A, Akay C, Söhmen T (2000) Investigation of Antioxidant Enzymes and Related Trace Elements in the Children with Autistic Disorder. Turk J Child Adolesc Ment Health 7:173–181

    Google Scholar 

  • Zablotsky B, Black LI, Maenner MJ, Schieve LA, Blumberg SJ (2015) Estimated Prevalence of Autism and Other Developmental Disabilities Following Questionnaire Changes in the 2014 National Health Interview Survey. Natl Health Stat Report 87:1–20

  • Zeng H, Uthus EO, Combs GF (2005) Mechanistic aspects of the interaction between selenium and arsenic. J Inorg Biochem 99:1269–1274

    Article  CAS  PubMed  Google Scholar 

  • Zheng W, Fu SX, Dydak U, Cowan DM (2011) Biomarkers of manganese intoxication. Neurotoxicology 32:1–8. doi:10.1016/j.neuro.2010.10.002

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This paper was financially supported by the Ministry of Education and Science of the Russian Federation on the program to improve the competitiveness of Peoples’ Friendship University (RUDN) University among the world’s leading research and education centers in 2016 – 2020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexey A. Tinkov.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Skalny, A.V., Simashkova, N.V., Skalnaya, A.A. et al. Assessment of gender and age effects on serum and hair trace element levels in children with autism spectrum disorder. Metab Brain Dis 32, 1675–1684 (2017). https://doi.org/10.1007/s11011-017-0056-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11011-017-0056-7

Keywords

Navigation