Skip to main content
Log in

Aberrantly expressed long noncoding RNAs are involved in sevoflurane-induced developing hippocampal neuronal apoptosis: a microarray related study

Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

The commonly used volatile anesthetic sevoflurane has been shown to induce widespread apoptosis in the developing brain, yet the underlying molecular mechanisms are not fully understood. Accumulating research has demonstrated that long noncoding RNAs (lncRNAs) regulate multiple biological processes, including neural development, differentiation and apoptosis. They are aberrantly expressed in multiple neurodegenerative diseases. In this study, we employed a lncRNA-mRNA microarray analysis to determine whether and how lncRNAs are involved in sevoflurane-induced hippocampal neuronal apoptosis in neonatal mice. Our data showed that a single 6-h sevoflurane exposure of P7 mice resulted in significant morphological changes and apoptosis in the hippocampus. Moreover, the microarray simultaneously revealed 817 lncRNAs and 856 of their potential coding targets that related to apoptosis, of which 31 lncRNAs (19 up and 12 down) and 25 mRNAs were significantly differentially expressed (P < 0.05) after sevoflurane exposure. Importantly, we found that Bcl2l11 (BIM), which potentiates mitochondria-dependent apoptosis and its nearby enhancer-like lncRNA ENSMUST00000136025, were both more highly expressed in sevoflurane-treated samples compared with control samples. Subsequent qRT-PCR results confirmed the changes. Further CNC network indicated that lncRNA ENSMUST00000136025 was positively correlated with Bim. Moreover, sevoflurane induced a significant increase of pro-apoptotic protein BIM and Bax but a reduction of anti-apoptotic proteins Bcl-2 in the hippocampus. Our study first demonstrates that aberrantly expressed lncRNAs play a role in sevoflurane-induced hippocampal apoptosis. We noted that up-regulated ENSMUST00000136025 highly likely induced the over-expression of BIM, which eventually promoted mitochondria-mediated apoptosis. Such findings further broaden the understanding of molecular mechanisms responsible for sevoflurane-induced neurotoxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Amrock LG, Starner ML, Murphy KL, Baxter MG (2015) Long-term effects of single or multiple neonatal sevoflurane exposures on rat hippocampal ultrastructure. Anesthesiology 122(1):87–95

    Article  CAS  PubMed  Google Scholar 

  • Arisi I, D’Onofrio M, Brandi R, Felsani A, Capsoni S, Drovandi G, Felici G, Weitschek E, Bertolazzi P, Cattaneo A (2011) Gene expression biomarkers in the brain of a mouse model for Alzheimer’s disease: Mining of Microarray Data by logic classification and feature selection. J Alzheimers Dis 24(4):721–738

    CAS  PubMed  Google Scholar 

  • Faghihi MA, Modarresi F, Khalil AM, Wood DE, Sahagan BG, Morgan TE, Finch CE, Laurent GS, Kenny PJ, Wahlestedt C (2008) Expression of a noncoding RNA is elevated in Alzheimer’s disease and drives rapid feed-forward regulation of beta-secretase. Nat Med 14(7):723–730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feng X, Liu JJ, Zhou X, Song FH, Yang XY, Chen XS, Huang WQ, Zhou LH, Ye JH (2012) Single sevoflurane exposure decreases neuronal nitric oxide synthase levels in the hippocampus of developing rats. Br J Anaesth 109(2):225–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flick (2012) Cognitive and Behavioral Outcomes After Early Exposure to Anesthesia and Surgery. Pediatrics 129(3):595–595

    Google Scholar 

  • Gao J, Wang H, Liu Y, Li YY, Chen C, Liu LM, Wu YM, Li S, Yang C (2014) Glutamate and GABA imbalance promotes neuronal apoptosis in hippocampus after stress. Med Sci Monit: Inter Med J Exp Clin Res 20:499–512

    Article  CAS  Google Scholar 

  • Gibert S, Sabourdin N, Louvet N, Moutard ML, Piat V, Guye ML, Rigouzzo A, Constant I (2012) Epileptogenic effect of sevoflurane determination of the minimal alveolar concentration of sevoflurane associated with major Epileptoid signs in children. Anesthesiology 117(6):1253–1261

    Article  CAS  PubMed  Google Scholar 

  • Guttman M, Amit I, Garber M, French C, Lin MF, Feldser D, Huarte M, Zuk O, Carey BW, Cassady JP, Cabili MN, Jaenisch R, Mikkelsen TS, Jacks T, Hacohen N, Bernstein BE, Kellis M, Regev A, Rinn JL, Lander ES (2009) Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature 458(7235):223–227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haseneder R, Kratzer S, von Meyer L, Eder M, Kochs E, Rammes G (2009) Isoflurane and sevoflurane dose-dependently impair hippocampal long-term potentiation. Eur J Pharmacol 623(1–3):47–51

    Article  CAS  PubMed  Google Scholar 

  • Johnson R (2012) Long non-coding RNAs in Huntington’s disease neurodegeneration. Neurobiol Dis 46(2):245–254

    Article  CAS  PubMed  Google Scholar 

  • Kalkman CJ, Peelen L, Moons KG, Veenhuizen M, Bruens M, Sinnema G, de Jong TP (2009) Behavior and development in children and age at the time of first anesthetic exposure. Anesthesiology 110(4):805–812

    Article  PubMed  Google Scholar 

  • Liao Q, Liu C, Yuan X, Kang S, Miao R, Xiao H, Zhao G, Luo H, Bu D, Zhao H, Skogerbo G, Wu Z, Zhao Y (2011) Large-scale prediction of long non-coding RNA functions in a coding-non-coding gene co-expression network. Nucleic Acids Res 39(9):3864–3878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu W, Guo Q, Hu X, Peng L, Zhou B (2014) Induction of DJ-1 protects neuronal cells from isoflurane induced neurotoxicity. Metab Brain Dis 30(3):703–709

    Article  PubMed  Google Scholar 

  • Mercer TR, Dinger ME, Sunkin SM, Mehler MF, Mattick JS (2008) Specific expression of long noncoding RNAs in the mouse brain. Proc Natl Acad Sci U S A 105(2):716–721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • National Research Council (US) Institute for Laboratory Animal Research (1996) Guide for the care and use of laboratory animals. National Academies Press, Washington

  • Ng SY, Lin L, Soh BS, Stanton LW (2013) Long noncoding RNAs in development and disease of the central nervous system. Trends in genetics: TIG 29(8):461–468

    Article  CAS  PubMed  Google Scholar 

  • Orom UA, Derrien T, Beringer M, Gumireddy K, Gardini A, Bussotti G, Lai F, Zytnicki M, Notredame C, Huang Q, Guigo R, Shiekhattar R (2010) Long noncoding RNAs with enhancer-like function in human cells. Cell 143(1):46–58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pan ZQ, Lu XF, Shao CJ, Zhang CB, Yang JX, Ma T, Zhang LC, Cao JL (2011) The effects of sevoflurane anesthesia on rat hippocampus: a genomic expression analysis. Brain Res 1381:124–133

    Article  CAS  PubMed  Google Scholar 

  • Ponjavic J, Oliver PL, Lunter G, Ponting CP (2009) Genomic and transcriptional co-localization of protein-coding and long non-coding RNA pairs in the developing brain. PLoS Genet 5(8):e1000617

    Article  PubMed  PubMed Central  Google Scholar 

  • Putcha GV, Moulder KL, Golden JP, Bouillet P, Adams JA, Strasser A, Johnson EM (2001) Induction of BIM, a proapoptotic BH3-only BCL-2 family member, is critical for neuronal apoptosis. Neuron 29(3):615–628

    Article  CAS  PubMed  Google Scholar 

  • Qiu J, Shi P, Mao W, Zhao Y, Liu W, Wang Y (2015) Effect of apoptosis in neural stem cells treated with sevoflurane. BMC Anesthesiol 15:25

    Article  PubMed  PubMed Central  Google Scholar 

  • Qureshi IA, Mehler MF (2013) Long non-coding RNAs: novel targets for nervous system disease diagnosis and therapy. Neurotherapeutics: J Am Soc Exp NeuroTherapeutics 10(4):632–646

    Article  CAS  Google Scholar 

  • Ren S, Peng Z, Mao JH, Yu Y, Yin C, Gao X, Cui Z, Zhang J, Yi K, Xu W, Chen C, Wang F, Guo X, Lu J, Yang J, Wei M, Tian Z, Guan Y, Tang L, Xu C, Wang L, Gao X, Tian W, Wang J, Yang H, Wang J, Sun Y (2012) RNA-seq analysis of prostate cancer in the Chinese population identifies recurrent gene fusions, cancer-associated long noncoding RNAs and aberrant alternative splicings. Cell Res 22(5):806–821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakamoto A, Imai J, Nishikawa A, Honma R, Ito E, Yanagisawa Y, Kawamura M, Ogawa R, Watanabe S (2005) Influence of inhalation anesthesia assessed by comprehensive gene expression profiling. Gene 356:39–48

    Article  CAS  PubMed  Google Scholar 

  • Satomoto M, Satoh Y, Terui K, Miyao H, Takishima K, Ito M, Imaki J (2009) Neonatal exposure to sevoflurane induces abnormal social behaviors and deficits in fear conditioning in mice. Anesthesiology 110(3):628–637

    Article  CAS  PubMed  Google Scholar 

  • Shen X, Dong YL, Xu ZP, Wang H, Miao CH, Soriano SG, Sun DD, Baxter MG, Zhang YY, Xie ZC (2013) Selective anesthesia-induced Neuroinflammation in developing mouse brain and cognitive impairment. Anesthesiology 118(3):502–515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takaenoki Y, Satoh Y, Araki Y, Kodama M, Yonamine R, Yufune S, Kazama T (2014) Neonatal exposure to sevoflurane in mice causes deficits in maternal behavior later in adulthood. Anesthesiology 120(2):403–415

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Xu Z, Miao CH (2014) Current clinical evidence on the effect of general anesthesia on neurodevelopment in children: an updated systematic review with meta-regression. PLoS One 9(1)

  • Wilusz JE, Sunwoo H, Spector DL (2009) Long noncoding RNAs: functional surprises from the RNA world. Gene Dev 23(13):1494–1504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu P, Zuo X, Deng H, Liu X, Liu L, Ji A (2013a) Roles of long noncoding RNAs in brain development, functional diversification and neurodegenerative diseases. Brain Res Bull 97:69–80

    Article  CAS  PubMed  Google Scholar 

  • Wu P, Zuo XL, Deng HL, Liu XX, Liu L, Ji AM (2013b) Roles of long noncoding RNAs in brain development, functional diversification and neurodegenerative diseases. Brain Res Bull 97:69–80

    Article  CAS  PubMed  Google Scholar 

  • Yi W, Zhang Y, Guo Y, Li D, Li X (2015) Elevation of Sestrin-2 expression attenuates sevoflurane induced neurotoxicity. Metab Brain Dis 30(5):1161–1166

    Article  CAS  PubMed  Google Scholar 

  • Yudkowitz FS (2010) Anesthetics and the developing brain. Semin Cardiothorac Vasc Anesth 14(1):44–45

    Article  PubMed  Google Scholar 

  • Zhang X, Xue Z, Sun A (2008) Subclinical concentration of sevoflurane potentiates neuronal apoptosis in the developing C57BL/6 mouse brain. Neurosci Lett 447(2–3):109–114

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Dong Y, Wu X, Lu Y, Xu Z, Knapp A, Yue Y, Xu T, Xie Z (2010) The mitochondrial pathway of anesthetic isoflurane-induced apoptosis. J Biol Chem 285(6):4025–4037

    Article  CAS  PubMed  Google Scholar 

  • Zhou X, Song FH, He W, Yang XY, Zhou ZB, Feng X, Zhou LH (2012a) Neonatal exposure to sevoflurane causes apoptosis and reduces nNOS protein expression in rat hippocampus. Mol Med Rep 6(3):543–546

    CAS  PubMed  Google Scholar 

  • Zhou X, Song FH, He W, Yang XY, Zhou ZB, Feng X, Zhou LH (2012b) Neonatal exposure to sevoflurane causes apoptosis and reduces nNOS protein expression in rat hippocampus. Mol Med Rep 6(3):543–546

    CAS  PubMed  Google Scholar 

  • Zhou H, Li S, Niu X, Wang P, Wang J, Zhang M (2013) Protective effect of FTY720 against sevoflurane-induced developmental neurotoxicity in rats. Cell Biochem Biophys 67(2):591–598

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (grant NO. 81571032) and Guangdong Science and Technology Planning Project (grant no. 2013B051000045).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xia Feng.

Ethics declarations

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. All procedures performed in studies involving animals were in accordance with the ethical standards of Institutional Animal Care and Use Committee at Sun Yat-Sen University (Guangzhou, Guangdong, China).

This article does not contain any studies with human participants performed by any of the authors.

Conflict of interests

There is no conflict of interests regarding the publication of this paper.

Additional information

Xiaohui Chen and Xue Zhou contributed equally to this work.

Electronic Supplementary Material

Supplementary Fig. 1

CNC network of the ten most significantly changed lncRNAs. The network represents co-expression correlations between the ten significantly differentially expressed lncRNAs and mRNAs. Orange rectangle nodes represent the ten most significantly changed lncRNAs in the network, while the light-blue round nodes represent hundreds of co-expressed mRNAs, and red nodes were related to several known bcl2 family. Correlation degrees for each pair of nodes were measured and delineated by the length of the lines. (GIF 163 kb)

High Resolution Image (TIFF 192132 kb)

Supplementary Table 1

Differentially expressed lncRNAs in microarray analysis (XLS). The table present the lncRNAs differentially expressed with an absolute fold-change >1.5. (XLS 54 kb)

Supplementary Table 2

Differentially Expressed mRNAs in microarray analysis (XLS). The table present the mRNAs differentially expressed with an absolute fold-change >1.5. (XLS 31 kb)

Supplementary Table 3

Predicted regulation for lncRNAs and their potential target genes in microarray analysis (XLS). The lncPath™ arrays profile lncRNAs and their target genes simultaneously in a pathway-focused manner. Three types of LncRNAs are included in LncPath™ arrays: enhancer-like LncRNAs、ceRNAs、neighboring LncRNAs. (XLS 792 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Zhou, X., Lu, D. et al. Aberrantly expressed long noncoding RNAs are involved in sevoflurane-induced developing hippocampal neuronal apoptosis: a microarray related study. Metab Brain Dis 31, 1031–1040 (2016). https://doi.org/10.1007/s11011-016-9838-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11011-016-9838-6

Keywords

Navigation