Abstract
Those at risk for Alzheimer’s disease (AD) often exhibit hippocampal hyperexcitability in the years preceding diagnosis. Our previous work with the rTg(TauP301L)4510 tau mouse model of AD suggests that this increase in hyperexcitability is likely mediated by an increase in depolarization-evoked glutamate release and a decrease in glutamate uptake, alterations of which correlate with learning and memory deficits. Treatment with riluzole restored glutamate regulation and rescued memory deficits in the TauP301L model. Here, we used enzyme-based ceramic microelectrode array technology to measure real-time phasic glutamate release and uptake events in the hippocampal subregions of TauP301L mice. For the first time, we demonstrate that perturbations in glutamate transients (rapid, spontaneous bursts of glutamate) exist in a tau mouse model of AD mouse model and that riluzole mitigates these alterations. These results help to inform our understanding of how glutamate signaling is altered in the disease process and also suggest that riluzole may serve as a clinically applicable therapeutic approach in AD.
References
Azbill RD, Mu X, Springer JE (2000) Riluzole increases high-affinity glutamate uptake in rat spinal cord synaptosomes. Brain Res 871:175–180
Bakker A et al (2012) Reduction of hippocampal hyperactivity improves cognition in amnestic mild cognitive impairment. Neuron 74:467–474. doi:10.1016/j.neuron.2012.03.023
Bassett SS, Yousem DM, Cristinzio C, Kusevic I, Yassa MA, Caffo BS, Zeger SL (2006) Familial risk for Alzheimer’s disease alters fMRI activation patterns. Brain 129:1229–1239. doi:10.1093/brain/awl089
Bondi MW, Houston WS, Eyler LT, Brown GG (2005) fMRI evidence of compensatory mechanisms in older adults at genetic risk for Alzheimer disease. Neurology 64:501–508. doi:10.1212/01.wnl.0000150885.00929.7e
Bookheimer SY, Strojwas MH, Cohen MS, Saunders AM, Pericak-Vance MA, Mazziotta JC, Small GW (2000) Patterns of brain activation in people at risk for Alzheimer’s disease. N Engl J Med 343:450–456. doi:10.1056/nejm200008173430701
Brier MR et al (2012) Loss of intranetwork and internetwork resting state functional connections with Alzheimer’s disease progression. J Neurosci 32:8890–8899. doi:10.1523/jneurosci.5698-11.2012
Burmeister JJ, Gerhardt GA (2001) Self-referencing ceramic-based multisite microelectrodes for the detection and elimination of interferences from the measurement of L-glutamate and other analytes. Anal Chem 73:1037–1042
Cirrito JR et al (2005) Synaptic activity regulates interstitial fluid amyloid-beta levels in vivo. Neuron 48:913–922
Crimins JL, Pooler A, Polydoro M, Luebke JI, Spires-Jones TL (2013) The intersection of amyloid beta and tau in glutamatergic synaptic dysfunction and collapse in Alzheimer’s disease. Ageing Res Rev 12:757–763. doi:10.1016/j.arr.2013.03.002
Cunningham CL, Martinez-Cerdeno V, Noctor SC (2013) Microglia regulate the number of neural precursor cells in the developing cerebral cortex. J Neurosci 33:4216–4233. doi:10.1523/jneurosci.3441-12.2013
DeVos SL et al (2013) Antisense reduction of tau in adult mice protects against seizures. J Neurosci 33:12887–12897. doi:10.1523/jneurosci.2107-13.2013
Frizzo ME, Dall’Onder LP, Dalcin KB, Souza DO (2004) Riluzole enhances glutamate uptake in rat astrocyte cultures. Cell Mol Neurobiol 24:123–128
Gourley SL, Espitia JW, Sanacora G, Taylor JR (2012) Antidepressant-like properties of oral riluzole and utility of incentive disengagement models of depression in mice. Psychopharmacology (Berl) 219:805–814
Grundke-Iqbal I, Iqbal K, Tung YC, Quinlan M, Wisniewski HM, Binder LI (1986) Abnormal phosphorylation of the microtubule-associated protein tau (tau) in Alzheimer cytoskeletal pathology. Proc Natl Acad Sci U S A 83:4913–4917
Hascup KN et al (2011) Resting glutamate levels and rapid glutamate transients in the prefrontal cortex of the Flinders Sensitive Line rat: a genetic rodent model of depression. Neuropsychopharmacology 36:1769–1777. doi:10.1038/npp.2011.1760
Holth JK et al (2013) Tau loss attenuates neuronal network hyperexcitability in mouse and Drosophila genetic models of epilepsy. J Neurosci 33:1651–1659. doi:10.1523/jneurosci.3191-12.2013
Hoover BR et al (2010) Tau mislocalization to dendritic spines mediates synaptic dysfunction independently of neurodegeneration. Neuron 68:1067–1081
Hunsberger H, Rudy C, Batten S, Gerhardt G, Reed M (2014a) P301L tau expression affects glutamate release and clearance in the hippocampal trisynaptic pathway. J Neurochem. doi:10.1111/jnc.12967
Hunsberger H et al (2014b) Effect size of memory deficits in mice with adult-onset P301L tau expression. Behav Brain Res 272:181–195. doi:10.1016/j.bbr.2014.06.057
Hunsberger HC et al (2015) Riluzole rescues glutamate alterations, cognitive deficits, and tau pathology associated with P301L tau expression. J Neurochem. doi:10.1111/jnc.13230
Ishiyama T, Okada R, Nishibe H, Mitsumoto H, Nakayama C (2004) Riluzole slows the progression of neuromuscular dysfunction in the wobbler mouse motor neuron disease. Brain Res 1019:226–236. doi:10.1016/j.brainres.2004.06.002
Ittner LM et al (2010) Dendritic function of tau mediates amyloid-[beta] toxicity in Alzheimer’s disease mouse models. Cell 142:387–397
Kamenetz F et al (2003) APP processing and synaptic function. Neuron 37:925–937
Liu L, Drouet V, Wu JW, Witter MP, Small SA, Clelland C, Duff K (2012) Trans-synaptic spread of tau pathology in vivo. PLoS ONE 7, e31302. doi:10.1371/journal.pone.0031302
Mayford M, Bach ME, Huang YY, Wang L, Hawkins RD, Kandel ER (1996) Control of memory formation through regulated expression of a CaMKII transgene. Science (New York, NY) 274:1678–1683
Moechars D et al (2006) Vesicular glutamate transporter VGLUT2 expression levels control quantal size and neuropathic pain. J Neurosci 26:12055–12066
Palop JJ et al (2003) Neuronal depletion of calcium-dependent proteins in the dentate gyrus is tightly linked to Alzheimer’s disease-related cognitive deficits. Proc Natl Acad Sci U S A 100:9572–9577
Paulson JB, Ramsden M, Forster C, Sherman MA, McGowan E, Ashe KH (2008) Amyloid plaque and neurofibrillary tangle pathology in a regulatable mouse model of Alzheimer’s disease. Am J Pathol 173:762–772, 10.2353/ajpath.2008.080175
Paxinos G, Franklin K (2012) Mouse brain in stereotaxic coordinates vol 4th. Academic Press
Ramsden M et al (2005) Age-dependent neurofibrillary tangle formation, neuron loss, and memory impairment in a mouse model of human tauopathy (P301L). J Neurosci 25:10637–10647. doi:10.1523/jneurosci.3279-05.2005
Roberson ED et al (2007) Reducing endogenous tau ameliorates amyloid beta-induced deficits in an Alzheimer’s disease mouse model. Science 316:750–754. doi:10.1126/science.1141736
SantaCruz K et al (2005) Tau suppression in a neurodegenerative mouse model improves memory function. Science 309:476–481. doi:10.1126/science.1113694
Sperling RA et al (2010) Functional alterations in memory networks in early Alzheimer’s disease. Neuromolecular Med 12:27–43. doi:10.1007/s12017-009-8109-7
Stephens ML et al (2014) Tonic glutamate in CA1 of aging rats correlates with phasic glutamate dysregulation during seizure. Epilepsia 55:1817–1825. doi:10.1111/epi.12797
Sultan S, Gebara E, Toni N (2013) Doxycycline increases neurogenesis and reduces microglia in the adult hippocampus Frontiers in. Neuroscience 7:131. doi:10.3389/fnins.2013.00131
Vossel KA et al (2013) Seizures and epileptiform activity in the early stages of Alzheimer disease. JAMA Neurol 70:1158–1166. doi:10.1001/jamaneurol.2013.136
Wilson NR et al (2005) Presynaptic regulation of quantal size by the vesicular glutamate transporter VGLUT1. J Neurosci 25:6221–6234. doi:10.1523/jneurosci.3003-04.2005
Acknowledgments
This work was supported by the National Institute of General Medical Sciences (Reed – NIGMS-U54GM104942), National Institute on Aging (Reed – NIA-R15AG045812), the Alzheimer’s Association (Reed - NIRG-12-242187), a WVU Faculty Research Senate Grant, and a NSF PSCOR grant.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Hunsberger, H.C., Hickman, J.E. & Reed, M.N. Riluzole rescues alterations in rapid glutamate transients in the hippocampus of rTg4510 mice. Metab Brain Dis 31, 711–715 (2016). https://doi.org/10.1007/s11011-015-9783-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11011-015-9783-9