Skip to main content
Log in

Serum global metabolomics profiling reveals profound metabolic impairments in patients with MPS IIIA and MPS IIIB

  • Original Article
  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

The monogenic defects in specific lysosomal enzymes in mucopolysaccharidosis (MPS) III lead to lysosomal storage of glycosaminoglycans and complex CNS and somatic pathology, for which the detailed mechanisms remain unclear. In this study, serum samples from patients with MPS IIIA (age 2-9 yr) and MPS IIIB (2-13 yr) and healthy controls (age 2-9 yr) were assayed by global metabolomics profiling of 658 metabolites using mass spectrometry. Significant alterations were detected in 423 metabolites in all MPS III patients, of which 366 (86.5%) decreased and 57 (13.5%) increased. Similar profiles were observed when analyzing data from MPS IIIA and MPS IIIB samples separately, with only limited age variations in 36 metabolites. The observed metabolic disturbances in MPS III patients involve virtually all major pathways of amino acid (101/150), peptide (17/21), carbohydrate (19/23), lipid (221/325), nucleotide (15/25), energy (8/9), vitamins and co-factors (8/21), and xenobiotics (34/84) metabolism. Notably, detected serum metabolite decreases involved all key amino acids, all major neurotransmitter pathways, and broad neuroprotective compounds. The elevated metabolites are predominantly lipid derivatives, and also include cysteine metabolites and a fibrinogen peptide fragment, consistent with the status of oxidative stress and inflammation in MPS III. This study demonstrates that the lysosomal glycosaminoglycans storage triggers profound metabolic disturbances in patients with MPS III disorders, leading to severe functional depression of virtually all metabolic pathways, which emerge early during the disease progression. Serum global metabolomics profiling may provide an important and minimally invasive tool for better understanding the disease mechanisms and identification of potential biomarkers for MPS III.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Beesley CE, Young EP, Finnegan N, Jackson M, Mills K, Vellodi A, Cleary M, Winchester BG (2009) Discovery of a new biomarker for the mucopolysaccharidoses (MPS), dipeptidyl peptidase IV (DPP-IV; CD26), by SELDI-TOF mass spectrometry. Mol Genet Metab 96:218–224

    Article  CAS  PubMed  Google Scholar 

  • Bhaumik M, Muller VJ, Rozaklis T, Johnson L, Dobrenis K, Bhattacharyya R, Wurzelmann S, Finamore P, Hopwood JJ, Walkley SU, Stanley P (1999) A mouse model for mucopolysaccharidosis type III a (Sanfilippo syndrome). Glycobiology 9:1389–1396

    Article  CAS  PubMed  Google Scholar 

  • Byrne BJ, Falk DJ, Clement N, Mah CS (2012) Gene therapy approaches for lysosomal storage disease: next-generation treatment. Hum Gene Ther 23:808–815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deutch AY, Roth RH (2003) Neurotransmitters. In: fundamental neuroscience, vol. 2 (squire, L. R. Et al., eds), pp 163-196 Amsterdam, Boston, London, New York, Oxford, Paris, San Diego, san Fransisco, Singapore, Sydney, Tokyo: Academin press

  • DiRosario J, Divers E, Wang C, Etter J, Charrier A, Jukkola P, Auer H, Best V, Newsom DL, McCarty DM, Fu H (2009) Innate and adaptive immune activation in the brain of MPS IIIB mouse model. J Neurosci Res 87:978–990

    Article  CAS  PubMed  Google Scholar 

  • Duncan FJ, Naughton BJ, Zaraspe K, Murrey DA, Meadows AS, Clark KR, Newsom DE, White P, Fu H, McCarty DM (2015) Broad functional correction of molecular impairments by systemic delivery of scAAVrh74-hSGSH gene delivery in MPS IIIA mice. Mol Ther 23:638–647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duque S, Joussemet B, Riviere C, Marais T, Dubreil L, Douar AM, Fyfe J, Moullier P, Colle MA, Barkats M (2009) Intravenous administration of self-complementary AAV9 enables transgene delivery to adult motor neurons. Mol Ther 17:1187–1196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fedorova I, Hashimoto A, Fecik RA, Hedrick MP, Hanus LO, Boger DL, Rice KC, Basile AS (2001) Behavioral evidence for the interaction of oleamide with multiple neurotransmitter systems. J Pharmacol Exp Ther 299:332–342

    CAS  PubMed  Google Scholar 

  • Foust KD, Nurre E, Montgomery CL, Hernandez A, Chan CM, Kaspar BK (2009) Intravascular AAV9 preferentially targets neonatal neurons and adult astrocytes. Nat Biotechnol 27:59–65

    Article  CAS  PubMed  Google Scholar 

  • Foust KD, Wang X, McGovern VL, Braun L, Bevan AK, Haidet AM, Le TT, Morales PR, Rich MM, Burghes AH, Kaspar BK (2010) Rescue of the spinal muscular atrophy phenotype in a mouse model by early postnatal delivery of SMN. Nat Biotechnol 28:271–274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fu H, Bartz JD, Stephens RL Jr, McCarty DM (2012) Peripheral nervous system neuropathology and progressive sensory impairments in a mouse model of Mucopolysaccharidosis IIIB. PLoS One 7:e45992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fu H, Cataldi MP, Ware TA, Zaraspe K, Meadows AS, Murrey DA, McCarty DM (2016) Functional correction of neurological and somatic disorders at later stages of disease in MPS IIIA mice by systemic scAAV9-hSGSH gene delivery. Mol Ther Methods Clin Dev 3:16036

    Article  PubMed  PubMed Central  Google Scholar 

  • Fu H, Dirosario J, Killedar S, Zaraspe K, McCarty DM (2011) Correction of neurological disease of mucopolysaccharidosis IIIB in adult mice by rAAV9 trans-blood-brain barrier gene delivery. Mol Ther 19:1025–1033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fu H, Meadows AS, Ware T, Mohney RP, McCarty DM (2017) Near-complete correction of profound Metabolomic impairments corresponding to functional benefit in MPS IIIB mice after IV rAAV9-hNAGLU Gene delivery. Mol Ther

  • Ginsberg SD, Galvin JE, Lee VM, Rorke LB, Dickson DW, Wolfe JH, Jones MZ, Trojanowski JQ (1999) Accumulation of intracellular amyloid-beta peptide (a beta 1-40) in mucopolysaccharidosis brains. J Neuropathol Exp Neurol 58:815–824

    Article  CAS  PubMed  Google Scholar 

  • Hamano K, Hayashi M, Shioda K, Fukatsu R, Mizutani S (2008) Mechanisms of neurodegeneration in mucopolysaccharidoses II and IIIB: analysis of human brain tissue. Acta Neuropathol 115:547–559

    Article  CAS  PubMed  Google Scholar 

  • Hameed AM, Lam VW, Pleass HC (2015) Significant elevations of serum lipase not caused by pancreatitis: a systematic review. HPB :Off J Int Hepato Pancreato Biliary Assoc 17:99–112

    Article  Google Scholar 

  • High KA, Aubourg P (2011) rAAV human trial experience. Methods Mol Biol 807:429–457

    Article  CAS  PubMed  Google Scholar 

  • Hoppe B (2014) Fibrinogen and factor XIII at the intersection of coagulation, fibrinolysis and inflammation. Thromb Haemost 112:649–658

    Article  PubMed  Google Scholar 

  • Janaky R, Varga V, Hermann A, Saransaari P, Oja SS (2000) Mechanisms of L-cysteine neurotoxicity. Neurochem Res 25:1397–1405

    Article  CAS  PubMed  Google Scholar 

  • Kurihara M, Kumagai K, Yagishita S (1996) Sanfilippo syndrome type C: a clinicopathological autopsy study of a long-term survivor. Pediatr Neurol 14:317–321

    Article  CAS  PubMed  Google Scholar 

  • Langford-Smith KJ, Mercer J, Petty J, Tylee K, Church H, Roberts J, Moss G, Jones S, Wynn R, Wraith JE, Bigger BW (2011) Heparin cofactor II-thrombin complex and dermatan sulphate:chondroitin sulphate ratio are biomarkers of short- and long-term treatment effects in mucopolysaccharide diseases. J Inherit Metab Dis 34:499–508

    Article  CAS  PubMed  Google Scholar 

  • Langford-Smith A, Wilkinson FL, Langford-Smith KJ, Holley RJ, Sergijenko A, Howe SJ, Bennett WR, Jones SA, Wraith J, Merry CL, Wynn RF, Bigger BW (2012) Hematopoietic stem cell and gene therapy corrects primary neuropathology and behavior in mucopolysaccharidosis IIIA mice. Mol Ther 20:1610–1621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lawrence R, Brown JR, Al-Mafraji K, Lamanna WC, Beitel JR, Boons GJ, Esko JD, Crawford BE (2012) Disease-specific non-reducing end carbohydrate biomarkers for mucopolysaccharidoses. Nat Chem Biol 8:197–204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li HH, Yu WH, Rozengurt N, Zhao HZ, Lyons KM, Anagnostaras S, Fanselow MS, Suzuki K, Vanier MT, Neufeld EF (1999) Mouse model of Sanfilippo syndrome type B produced by targeted disruption of the gene encoding alpha-N-acetylglucosaminidase. Proc Natl Acad Sci U S A 96:14505–14510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li HH, Zhao HZ, Neufeld EF, Cai Y, Gomez-Pinilla F (2002) Attenuated plasticity in neurons and astrocytes in the mouse model of Sanfilippo syndrome type B. J Neurosci Res 69:30–38

    Article  CAS  PubMed  Google Scholar 

  • Marmiroli P, Rodriguez-Menendez V, Rigamonti L, Tonoli E, Rigolio R, Cavaletti G, Tredici G, Vercelli A (2009) Neuropathological changes in the peripheral nervous system and spinal cord in a transgenic mouse model of Niemann-pick disease type a. Clin Neuropathol 28:263–274

    CAS  PubMed  Google Scholar 

  • Martins C, Hulkova H, Dridi L, Dormoy-Raclet V, Grigoryeva L, Choi Y, Langford-Smith A, Wilkinson FL, Ohmi K, DiCristo G, Hamel E, Ausseil J, Cheillan D, Moreau A, Svobodova E, Hajkova Z, Tesarova M, Hansikova H, Bigger BW, Hrebicek M, Pshezhetsky AV (2015) Neuroinflammation, mitochondrial defects and neurodegeneration in mucopolysaccharidosis III type C mouse model. Brain 138:336–355

    Article  PubMed  PubMed Central  Google Scholar 

  • McCarty DM, DiRosario J, Gulaid K, Killedar S, Oosterhof A, van Kuppevelt TH, Martin PT, Fu H (2011) Differential distribution of heparan sulfate glycoforms and elevated expression of heparan sulfate biosynthetic enzyme genes in the brain of mucopolysaccharidosis IIIB mice. Metab Brain Dis 26:9–19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McGlynn R, Dobrenis K, Walkley SU (2004) Differential subcellular localization of cholesterol, gangliosides, and glycosaminoglycans in murine models of mucopolysaccharide storage disorders. J Comp Neurol 480:415–426

    Article  CAS  PubMed  Google Scholar 

  • McKinney MK, Cravatt BF (2005) Structure and function of fatty acid amide hydrolase. Annu Rev Biochem 74:411–432

    Article  CAS  PubMed  Google Scholar 

  • Moffett JR, Ross B, Arun P, Madhavarao CN, Namboodiri AM (2007) N-Acetylaspartate in the CNS: from neurodiagnostics to neurobiology. Prog Neurobiol 81:89–131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Naughton BJ, Duncan FJ, Murrey D, Ware T, Meadows A, McCarty DM, Fu H (2013) Amyloidosis, Synucleinopathy, and prion encephalopathy in a neuropathic Lysosomal storage disease: the CNS-biomarker potential of peripheral blood. PLoS One 8:e80142

    Article  PubMed  PubMed Central  Google Scholar 

  • Neufeld EF, Muenzer J (2001) The mucopolysaccharidoses. In: the metabolic & molecular basis of inherited disease(Scriver, C. R. Et al., eds), pp 3421-3452 New York; St Louis; San Francisco: McGraw-hill

  • Ohmi K, Greenberg DS, Rajavel KS, Ryazantsev S, Li HH, Neufeld EF (2003) Activated microglia in cortex of mouse models of mucopolysaccharidoses I and IIIB. Proc Natl Acad Sci U S A 100:1902–1907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohmi K, Kudo LC, Ryazantsev S, Zhao HZ, Karsten SL, Neufeld EF (2009) Sanfilippo syndrome type B, a lysosomal storage disease, is also a tauopathy. Proc Natl Acad Sci U S A 106:8332–8337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohmi K, Zhao HZ, Neufeld EF (2011) Defects in the medial entorhinal cortex and dentate gyrus in the mouse model of Sanfilippo syndrome type B. PLoS One 6:e27461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prospéro-Garcíaa O, Amancio-Belmont O, Becerril Meléndez AL, Ruiz-Contreras AE, Méndez-Díaz M (2016) Endocannabinoids and sleep. Neurosci Behav Rev:671–679

  • Randall DR, Colobong KE, Hemmelgarn H, Sinclair GB, Hetty E, Thomas A, Bodamer OA, Volkmar B, Fernhoff PM, Casey R, Chan AK, Mitchell G, Stockler S, Melancon S, Rupar T, Clarke LA (2008) Heparin cofactor II-thrombin complex: a biomarker of MPS disease. Mol Genet Metab 94:456–461

    Article  CAS  PubMed  Google Scholar 

  • Rothstein JD, Tsai G, Kuncl RW, Clawson L, Cornblath DR, Drachman DB, Pestronk A, Stauch BL, Coyle JT (1990) Abnormal excitatory amino acid metabolism in amyotrophic lateral sclerosis. Ann Neurol 28:18–25

    Article  CAS  PubMed  Google Scholar 

  • Ruzo A, Marco S, Garcia M, Villacampa P, Ribera A, Ayuso E, Maggioni L, Mingozzi F, Haurigot V, Bosch F (2012) Correction of pathological accumulation of Glycosaminoglycans in central nervous system and peripheral tissues of MPSIIIA mice through systemic AAV9 Gene transfer. Hum Gene Ther

  • Ryazantsev S, Yu WH, Zhao HZ, Neufeld EF, Ohmi K (2007) Lysosomal accumulation of SCMAS (subunit c of mitochondrial ATP synthase) in neurons of the mouse model of mucopolysaccharidosis III B. Mol Genet Metab 90:393–401

    Article  CAS  PubMed  Google Scholar 

  • Sands MS, Haskins ME (2008) CNS-directed gene therapy for lysosomal storage diseases. Acta Paediatr Suppl 97:22–27

    Article  Google Scholar 

  • Sekula P, Goek ON, Quaye L, Barrios C, Levey AS, Romisch-Margl W, Menni C, Yet I, Gieger C, Inker LA, Adamski J, Gronwald W, Illig T, Dettmer K, Krumsiek J, Oefner PJ, Valdes AM, Meisinger C, Coresh J, Spector TD, Mohney RP, Suhre K, Kastenmuller G, Kottgen A (2016) A Metabolome-wide association study of kidney function and disease in the general population. J Am Soc Nephrol: JASN 27:1175–1188

    Article  CAS  PubMed  Google Scholar 

  • Sergijenko A, Langford-Smith A, Liao AY, Pickford CE, McDermott J, Nowinski G, Langford-Smith KJ, Merry CL, Jones SA, Wraith JE, Wynn RF, Wilkinson FL, Bigger BW (2013) Myeloid/microglial driven autologous hematopoietic stem cell gene therapy corrects a neuronopathic lysosomal disease. Mol Ther 21:1938–1949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Settembre C, Fraldi A, Jahreiss L, Spampanato C, Venturi C, Medina D, de Pablo R, Tacchetti C, Rubinsztein DC, Ballabio A (2008) A block of autophagy in lysosomal storage disorders. Hum Mol Genet 17:119–129

    Article  CAS  PubMed  Google Scholar 

  • Sotnikova TD, Beaulieu JM, Espinoza S, Masri B, Zhang X, Salahpour A, Barak LS, Caron MG, Gainetdinov RR (2010) The dopamine metabolite 3-methoxytyramine is a neuromodulator. PLoS One 5:e13452

    Article  PubMed  PubMed Central  Google Scholar 

  • Tamagawa K, Morimatsu Y, Fujisawa K, Hara A, Taketomi T (1985) Neuropathological study and chemico-pathological correlation in sibling cases of Sanfilippo syndrome type B. Brain Dev 7:599–609

    Article  CAS  PubMed  Google Scholar 

  • Truxal KV, Fu H, McCarty DM, McNally KA, Kunkler KL, Zumberge NA, Martin L, Aylward SC, Alfano LN, Berry KM, Lowes LP, Corridore M, McKee C, McBride KL, Flanigan KM (2016) A prospective one-year natural history study of mucopolysaccharidosis types IIIA and IIIB: implications for clinical trial design. Mol Genet Metab 119:239–248

    Article  CAS  PubMed  Google Scholar 

  • Valayannopoulos V, Wijburg FA (2011) Therapy for the mucopolysaccharidoses. Rheumatology (Oxford) 50 Suppl 5:v49-59

  • Varki A, Sharon N, Bertozzi CR, Rabuka D, Esko JD, Colley KJF, Freeze, H.H., Elbein AD, Rini J, Lowe JB, Henrissat B, Surolia A, Stanley P (2009) General Principles. In: Essentials of Glycobiology (Varki, A. et al., eds) New York: Cold Spring Harbor

  • Villani GR, Di Domenico C, Musella A, Cecere F, Di Napoli D, Di Natale P (2009) Mucopolysaccharidosis IIIB: oxidative damage and cytotoxic cell involvement in the neuronal pathogenesis. Brain Res 1279:99–108

    Article  CAS  PubMed  Google Scholar 

  • Villani GR, Gargiulo N, Faraonio R, Castaldo S, Gonzalez YRE, Di Natale P (2007) Cytokines, neurotrophins, and oxidative stress in brain disease from mucopolysaccharidosis IIIB. J Neurosci Res 85:612–622

    Article  CAS  PubMed  Google Scholar 

  • Virmani A, Binienda Z (2004) Role of carnitine esters in brain neuropathology. Mol Asp Med 25:533–549

    Article  CAS  Google Scholar 

  • Wilkinson FL, Holley RJ, Langford-Smith KJ, Badrinath S, Liao A, Langford-Smith A, Cooper JD, Jones SA, Wraith JE, Wynn RF, Merry CL, Bigger BW (2012) Neuropathology in mouse models of mucopolysaccharidosis type I, IIIA and IIIB. PLoS One 7:e35787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Winder-Rhodes SE, Garcia-Reitbock P, Ban M, Evans JR, Jacques TS, Kemppinen A, Foltynie T, Williams-Gray CH, Chinnery PF, Hudson G, Burn DJ, Allcock LM, Sawcer SJ, Barker RA, Spillantini MG (2012) Genetic and pathological links between Parkinson's disease and the lysosomal disorder Sanfilippo syndrome. Mov Disord 27:312–315

    Article  CAS  PubMed  Google Scholar 

  • Woloszynek JC, Coleman T, Semenkovich CF, Sands MS (2007) Lysosomal dysfunction results in altered energy balance. J Biol Chem 282:35765–35771

    Article  CAS  PubMed  Google Scholar 

  • Woloszynek JC, Kovacs A, Ohlemiller KK, Roberts M, Sands MS (2009) Metabolic adaptations to interrupted glycosaminoglycan recycling. J Biol Chem 284:29684–29691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yogalingam G, Hopwood JJ (2001) Molecular genetics of mucopolysaccharidosis type IIIA and IIIB: diagnostic, clinical, and biological implications. Hum Mutat 18:264–281

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. Kevin Flanigan, Dr. Kim McBride, Ms. Krista Kunkler for sharing the serum samples collected from MPS III patients. This study was supported by donations from families and friends of patients with Sanfilippo syndromes through LivLife Foundation, Regan’s Hope Foundation, and Ben’s Dream – Sanfilippo Research Foundation. HF, AM, RP and DM were also supported by a translational research grant from NIH/NINDS (U01NS069626). DM and HF were also supported by a grant from NIH/NCI (R01CA172713), and are co-inventors of Abeona Therapeutics’ ABO-101 and ABO-102 and hold stocks of the company. RM and SS are employees of Metabolon, Inc. and, as such, have affiliations with or financial involvement with Metabolon, Inc. The authors have no other relevant conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haiyan Fu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, H., Meadows, A.S., Pineda, R.J. et al. Serum global metabolomics profiling reveals profound metabolic impairments in patients with MPS IIIA and MPS IIIB. Metab Brain Dis 32, 1403–1415 (2017). https://doi.org/10.1007/s11011-017-0009-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11011-017-0009-1

Keywords

Navigation