Effects of repeated restraint stress and WiFi signal exposure on behavior and oxidative stress in rats

Abstract

Today, due to technology development and aversive events of daily life, Human exposure to both radiofrequency and stress is unavoidable. This study investigated the co-exposure to repeated restraint stress and WiFi signal on cognitive function and oxidative stress in brain of male rats. Animals were divided into four groups: Control, WiFi-exposed, restrained and both WiFi-exposed and restrained groups. Each of WiFi exposure and restraint stress occurred 2 h (h)/day during 20 days. Subsequently, various tests were carried out for each group, such as anxiety in elevated plus maze, spatial learning abilities in the water maze, cerebral oxidative stress response and cholinesterase activity in brain and serum. Results showed that WiFi exposure and restraint stress, alone and especially if combined, induced an anxiety-like behavior without impairing spatial learning and memory abilities in rats. At cerebral level, we found an oxidative stress response triggered by WiFi and restraint, per se and especially when combined as well as WiFi-induced increase in acetylcholinesterase activity. Our results reveal that there is an impact of WiFi signal and restraint stress on the brain and cognitive processes especially in elevated plus maze task. In contrast, there are no synergistic effects between WiFi signal and restraint stress on the brain.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Abbreviations

ANOVA:

analysis of variance

AP:

access point

ATP:

adenosine triphosphate

CA:

Cornu Ammonis

CAT:

catalase

CNS:

central nervous system

DNA:

deoxyribonucleic acid

DTNB:

5,5′-dithiobis-(2-nitrobenzoic acid)

E:

east

GHz:

gigahertz

h:

hour

Hz:

hertz

K+ :

Potassium ion

MDA:

malondialdehyde level

MHz:

megahertz

mM:

Millimolar

mW:

milliwatt

N:

north

Na+ :

Sodium ion

NCAM:

neural cell adhesion molecule

nm:

nanometre

pSAPs:

protected stretched attend postures

RF:

radiofrequency

ROS:

reactive oxygen species

rpm:

revolution per minute

SAR:

specific absorption rate

S:

south

S.E.M:

standard error of the mean

-SH:

Sulfydryl

SOD:

superoxide dismutase

W:

west

WiFi:

Wireless Fidelity

WPA:

Wi-Fi Protected Access

μL:

microlitre

References

  1. Aboul-Fotouh S (2013) Coenzyme Q10 displays antidepressant-like activity with reduction of hippocampal oxidative/nitrosative DNA damage in chronically stressed rats. Pharmacol Biochem Behav 104:105–112

    CAS  Article  PubMed  Google Scholar 

  2. Aebi H (1984) Catalase in vitro. Meth Enzymol 105:121–126

    CAS  Article  PubMed  Google Scholar 

  3. Arendash GW, Mori T, Dorsey M, Gonzalez R, Tajiri N, Borlongan C (2012) Electromagnetic treatment to old Alzheimer's mice reverses beta-amyloid deposition, modifies cerebral blood flow, and provides selected cognitive benefit. PLoS One 7:e35751

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  4. Banaceur S, Banasr S, Sakly M, Abdelmelek H (2013) Whole body exposure to 2.4 GHz WIFI signals: effects on cognitive impairment in adult triple transgenic mouse models of Alzheimer's disease (3xTg-AD). Behav Brain Res 240:197–201

    Article  PubMed  Google Scholar 

  5. Bouji M, Lecomte A, Gamez C, Blazy K, Villegier AS (2016) Neurobiological effects of repeated radiofrequency exposures in male senescent rats. Biogerontology 17:841–857

    CAS  Article  PubMed  Google Scholar 

  6. Bowers SL, Bilbo SD, Dhabhar FS, Nelson RJ (2008) Stressor-specific alterations in corticosterone and immune responses in mice. Brain Behav Immun 22:105–113

    CAS  Article  PubMed  Google Scholar 

  7. Bradford M (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principal of protein-dye binding. Anal Biochem 72:248–254

    CAS  Article  PubMed  Google Scholar 

  8. Budni J, Zomkowski AD, Engel D, Santos DB, dos Santos AA, Moretti M, Valvassori SS, Ornell F, Quevedo J, Farina M, Rodrigues AL (2013) Folic acid prevents depressive-like behavior and hippocampal antioxidant imbalance induced by restraint stress in mice. Exp Neurol 240:112–121

    CAS  Article  PubMed  Google Scholar 

  9. Cakir B, Kasimay O, Kolgazi M, Ersoy Y, Ercan F, Yegen BC (2010) Stress-induced multiple organ damage in rats is ameliorated by the antioxidant and anxiolytic effects of regular exercise. Cell Biochem Funct 28:469–479

    CAS  Article  PubMed  Google Scholar 

  10. Cakir OK, Ellek N, Salehin N, Hamamci R, Keles H, Kayali DG, Akakin D, Yuksel M, Ozbeyli D (2017) Protective effect of low dose caffeine on psychological stress and cognitive function. Physiol Behav 168:1–10

    CAS  Article  PubMed  Google Scholar 

  11. Chauhan P, Verma HN, Sisodia R, Kesari KK (2017) Microwave radiation (2.45 GHz)-induced oxidative stress: whole-body exposure effect on histopathology of Wistar rats. Electromagn Biol Med 36:20–30

    CAS  PubMed  Google Scholar 

  12. Colín-González AL, Becerríl H, Flores-Reyes BR, Torres I, Pinzón E, Santamaría-Del Angel D, Túnez I, Serratos I, Pedraza-Chaverrí J, Santamaría A, Maldonado PD (2015) Acute restraint stress reduces hippocampal oxidative damage and behavior in rats: effect of S-allyl cysteine. Life Sci 15:165–172

    Article  Google Scholar 

  13. Colomina MT, Albina ML, Domingo JL, Corbella J (1997) Influence of maternal stress on the effects of prenatal exposure to methylmercury and arsenic on postnatal development and behavior in mice: a preliminary evaluation. Physiol Behav 61:455–459

    CAS  Article  PubMed  Google Scholar 

  14. Conrad CD (2010) A critical review of chronic stress effects on spatial learning and memory. Prog Neuro-Psychopharmacol Biol Psychiatry 34:742–755

    Article  Google Scholar 

  15. Dal Santo G, Conterato GM, Barcellos LJ, Rosemberg DB, Piato AL (2014) Acute restraint stress induces an imbalance in the oxidative status of the zebrafish brain. Neurosci Lett 558:103–108

    CAS  Article  PubMed  Google Scholar 

  16. Deshmukh PS, Banerjee BD, Abegaonkar MP, Megha K, Ahmed RS, Tripathi AK, Mediratta PK (2013) Effect of low level microwave radiation exposure on cognitive function and oxidative stress in rats. Indian J Biochem Biophys 50:114–119

    CAS  PubMed  Google Scholar 

  17. Deshmukh PS, Nasare N, Megha K, Banerjee BD, Ahmed RS, Singh D, Abegaonkar MP, Tripathi AK, Mediratta PK (2015) Cognitive impairment and neurogenotoxic effects in rats exposed to low-intensity microwave radiation. Int J Toxicol 34:284–290

    CAS  Article  PubMed  Google Scholar 

  18. Ding GR, Qiu LB, Wang XW, Li KC, Zhou YC, Zhou Y, Zhang J, Zhou JX, Li YR, Guo GZ (2010) EMP-induced alterations of tight junction protein expression and disruption of the blood-brain barrier. Toxicol Lett 196:154–160

    CAS  Article  PubMed  Google Scholar 

  19. Ding Q, Li H, Tian X, Shen Z, Wang X, Mo F, Huang J, Shen H (2016) Zinc and imipramine reverse the depression-like behavior in mice induced by chronic restraint stress. J Affect Disord 197:100–106

    CAS  Article  PubMed  Google Scholar 

  20. Draper H, Hadley M (1990) Malondialdehyde determination as index of lipid peroxidation. Methods Enzymol 186:421–431

    CAS  Article  PubMed  Google Scholar 

  21. Ellman G, Courtney K, Andres V, Featherstone R (1961) A new and rapid colorimetrie determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–95

    CAS  Article  PubMed  Google Scholar 

  22. Frick LR, Arcos ML, Rapanelli M, Zappia MP, Brocco M, Mongini C, Genaro AM, Cremaschi GA (2009) Chronic restraint stress impairs T-cell immunity and promotes tumor progression in mice. Stress 12:134–143

    CAS  Article  PubMed  Google Scholar 

  23. Galeev AL (2000) The effects of microwave radiation from mobile telephones on humans and animals. Neurosci Behav Physiol 30:187–194

    CAS  Article  PubMed  Google Scholar 

  24. Ghosn R, Villegier AS, Selmaoui B, Thuroczy G, de Seze R (2013) Effects of radiofrequencies on the central nervous system in human: EEG, sleep, cognition, vascularisation. C R Phys 14:395–401

    CAS  Article  Google Scholar 

  25. Grootendorst J, de Kloet ER, Dalm S, Oitzl MS (2001) Reversal of cognitive deficit of apolipoprotein E knockout mice after repeated exposure to a common environmental experience. Neuroscience 108:237–247

    CAS  Article  PubMed  Google Scholar 

  26. Haarala C, Aalto S, Hautzel H, Julkunen L, Rinne JO, Laine M, Krause B, Hamalainen H (2003a) Effects of a 902 MHz mobile phone on cerebral blood flow in humans: a PET study. Neuroreport 14:2019–2023

    Article  PubMed  Google Scholar 

  27. Haarala C, Bjornberg L, Ek M, Laine M, Revonsuo A, Koivisto M, Hamalainen H (2003b) Effect of a 902 MHz electromagnetic field emitted by mobile phones on human cognitive function: a replication study. Bioelectromagnetics 24:283–288

    Article  PubMed  Google Scholar 

  28. Haarala C, Ek M, Bjornberg L, Laine M, Revonsuo A, Koivisto M, Hamalainen H (2004) 902 MHz mobile phone does not affect short term memory in humans. Bioelectromagnetics 25:452–456

    Article  PubMed  Google Scholar 

  29. Habila N, Inuwa HM, Aimola IA, Lasisi OI, Chechet DG, Okafor IA (2012) Correlation of acetylcholinesterase activity in the brain and blood of wistar rats acutely infected with Trypanosoma congolense. Journal of Acute Disease 1:26–30

    Article  Google Scholar 

  30. Halliwell B (1992) Reactive oxygen species and the central nervous system. J Neurochem 59:1609–1623

    CAS  Article  PubMed  Google Scholar 

  31. Hao D, Yang L, Chen S, Tong J, Tian Y, Su B, Wu S, Zeng Y (2013) Effects of long-term electromagnetic field exposure on spatial learning and memory in rats. Neurol Sci 34:157–164

    Article  PubMed  Google Scholar 

  32. Hill JM, Switzer RC (1984) 3rd the regional distribution and cellular localization of iron in the rat brain. Neuroscience 11:595–603

    CAS  Article  PubMed  Google Scholar 

  33. Hoffman AN, Krigbaum A, Ortiz JB, Mika A, Hutchinson KM, Bimonte-Nelson HA, Conrad CD (2011) Recovery after chronic stress within spatial reference and working memory domains: correspondence with hippocampal morphology. Eur J Neurosci 34:1023–1030

    CAS  Article  PubMed  Google Scholar 

  34. Hu M, Dillard C (1994) Plasma SH and GSH measurement. Methods Enzymol 233:385–387

    Article  Google Scholar 

  35. Huang P, Li C, Fu T, Zhao D, Yi Z, Lu Q, Guo L, Xu X (2015) Flupirtine attenuates chronic restraint stress-induced cognitive deficits and hippocampal apoptosis in male mice. Behav Brain Res 288:1–10

    CAS  Article  PubMed  Google Scholar 

  36. Jacinto LR, Mata R, Novais A, Marques F, Sousa N (2016) The habenula as a critical node in chronic stress-related anxiety. Exp Neurol 289:46–54

    Article  PubMed  Google Scholar 

  37. Jeljeli M, Strazielle C, Caston J, Lalonde R (2000) Effects of centrolateral or medial thalamic lesions on motor coordination and spatial orientation in rats. Neurosci Res 38:155–164

    CAS  Article  PubMed  Google Scholar 

  38. Kang JS (2015) Exercise copes with prolonged stress-induced impairment of spatial memory performance by endoplasmic reticulum stress. J Exerc Nutrition Biochem 19:191–197

    Article  PubMed  PubMed Central  Google Scholar 

  39. Kleen JK, Sitomer MT, Killeen PR, Conrad CD (2006) Chronic stress impairs spatial memory and motivation for reward without disrupting motor ability and motivation to explore. Behav Neurosci 120:842–851

    Article  PubMed  PubMed Central  Google Scholar 

  40. Kleinlogel H, Dierks T, Koenig T, Lehmann H, Minder A, Berz R (2008) Effects of weak mobile phone - electromagnetic fields (GSM, UMTS) on event related potentials and cognitive functions. Bioelectromagnetics 29:488–497

    CAS  Article  PubMed  Google Scholar 

  41. Koivisto M, Krause CM, Revonsuo A, Laine M, Hamalainen H (2000a) The effects of electromagnetic field emitted by GSM phones on working memory. Neuroreport 11:1641–1643

    CAS  Article  PubMed  Google Scholar 

  42. Koivisto M, Revonsuo A, Krause C, Haarala C, Sillanmaki L, Laine M, Hamalainen H (2000b) Effects of 902 MHz electromagnetic field emitted by cellular telephones on response times in humans. Neuroreport 11:413–415

    CAS  Article  PubMed  Google Scholar 

  43. Kostoff RN, Lau CG (2013) Combined biological and health effects of electromagnetic fields and other agents in the published literature. Technol Forecast Soc Chang 80:1331–1349

    Article  Google Scholar 

  44. Kour K, Bani S (2011) Augmentation of immune response by chicoric acid through the modulation of CD28/CTLA-4 and Th1 pathway in chronically stressed mice. Neuropharmacology 60:852–860

    CAS  Article  PubMed  Google Scholar 

  45. Kumar RS, Narayanan SN, Nayak S (2009) Ascorbic acid protects against restraint stress-induced memory deficits in Wistar rats. Clinics (Sao Paulo) 64:1211–1217

    Article  Google Scholar 

  46. Kwon MS, Vorobyev V, Kannala S, Laine M, Rinne JO, Toivonen T, Johansson J, Teras M, Lindholm H, Alanko T, Hamalainen H (2011) GSM mobile phone radiation suppresses brain glucose metabolism. J Cereb Blood Flow Metab 31:2293–2301

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  47. Lai H, Carino MA, Horita A, Guy AW (1992) Opioid receptor subtypes that mediate a microwave-induced decrease in central cholinergic activity in the rat. Bioelectromagnetics 13:237–246

    CAS  Article  PubMed  Google Scholar 

  48. Lee JS, Kim HG, Han JM, Lee JS, Son SW, Ahn YC, Son CG (2012) Myelophil ameliorates brain oxidative stress in mice subjected to restraint stress. Prog Neuro-Psychopharmacol Biol Psychiatry 39:339–347

    CAS  Article  Google Scholar 

  49. Lehner C, Gehwolf R, Tempfer H, Krizbai I, Hennig B, Bauer HC, Bauer H (2011) Oxidative stress and blood-brain barrier dysfunction under particular consideration of matrix metalloproteinases. Antioxid Redox Signal 15:1305–1323

    CAS  Article  PubMed  Google Scholar 

  50. Li M, Wang Y, Zhang Y, Zhou Z, Yu Z (2008) Elevation of plasma corticosterone levels and hippocampal glucocorticoid receptor translocation in rats: a potential mechanism for cognition impairment following chronic low-power-density microwave exposure. J Radiat Res 49:163–170

    CAS  Article  PubMed  Google Scholar 

  51. Li HJ, Peng RY, Wang CZ, Qiao SM, Yong Z, Gao YB, Xu XP, Wang SX, Dong J, Zuo HY, Li Z, Zhou HM, Wang LF, Hu XJ (2015) Alterations of cognitive function and 5-HT system in rats after long term microwave exposure. Physiol Behav 140:236–246

    CAS  Article  PubMed  Google Scholar 

  52. Li J, Li HX, Shou XJ, Xu XJ, Song TJ, Han SP, Zhang R, Han JS (2016) Effects of chronic restraint stress on social behaviors and the number of hypothalamic oxytocin neurons in male rats. Neuropeptides 60:21–28

    Article  PubMed  Google Scholar 

  53. Liu Y, Zhuang X, Gou L, Ling X, Tian X, Liu L, Zheng Y, Zhang L, Yin X (2013) Protective effects of nizofenone administration on the cognitive impairments induced by chronic restraint stress in mice. Pharmacol Biochem Behav 103:474–480

    CAS  Article  PubMed  Google Scholar 

  54. López-Furelos A, Miñana-Maiques MDM, Leiro-Vidal JM, Rodríguez-Gonzalez JA, Ares-Pena FJ, López-Martin E (2012) An experimental multi-frequency system for studying dosimetry and acute effects on cell and nuclear morphology in rat tissues. Prog Electromagn Res 129:541–558

    Article  Google Scholar 

  55. Lopez-Furelos A, Leiro-Vidal JM, Salas-Sanchez AA, Ares-Pena FJ, Lopez-Martin ME (2016) Evidence of cellular stress and caspase-3 resulting from a combined two-frequency signal in the cerebrum and cerebellum of sprague-dawley rats. Oncotarget 7:64674–64689

    PubMed  PubMed Central  Google Scholar 

  56. Lu Y, Xu S, He M, Chen C, Zhang L, Liu C, Chu F, Yu Z, Zhou Z, Zhong M (2012) Glucose administration attenuates spatial memory deficits induced by chronic low-power-density microwave exposure. Physiol Behav 106:631–637

    CAS  Article  PubMed  Google Scholar 

  57. Ma Z, Wang G, Cui L, Wang Q (2015) Myricetin attenuates depressant-like behavior in mice subjected to repeated restraint stress. Int J Mol Sci 16:28377–28385

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  58. Maaroufi K, Ammari M, Jeljeli M, Roy V, Sakly M, Abdelmelek H (2009) Impairment of emotional behavior and spatial learning in adult Wistar rats by ferrous sulfate. Physiol Behav 96:343–349

    CAS  Article  PubMed  Google Scholar 

  59. Maaroufi K, Ammari M, Elferchichi M, Poucet B, Sakly M, Save E, Abdelmelek H (2013) Effects of combined ferrous sulphate administration and exposure to static magnetic field on spatial learning and motor abilities in rats. Brain Inj 27:492–499

    Article  PubMed  Google Scholar 

  60. Maaroufi K, Had-Aissouni L, Melon C, Sakly M, Abdelmelek H, Poucet B, Save E (2014) Spatial learning, monoamines and oxidative stress in rats exposed to 900 MHz electromagnetic field in combination with iron overload. Behav Brain Res 258:80–89

    CAS  Article  PubMed  Google Scholar 

  61. Manzetti S, Johansson O (2012) Global electromagnetic toxicity and frequency-induced diseases: theory and short overview. Pathophysiology 19:185–191

    Article  PubMed  Google Scholar 

  62. McLaughlin KJ, Gomez JL, Baran SE, Conrad CD (2007) The effects of chronic stress on hippocampal morphology and function: an evaluation of chronic restraint paradigms. Brain Res 1161:56–64

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  63. Megha K, Deshmukh PS, Banerjee BD, Tripathi AK, Ahmed R, Abegaonkar MP (2015a) Low intensity microwave radiation induced oxidative stress, inflammatory response and DNA damage in rat brain. Neurotoxicology 51:158–165

    CAS  Article  PubMed  Google Scholar 

  64. Megha K, Deshmukh PS, Ravi AK, Tripathi AK, Abegaonkar MP, Banerjee BD (2015b) Effect of low-intensity microwave radiation on monoamine neurotransmitters and their key regulating enzymes in rat brain. Cell Biochem Biophys 73:93–100

    CAS  Article  PubMed  Google Scholar 

  65. Misra H, Fridovich I (1972) The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J Biol Chem 247:3170–3175

    CAS  PubMed  Google Scholar 

  66. Ortiz JB, Mathewson CM, Hoffman AN, Hanavan PD, Terwilliger EF, Conrad CD (2014) Hippocampal brain-derived neurotrophic factor mediates recovery from chronic stress-induced spatial reference memory deficits. Eur J Neurosci 40:3351–3362

    Article  PubMed  Google Scholar 

  67. Ortiz JB, Taylor SB, Hoffman AN, Campbell AN, Lucas LR, Conrad CD (2015) Sex-specific impairment and recovery of spatial learning following the end of chronic unpredictable restraint stress: potential relevance of limbic GAD. Behav Brain Res 282:176–184

    Article  PubMed  PubMed Central  Google Scholar 

  68. Perrin A, Cretallaz C, Collin A, Amourette C, Yardin C (2010) Effects of radiofrequency field on the blood-brain barrier: a systematic review from 2005 to 2009. C R Phys 11:602–612

    CAS  Article  Google Scholar 

  69. Politanski P, Bortkiewicz A, Zmyslony M (2016) Effects of radio- and microwaves emitted by wireless communication devices on the functions of the nervous system selected elements. Med Pr 67:411–421

    Article  PubMed  Google Scholar 

  70. Rai AR, Madhyastha S, Prabhu LV, Saralaya VV, Sahu SS, Rao G (2014) Resveratrol reverses the restraint stress-induced cognitive dysfunction involving brain antioxidant system in rats. Int J Pharm Pharm Sci 6:768–772

    Google Scholar 

  71. Reddy S, Rao G, Shetty B, Hn G (2014) Effects of Acorus calamus rhizome extract on the Neuromodulatory system in restraint stress male rats. Turk Neurosurg 25:425–431

    Google Scholar 

  72. Sadler AM, Bailey SJ (2016) Repeated daily restraint stress induces adaptive behavioural changes in both adult and juvenile mice. Physiol Behav 167:313–323

    CAS  Article  PubMed  Google Scholar 

  73. Sadowski RN, Jackson GR, Wieczorek L, Gold PE (2009) Effects of stress, corticosterone, and epinephrine administration on learning in place and response tasks. Behav Brain Res 205:19–25

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  74. Saikhedkar N, Bhatnagar M, Jain A, Sukhwal P, Sharma C, Jaiswal N (2014) Effects of mobile phone radiation (900 MHz radiofrequency) on structure and functions of rat brain. Neurol Res 36:1072–1079

    CAS  Article  PubMed  Google Scholar 

  75. Saili L, Hanini A, Smirani C, Azzouz I, Azzouz A, Sakly M, Abdelmelek H, Bouslama Z (2015) Effects of acute exposure to WIFI signals (2.45GHz) on heart variability and blood pressure in albinos rabbit. Environ Toxicol Pharmacol 40:600–605

    CAS  Article  PubMed  Google Scholar 

  76. Salah MB, Abdelmelek H, Abderraba M (2013) Effects of olive leave extract on metabolic disorders and oxidative stress induced by 2.45 GHz WIFI signals. Environ Toxicol Pharmacol 36:826–834

    Article  PubMed  Google Scholar 

  77. Sandi C, Rose SPR, Mileusnic R, Lancashire C (1995) Corticosterone facilitates long-term memory formation via enhanced glycoprotein synthesis. Neuroscience 69:1087–1093

    CAS  Article  PubMed  Google Scholar 

  78. Sandi C, Merino JJ, Cordero MI, Kruyt ND, Murphy KJ, Regan CM (2003) Modulation of hippocampal NCAM polysialylation and spatial memory consolidation by fear conditioning. Biol Psychiatry 54:599–607

    CAS  Article  PubMed  Google Scholar 

  79. Sandi C, Woodson JC, Haynes VF, Park CR, Touyarot K, Lopez-Fernandez MA, Venero C, Diamond DM (2005) Acute stress-induced impairment of spatial memory is associated with decreased expression of neural cell adhesion molecule in the hippocampus and prefrontal cortex. Biol Psychiatry 57:856–864

    Article  PubMed  Google Scholar 

  80. Schwabe L, Dalm S, Schachinger H, Oitzl MS (2008) Chronic stress modulates the use of spatial and stimulus-response learning strategies in mice and man. Neurobiol Learn Mem 90:495–503

    Article  PubMed  Google Scholar 

  81. Shahin S, Banerjee S, Singh SP, Chaturvedi CM (2015) 2.45 GHz microwave radiation impairs learning and spatial memory via oxidative/Nitrosative stress induced p53-dependent/independent hippocampal apoptosis: molecular basis and underlying mechanism. Toxicol Sci 148:380–399

    CAS  Article  PubMed  Google Scholar 

  82. Son Y, Jeong YJ, Kwon JH, Choi HD, Pack JK, Kim N, Lee YS, Lee HJ (2015) The effect of sub-chronic whole-body exposure to a 1,950 MHz electromagnetic field on the hippocampus in the mouse brain. JEES 15:151–157

    Google Scholar 

  83. Sousa N, Lukoyanov NV, Madeira MD, Almeida OF, Paula-Barbosa MM (2000) Reorganization of the morphology of hippocampal neurites and synapses after stress-induced damage correlates with behavioral improvement. Neuroscience 97:253–266

    CAS  Article  PubMed  Google Scholar 

  84. Stam R (2010) Electromagnetic fields and the blood-brain barrier. Brain Res Rev 65:80–97

    Article  PubMed  Google Scholar 

  85. Swaab DF, Bao AM, Lucassen PJ (2005) The stress system in the human brain in depression and neurodegeneration. Ageing Res Rev 4:141–194

    CAS  Article  PubMed  Google Scholar 

  86. Tang J, Zhang Y, Yang L, Chen Q, Tan L, Zuo S, Feng H, Chen Z, Zhu G (2015) Exposure to 900MHz electromagnetic fields activates the mkp-1/ERK pathway and causes blood-brain barrier damage and cognitive impairment in rats. Brain Res 1601:92–101

    CAS  Article  PubMed  Google Scholar 

  87. Testylier G, Tonduli L, Malabiau R, Debouzy JC (2002) Effects of exposure to low level radiofrequency fields on acetylcholine release in hippocampus of freely moving rats. Bioelectromagnetics 23:249–255

    CAS  Article  PubMed  Google Scholar 

  88. Tian X, Sun L, Gou L, Ling X, Feng Y, Wang L, Yin X, Liu Y (2013) Protective effect of l-theanine on chronic restraint stress-induced cognitive impairments in mice. Brain Res 1503:24–32

    CAS  Article  PubMed  Google Scholar 

  89. Treit D, Menard J, Royan C (1993) Anxiogenic stimuli in the elevated plus-maze. Pharmacol Biochem Behav 44:463–469

    CAS  Article  PubMed  Google Scholar 

  90. Tripathi A, Srivastava UC (2008) Acetylcholinesterase: a versatile enzyme of nervous system. Ann Neurosci 15:106–110

    CAS  Article  Google Scholar 

  91. Valbonesi P, Franzellitti S, Bersani F, Contin A, Fabbri E (2016) Activity and expression of acetylcholinesterase in PC12 cells exposed to intermittent 1.8 GHz 217-GSM mobile phone signal. Int J Radiat Biol 92:1–10

    CAS  Article  PubMed  Google Scholar 

  92. Vijayalaxmi (2016) Biological and health effects of radiofrequency fields: good study design and quality publications. Mutat Res 810:6–12

    CAS  Article  PubMed  Google Scholar 

  93. Vyas A, Mitra R, Shankaranarayana Rao BS, Chattarji S (2002) Chronic stress induces contrasting patterns of dendritic remodeling in hippocampal and amygdaloid neurons. J Neurosci 22:6810–6818

    CAS  PubMed  Google Scholar 

  94. Watson B (1993) Evaluation of the concomitance of lipid peroxidation in experimental models of cerebral ischemia and stroke. Prog Brain Res 96:69–95

    CAS  Article  PubMed  Google Scholar 

  95. Yakymenko I, Tsybulin O, Sidorik E, Henshel D, Kyrylenko O, Kyrylenko S (2016) Oxidative mechanisms of biological activity of low-intensity radiofrequency radiation. Electromagn Biol Med 35:186–202

    CAS  Article  PubMed  Google Scholar 

  96. Younes NR, Amara S, Mrad I, Ben-Slama I, Jeljeli M, Omri K, El Ghoul J, El Mir L, Rhouma KB, Abdelmelek H, Sakly M (2015) Subacute toxicity of titanium dioxide (TiO2) nanoparticles in male rats: emotional behavior and pathophysiological examination. Environ Sci Pollut Res Int 22:8728–8737

    Article  PubMed  Google Scholar 

  97. Zafir A, Ara A, Banu N (2009) Invivo antioxidant status: a putative target of antidepressant action. Prog Neuro-Psychopharmacol Biol Psychiatry 17:220–228

    Article  Google Scholar 

  98. Zhang Y, Liu W, Zhou Y, Ma C, Li S, Cong B (2014) Endoplasmic reticulum stress is involved in restraint stress-induced hippocampal apoptosis and cognitive impairments in rats. Physiol Behav 131:41–48

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

Financial support of the Tunisian Ministry of Higher Education and Scientific Research is gratefully acknowledged. Financial disclosures: none declared. The authors would like to thank Dr. Hidouri Slah for helpful advice on the manuscript’s English.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mohamed Ammari.

Ethics declarations

Conflict of interest

The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the paper.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Othman, H., Ammari, M., Sakly, M. et al. Effects of repeated restraint stress and WiFi signal exposure on behavior and oxidative stress in rats. Metab Brain Dis 32, 1459–1469 (2017). https://doi.org/10.1007/s11011-017-0016-2

Download citation

Keywords

  • WiFi signal
  • Restraint stress
  • Cognitive function
  • Oxidative stress
  • Rat