Skip to main content
Log in

Evidence of oxidative stress in brain and liver of young rats submitted to experimental galactosemia

  • Original Article
  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

Galactosemia is a disorder of galactose metabolism, leading to the accumulation of this carbohydrate. Galactosemic patients present brain and liver damage. For evaluated oxidative stress, 30-day-old males Wistar rats were divided into two groups: galactose group, that received a single injection of this carbohydrate (5 μmol/g), and control group, that received saline 0.9 % in the same conditions. One, twelve or twenty-four hours after the administration, animals were euthanized and cerebral cortex, cerebellum, and liver were isolated. After one hour, it was found a significant increase in TBA-RS levels, nitrate and nitrite and protein carbonyl contents in cerebral cortex, as well as protein carbonyl content in the cerebellum and in hepatic level of TBA-RS, and a significant decrease in nitrate and nitrite contents in cerebellum. TBA-RS levels were also found increased in all studied tissues, as well as nitrate and nitrite contents in cerebral cortex and cerebellum, that also present increased protein carbonyl content and impairments in the activity of antioxidant enzymes of rats euthanized at twelve hours. Finally, animals euthanized after twenty-four hours present an increase of TBA-RS levels in studied tissues, as well as the protein carbonyl content in cerebellum and liver. These animals also present an increased nitrate and nitrite content and impairment of antioxidant enzymes activities. Taken together, our data suggest that acute galactose administration impairs redox homeostasis in brain and liver of rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    Article  CAS  PubMed  Google Scholar 

  • Anand KV, Mohamed Jaabir MS, Thomas PA, Geraldine P (2012) Protective role of chrysin against oxidative stress in D-galactose-induced aging in an experimental rat model. Geriatr Gerontol Int 12:741–750. doi:10.1111/j.1447-0594.2012.00843.x

    Article  PubMed  Google Scholar 

  • Aydın AF, Çoban J, Doğan-Ekici I, Betül-Kalaz E, Doğru-Abbasoğlu S, Uysal M (2016) Carnosine and taurine treatments diminished brain oxidative stress and apoptosis in D-galactose aging model. Metab Brain Dis 31:337–345

    Article  PubMed  Google Scholar 

  • Banji D, Banji OJ, Dasaroju S, Kranthi KC (2013) Curcumin and piperine abrogate lipid and protein oxidation induced by D-galactose in rat brain. Brain Res 17:1–11. doi:10.1016/j.brainres.2013.03.023

    Article  Google Scholar 

  • Banji OJ, Banji D, Ch K (2014) Curcumin and hesperidin improve cognition by suppressing mitochondrial dysfunction and apoptosis induced by D-galactose in rat brain. Food Chem Toxicol 74:51–59. doi:10.1016/j.fct.2014.08.020

    Article  CAS  PubMed  Google Scholar 

  • Bannister J, Calabrese L (1987) Assays for superoxide dismutase. Methods Biochem Anal 32:279–312

    Article  CAS  PubMed  Google Scholar 

  • Betteridge DJ (2000) What is oxidative stress? Metabolism 49:3–8

    Article  CAS  PubMed  Google Scholar 

  • Böhles H, Wenzel D, Shin YS (1986) Progressive cerebellar and extrapyramidal motor disturbances in galactosaemic twins. Eur J Pediatr 145:413–417

    Article  PubMed  Google Scholar 

  • Cakatay U, Aydın S, Atukeren P, Yanar K, Sitar ME, Dalo E, Uslu E (2013) Increased protein oxidation and loss of protein-bound sialic acid in hepatic tissues of D-galactose induced aged rats. Curr Aging Sci 6:135–141

    Article  CAS  PubMed  Google Scholar 

  • Chang L, Liu X, Liu J, Li H, Yang Y, Liu J, Guo Z, Xiao K, Zhang C, Liu J, Zhao-Wilson X, Long J (2014) D-galactose induces a mitochondrial complex I deficiency in mouse skeletal muscle: potential benefits of nutrient combination in ameliorating muscle impairment. J Med Food 17:357–364. doi:10.1089/jmf.2013.2830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi JH, Kim DW, Yoo DY, Jeong HJ, Kim W, Jung HY, Nam SM, Kim JH, Yoon YS, Choi SY, Hwang IK (2013) Repeated administration of PEP-1-Cu,Zn-superoxide dismutase and PEP-1-peroxiredoxin-2 to senescent mice induced by D-galactose improves the hippocampal functions. Neurochem Res 38:2046–2055. doi:10.1007/s11064-013-1112-2

    Article  CAS  PubMed  Google Scholar 

  • Çoban J, Betül-Kalaz E, Küçükgergin C, Aydin AF, Doğan-Ekici I, Doğru-Abbasoğlu S, Uysal M (2014) Blueberry treatment attenuates D-galactose-induced oxidative stress and tissue damage in rat liver. Geriatr Gerontol Int 14:490–497. doi:10.1111/ggi.12096

    Article  PubMed  Google Scholar 

  • Çoban J, Doğan-Ekici I, Aydın AF, Betül-Kalaz E, Doğru-Abbasoğlu S, Uysal M (2015) Blueberry treatment decreased D-galactose-induced oxidative stress and brain damage in rats. Metab Brain Dis 30:793–802. doi:10.1007/s11011-014-9643-z

    Article  PubMed  Google Scholar 

  • Cui X, Zuo P, Zhang Q, Li X, Hu Y, Long J, Packer L, Liu J (2006) Chronic systemic D-galactose exposure induces memory loss, neurodegeneration, and oxidative damage in mice: protective effects of R-alpha-lipoic acid. J Neurosci Res 84:647–654

    Article  CAS  PubMed  Google Scholar 

  • Du Z, Hu Y, Yang Y, Sun Y, Zhang S, Zhou T, Zeng L, Zhang W, Huang X, Kong W, Zhang H (2012) NADPH oxidase-dependent oxidative stress and mitochondrial damage in hippocampus of D-galactose-induced aging rats. J Huazhong Univ Sci Technolog Med Sci 32:466–472. doi:10.1007/s11596-012-0081-z

    Article  CAS  PubMed  Google Scholar 

  • Du Z, Yang Q, Liu L, Li S, Zhao J, Hu J, Liu C, Qian D, Gao C (2014) NADPH oxidase 2-dependent oxidative stress, mitochondrial damage and apoptosis in the ventral cochlear nucleus of D-galactose-induced aging rats. Neuroscience 286:281–292. doi:10.1016/j.neuroscience.2014.11.061

    Article  PubMed  Google Scholar 

  • El-Shabrawi MH, Kamal NM (2011) Medical management of chronic liver diseases in children (part I): focus on curable or potentially curable diseases. Paediatr Drugs 13:357–370. doi:10.2165/11591610-000000000-00000

    Article  PubMed  Google Scholar 

  • Esterbauer H, Cheeseman KH (1990) Determination of aldehydic lipid peroxidation products: Malonaldehyde and 4-hydroxynonenal. Methods in Enzymol 186:407–421

    Article  CAS  Google Scholar 

  • Evelson P, Travacio M, Repetto M, Escobar J, Llesuy S, Lissi E (2001) Evaluation of total reactive antioxidant potential (trap) of tissue homogenates and their cytosols. Arch Biochem Biophys 388:261–266

    Article  CAS  PubMed  Google Scholar 

  • Frey PA (1996) The Leloir pathway: a mechanistic imperative for three enzymes to change the stereochemical configuration of a single carbon in galactose. FASEB J 10:461–470

    CAS  PubMed  Google Scholar 

  • Gajewska J, Ambroszkiewicz J, Chełchowska M, Laskowska-Klita T (2012) Effects of elimination diets on bone metabolism in children and adolescents with phenylketonuria, galactosemia and celiac disease. Med Wieku Rozwoj 16:61–69

    PubMed  Google Scholar 

  • Haberland C, Perou M, Brunngraber EG, Hof H (1971) The neuropathology of galactosemia. A histopathological and biochemical study J Neuropathol Exp Neurol 30:431–447

    Article  CAS  PubMed  Google Scholar 

  • Hao L, Huang H, Gao J, Marshall C, Chen Y, Xiao M (2014) The influence of gender, age and treatment time on brain oxidative stress and memory impairment induced by D-galactose in mice. Neurosci Lett 571:45–49. doi:10.1016/j.neulet.2014.04.038

    Article  CAS  PubMed  Google Scholar 

  • Holden HM, Rayment I, Thoden JB (2003) Structure and function of enzymes of the Leloir pathway for galactose metabolism. J Biol Chem 278:43885–43888. doi:10.1074/jbc.R300025200

    Article  CAS  PubMed  Google Scholar 

  • Hsia CH, Wang CH, Kuo YW, Ho YJ, Chen HL (2012) Fructo-oligosaccharide systemically diminished D-galactose-induced oxidative molecule damages in BALB/cJ mice. Br J Nutr 107:1787–1792. doi:10.1017/S0007114511005150

    Article  CAS  PubMed  Google Scholar 

  • Jumbo-Lucioni PP, Hopson ML, Hang D, Liang Y, Jones DP, Fridovich-Keil JL (2013) Oxidative stress contributes to outcome severity in a Drosophila melanogaster model of classic galactosemia. Dis Model Mech 6:84–94

    Article  CAS  PubMed  Google Scholar 

  • Jumbo-Lucioni PP, Ryan EL, Hopson ML, Bishop HM, Weitner T, Tovmasyan A, Spasojevic I, Batinic-Haberle I, Liang Y, Jones DP, Fridovich-Keil JL (2014) Manganese-based superoxide dismutase mimics modify both acute and long-term outcome severity in a Drosophila melanogaster model of classic galactosemia. Antioxid Redox Signal 20:2361–2371. doi:10.1089/ars.2012.5122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karadag N, Zenciroglu A, Eminoglu FT, Dilli D, Karagol BS, Kundak A, Dursun A, Hakan N, Okumus N (2013) Literature review and outcome of classic galactosemia diagnosed in the neonatal period. Clin Lab 59:1139–1146

    PubMed  Google Scholar 

  • Lai K, Elsas LJ, Wierenga KJ (2009) Galactose toxicity in animals. IUBMB Life 61:1063–1074. doi:10.1002/iub.262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lan Z, Liu J, Chen L, Fu Q, Luo J, Qu R, Kong L, Ma S (2012) Danggui-Shaoyao-san ameliorates cognition deficits and attenuates oxidative stress-related neuronal apoptosis in D-galactose-induced senescent mice. J Ethnopharmacol 141:386–395. doi:10.1016/j.jep.2012.02.050

    Article  CAS  PubMed  Google Scholar 

  • Lawrence RM (2013) Circumstances when breastfeeding is contraindicated. Pediatr Clin N Am 60:295–318. doi:10.1016/j.pcl.2012.09.012

    Article  Google Scholar 

  • Lowry O, Rosebrough NJ, Farr AL, Randall R (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  • Miranda KM, Espey MG, Wink DA (2001) A rapid, simple spectrophotometric method for simultaneous detection of nitrate and nitrite. Nitric Oxide Biol Chem 1:62–71

    Article  Google Scholar 

  • Reznick AZ, Packer L (1994) Oxidative damage to proteins: spectrophotometric method for carbonyl assay. Methods Enzymol 233:357–363

    Article  CAS  PubMed  Google Scholar 

  • Ridel KR, Leslie ND, Gilbert DL (2005) An updated review of the long-term neurological effects of galactosemia. Pediatr Neurol 33:153–161

    Article  PubMed  Google Scholar 

  • Ruan Q, Hu X, Ao H, Ma H, Gao Z, Liu F, Kong D, Bao Z, Yu Z (2014) The neurovascular protective effects of huperzine a on D-galactose-induced inflammatory damage in the rat hippocampus. Gerontology 60:424–439. doi:10.1159/000358235

    Article  CAS  PubMed  Google Scholar 

  • Shen YX, Xu SY, Wei W, Sun XX, Yang J, Liu LH, Dong C (2002) Melatonin reduces memory changes and neural oxidative damage in mice treated with D-galactose. J Pineal Res 32:173–178

    Article  CAS  PubMed  Google Scholar 

  • Tang M, Siddiqi A, Witt B, Yuzyuk T, Johnson B, Fraser N, Chen W, Rascon R, Yin X, Goli H, Bodamer OA, Lai K (2014) Subfertility and growth restriction in a new galactose-1 phosphate uridylyltransferase (GALT) — deficient mouse model. Eur J Hum Genet 22:1172–1179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Timmers I, van den Hurk J, Di Salle F, Rubio-Gozalbo ME, Jansma BM (2011) Language production and working memory in classic galactosemia from a cognitive neuroscience perspective: future research directions. J Inherit Metab Dis 34:367–376. doi:10.1007/s10545-010-9266-4

    Article  PubMed  PubMed Central  Google Scholar 

  • Timmers I, Zhang H, Bastiani M, Jansma BM, Roebroeck A, Rubio-Gozalbo ME (2015) White matter microstructure pathology in classic galactosemia revealed by neurite orientation dispersion and density imaging. J Inherit Metab Dis 38:295–304. doi:10.1007/s10545-014-9780-x

    Article  PubMed  Google Scholar 

  • Timson DJ (2015) The molecular basis of galactosemia - Past, present and future. Gene 2. doi:10.1016/j.gene.2015.06.077

  • Ullah F, Ali T, Ullah N, Kim MO (2015) Caffeine prevents D-galactose-induced cognitive deficits, oxidative stress, neuroinflammation and neurodegeneration in the adult rat brain. Neurochem Int pii S0197-0186(15):30004–30008. doi:10.1016/j.neuint.2015.07.001

    Google Scholar 

  • Wang T, Di G, Yang L, Dun Y, Sun Z, Wan J, Peng B, Liu C, Xiong G, Zhang C, Yuan D (2015) Saponins from Panaxjaponicus attenuate D-galactose-induced cognitive impairment through its anti-oxidative and anti-apoptotic effects in rats. J Pharm Pharmacol 67:1284–1296. doi:10.1111/jphp.12413

    Article  CAS  PubMed  Google Scholar 

  • Xu Y, Zhang J, Liu J, Li S, Li C, Wang W, Ma R, Liu Y (2015) Luteolin attenuate the D-galactose-induced renal damage by attenuation of oxidative stress and inflammation. Nat Prod Res 29:1078–1082. doi:10.1080/14786419.2014.981181

    Article  CAS  PubMed  Google Scholar 

  • Yanar K, Aydın S, Cakatay U, Mengi M, Buyukpınarbaşılı N, Atukeren P, Sitar ME, Sönmez A, Uslu E (2011) Protein and DNA oxidation in different anatomic regions of rat brain in a mimetic ageing model. Basic Clin Pharmacol Toxicol 109:423–433. doi:10.1111/j.1742-7843.2011.00756.x

    Article  CAS  PubMed  Google Scholar 

  • Yu Y, Bai F, Liu Y, Yang Y, Yuan Q, Zou D, Qu S, Tian G, Song L, Zhang T, Li S, Liu Y, Wang W, Ren G, Li D (2015) Fibroblast growth factor (FGF21) protects mouse liver against D-galactose-induced oxidative stress and apoptosis via activating Nrf2 and PI3K/Akt pathways. Mol Cell Biochem 403:287–299. doi:10.1007/s11010-015-2358-6

    Article  CAS  PubMed  Google Scholar 

  • Zhang ZF, Fan SH, Zheng YL, Lu J, Wu DM, Shan Q, Hu B (2009a) Purple sweet potato color attenuates oxidative stress and inflammatory response induced by D-galactose in mouse liver. Food Chem Toxicol 47:496–501. doi:10.1016/j.fct.2008.12.005

    Article  CAS  PubMed  Google Scholar 

  • Zhang ZF, Fan SH, Zheng YL, Lu J, Wu DM, Shan Q, Hu B (2009b) Troxerutin protects the mouse liver against oxidative stress-mediated injury induced by D-galactose. J Agric Food Chem 57:7731–7736. doi:10.1021/jf9012357

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The present work was supported by grants from University of Southern Santa Catarina, Coordination for the Improvement of Higher Education Personnel, Center for Excellence in Neuroscience of Santa Catarina (Foundation for Support of Scientific and Technological Research of the State of Santa Catarina/Support Program for Centers of Excellence) and National Counsel of Technological and Scientific Development.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrícia F. Schuck.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Castro, M.B., Ferreira, B.K., Cararo, J.H. et al. Evidence of oxidative stress in brain and liver of young rats submitted to experimental galactosemia. Metab Brain Dis 31, 1381–1390 (2016). https://doi.org/10.1007/s11011-016-9865-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11011-016-9865-3

Keywords

Navigation