Advertisement

Metabolic Brain Disease

, Volume 32, Issue 4, pp 1295–1309 | Cite as

Acute psychoactive and toxic effects of D. metel on mice explained by 1H NMR based metabolomics approach

  • Yonghong Fu
  • Zhihong Si
  • Pumin Li
  • Minghui Li
  • He Zhao
  • Lei Jiang
  • Yuexiao Xing
  • Wei Hong
  • Lingyu Ruan
  • Jun-Song WangEmail author
Original Article

Abstract

Datura metel L. (D. metel) is one well-known folk medical herb with wide application and also the most abused plants all over the world, mainly for spiritual or religious purpose, over-dosing of which often produces poisonous effects. In this study, mice were orally administered with the extract of D. metel once a day at doses for 10 mg/kg and 40 mg/kg for consecutive 4 days, 1H NMR based metabolomics approach aided with histopathological inspection and biochemical assays were used for the first time to study the psychoactive and toxic effects of D. metel. Histopathological inspection revealed obvious hypertrophy of hepatocytes, karyolysis and karyorrhexis in livers as well as distinct nerve cell edema, chromatolysis and lower nuclear density in brains. The increased tissue level of methane dicarboxylic aldehyde (MDA) and superoxide dismutase (SOD), decreased tissue level of glutathione (GSH) along with increased serum level of aspartate aminotransferase (AST) and alanine aminotransferase (ALT) suggested brain and liver injury induced by D. metel. Orthogonal signal correction–partial least squares–discriminant analysis (OSC–PLS–DA) of NMR profiles supplemented with correlation network analysis revealed significant altered metabolites and related pathway that contributed to oxidative stress, energy metabolism disturbances, neurotransmitter imbalance and amino acid metabolism disorders.

Keywords

D. metel Mice Toxicity NMR Metabolomics 

Notes

Compliance with ethical standards

Funding

This work was supported by the National Natural Science Foundation of China (No.81173526) and the Fundamental Research Funds for the Central Universities (No. 30916011307). We are grateful to Prof. Lan Yi for 1H NMR technical assistance.

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11011_2017_38_MOESM1_ESM.docx (1.7 mb)
ESM 1 (DOCX 1742 kb)

References

  1. Amores-Sánchez MI, Medina MÁ (1999) Glutamine, as a precursor of glutathione, and oxidative stress. Mol Genet Metab 67:100–105CrossRefPubMedGoogle Scholar
  2. Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399CrossRefPubMedGoogle Scholar
  3. Bak LK, Schousboe A, Waagepetersen HS (2006) The glutamate/GABA-glutamine cycle: aspects of transport, neurotransmitter homeostasis and ammonia transfer. J Neurochem 98:641–653CrossRefPubMedGoogle Scholar
  4. Ballatori N, Jacob R, Boyer J (1986) Intrabiliary glutathione hydrolysis. A source of glutamate in bile. J Biol Chem 261:7860–7865PubMedGoogle Scholar
  5. Bellila A, Tremblay C, Pichette A, Marzouk B, Mshvildadze V, Lavoie S, Legault J (2011) Cytotoxic activity of withanolides isolated from Tunisian Datura metel L. Phytochemistry 72:2031–2036CrossRefPubMedGoogle Scholar
  6. Block W, Träber F, Flacke S, Jessen F, Pohl C, Schild H (2002) In-vivo proton MR-spectroscopy of the human brain: assessment of N-acetylaspartate (NAA) reduction as a marker for neurodegeneration. Amino Acids 23:317–323CrossRefPubMedGoogle Scholar
  7. Bo T, Li KA, Liu H (2003) Investigation of the effect of space environment on the contents of atropine and scopolamine in Datura metel by capillary zone electrophoresis. J Pharm Biomed Anal 31:885–891CrossRefPubMedGoogle Scholar
  8. Carai MA et al (2001) Role of GABA B receptors in the sedative/hypnotic effect of γ-hydroxybutyric acid. Eur J Pharmacol 428:315–321CrossRefPubMedGoogle Scholar
  9. Cryan JF, Kaupmann K (2005) Don't worry ‘B’happy!: a role for GABA B receptors in anxiety and depression. Trends Pharmacol Sci 26:36–43CrossRefPubMedGoogle Scholar
  10. Dabur R, Singh H, Chhillar A, Ali M, Sharma G (2004) Antifungal potential of Indian medicinal plants. Fitoterapia 75:389–391CrossRefPubMedGoogle Scholar
  11. Devi MR, Bawari M, Paul S, Sharma G (2011) Neurotoxic and medicinal properties of Datura stramonium L.–review Assam University. J Sci Technol 7:139–144Google Scholar
  12. DEVI MR, BAWARI M, Paul S, Sharma G (2012) Characterization of the toxic effects induced by Datura stramonium L. leaves on mice: a behavioral, biochemical and ultrastructural approach. Asian J Pharm Clin Res 5:143–146Google Scholar
  13. Dineley KT, Pandya AA, Yakel JL (2015) Nicotinic ACh receptors as therapeutic targets in CNS disorders. Trends Pharmacol Sci 36:96–108. doi: 10.1016/j.tips.2014.12.002 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Etibor TA, Ajibola MI, Buhari MO, Safiriyu AA, Akinola OB, Caxton-Martins EA (2015) Datura metel Administration distorts medial prefrontal cortex histology of Wistar rats world. J Neurosci 05:282–291Google Scholar
  15. Fatoba TA, Adeloye AA, Soladoye AO (2013) Effect of Datura stramonium seed extracts on haematological parameters of West African dwarf (WAD) bucks European. J Exp Biol 3:1–6Google Scholar
  16. Ferreira J, Zwinderman A (2006) On the Benjamini–Hochberg method. Ann Stat 34:1827–1849CrossRefGoogle Scholar
  17. Giovannini MG, Lana D, Pepeu G (2015) The integrated role of ACh, ERK and mTOR in the mechanisms of hippocampal inhibitory avoidance memory. Neurobiol Learn Mem 119:18–33. doi: 10.1016/j.nlm.2014.12.014 CrossRefPubMedGoogle Scholar
  18. Grünewald R (1993) Ascorbic acid in the brain. Brain Res Rev 18:123–133CrossRefPubMedGoogle Scholar
  19. Hertz L (2013) The glutamate–glutamine (GABA) cycle: importance of late postnatal development and potential reciprocal interactions between biosynthesis and degradation. Front Endocrinol 4:59CrossRefGoogle Scholar
  20. Kaushik S, Médale F (1994) Energy requirements, utilization and dietary supply to salmonids. Aquaculture 124:81–97CrossRefGoogle Scholar
  21. Keun HC et al (2002) Analytical reproducibility in 1H NMR-based metabonomic urinalysis. Chem Res Toxicol 15:1380–1386CrossRefPubMedGoogle Scholar
  22. Kimball SR, Jefferson LS (2006) Signaling pathways and molecular mechanisms through which branched-chain amino acids mediate translational control of protein synthesis. J Nutr 136:227S–231SPubMedGoogle Scholar
  23. Krystal J et al (2002) Glutamate and GABA systems as targets for novel antidepressant and mood-stabilizing treatments. Mol Psychiatry 7:S71–S80CrossRefPubMedGoogle Scholar
  24. Liu X et al (2011) Toxicological responses to acute mercury exposure for three species of Manila clam Ruditapes philippinarum by NMR-based metabolomics. Environ Toxicol Pharmacol 31:323–332. doi: 10.1016/j.etap.2010.12.003 CrossRefPubMedGoogle Scholar
  25. Madsen R, Lundstedt T, Trygg J (2010) Chemometrics in metabolomics—a review in human disease diagnosis. Anal Chim Acta 659:23–33CrossRefPubMedGoogle Scholar
  26. Marnett LJ (2002) Oxy radicals, lipid peroxidation and DNA damage. Toxicology 181:219–222CrossRefPubMedGoogle Scholar
  27. Matés JM, Sánchez-Jiménez FM (2000) Role of reactive oxygen species in apoptosis: implications for cancer therapy. Int J Biochem Cell Biol 32:157–170CrossRefPubMedGoogle Scholar
  28. McClay JL et al (2010) 1H nuclear magnetic resonance metabolomics analysis identifies novel urinary biomarkers for lung function. J Proteome Res 9:3083–3090. doi: 10.1021/pr1000048 CrossRefPubMedGoogle Scholar
  29. Merali Z, Du L, Hrdina P, Palkovits M, Faludi G, Poulter MO, Anisman H (2004) Dysregulation in the suicide brain: mRNA expression of corticotropin-releasing hormone receptors and GABAA receptor subunits in frontal cortical brain region. J Neurosci 24:1478–1485CrossRefPubMedGoogle Scholar
  30. Metherato R, Weinberger NM (1989) Acetylcholine produces stimulus-specific receptive field alterations in cat auditory cortex. Brain Res 480:372–377CrossRefGoogle Scholar
  31. Moffett JR, Ross B, Arun P, Madhavarao CN, Namboodiri AM (2007) N-Acetylaspartate in the CNS: from neurodiagnostics to neurobiology. Prog Neurobiol 81:89–131. doi: 10.1016/j.pneurobio.2006.12.003 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Norbert WL (2006) Contributions of metabol(om)ic NMR spectroscopy to the investigation of apoptosis. C R Chim 9:445–451. doi: 10.1016/j.crci.2005.06.017 CrossRefGoogle Scholar
  33. Perry E, Walker M, Grace J, Perry R (1999) Acetylcholine in mind: a neurotransmitter correlate of consciousness? Trends Neurosci 22:273–280CrossRefPubMedGoogle Scholar
  34. Perry ML, Baldo BA, Andrzejewski ME, Kelley AE (2009) Muscarinic receptor antagonism causes a functional alteration in nucleus accumbens μ-opiate-mediated feeding behavior. Behav Brain Res 197:225–229CrossRefPubMedGoogle Scholar
  35. Priya KS, Gnanamani A, Radhakrishnan N, Babu M (2002) Healing potential of Datura alba on burn wounds in albino rats. J Ethnopharmacol 83:193–199CrossRefPubMedGoogle Scholar
  36. Sharma G (2002) Studies on antimycotic properties of Datura metel. J Ethnopharmacol 80:193–197CrossRefPubMedGoogle Scholar
  37. Shimomura Y, Murakami T, Nakai N, Nagasaki M, Harris RA (2004) Exercise promotes BCAA catabolism: effects of BCAA supplementation on skeletal muscle during exercise. J Nutr 134:1583S–1587SPubMedGoogle Scholar
  38. Shoubridge E, Jeffry F, Keogh J, Radda G, Seymour A-M (1985) Creatine kinase kinetics, ATP turnover, and cardiac performance in hearts depleted of creatine with the substrate analogue β-guanidinopropionic acid Biochimica et Biophysica Acta (BBA)-Molecular. Cell Res 847:25–32Google Scholar
  39. Shulaev V (2006) Metabolomics technology and bioinformatics. Brief Bioinform 7:128–139CrossRefPubMedGoogle Scholar
  40. Snow RJ, Murphy RM (2001) Creatine and the creatine transporter: a review. Mol Cell Biochem 224:169–181CrossRefPubMedGoogle Scholar
  41. Tanaka Y et al (2006) Quantitative magnetic resonance spectroscopy of schizophrenia: relationship between decreased N-acetylaspartate and frontal lobe dysfunction. Psychiatry Clin Neurosci 60:365–372CrossRefPubMedGoogle Scholar
  42. Tijani AA, Adeniyi DT, Adekomi DA (2012) Datura metel is deleterious to the visual cortex of adult wistar rats. Adv Appl Sci Res 3:944–949Google Scholar
  43. Wahren J et al (1983) Is intravenous administration of branched chain amino acids effective in the treatment of hepatic encephalopathy? A multicenter study. Hepatology 3:475–780CrossRefPubMedGoogle Scholar
  44. Wannang N, Ndukwe H, Nnabuife C (2009) Evaluation of the analgesic properties of the Datura metel seeds aqueous extract. J Med Plant Res 3:192–195Google Scholar
  45. Weber S, Bloom B, Brown G (1992) Compiling Joy into silicon. In: Advanced Research in VLSI and Parallel Systems, MIT PressGoogle Scholar
  46. West PR, Weir AM, Smith AM, Donley EL, Cezar GG (2010) Predicting human developmental toxicity of pharmaceuticals using human embryonic stem cells and metabolomics. Toxicol Appl Pharmacol 247:18–27CrossRefPubMedGoogle Scholar
  47. Wishart DS (2008) Metabolomics: applications to food science and nutrition research. Trends Food Sci Technol 19:482–493CrossRefGoogle Scholar
  48. Yadav M, Parle M, Kadian M, Sharma K (2015) A review on psychosis and anti-psychotic plants. Asian J Pharm Clin Res 8:24–28Google Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Yonghong Fu
    • 1
  • Zhihong Si
    • 2
  • Pumin Li
    • 1
  • Minghui Li
    • 1
  • He Zhao
    • 1
  • Lei Jiang
    • 1
  • Yuexiao Xing
    • 1
  • Wei Hong
    • 1
  • Lingyu Ruan
    • 1
  • Jun-Song Wang
    • 1
    Email author
  1. 1.Center for Molecular Metabolism, School of Environmental and Biological EngineeringNanjing University of Science and TechnologyNanjingPeople’s Republic of China
  2. 2.Cancer Hospital, Chinese Academy of SciencesHefeiPeople’s Republic of China

Personalised recommendations